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Abstract

This paper considers statistical process control (SPC) of univariate processes, and tries to

make two contributions to the univariate SPC problem. First, we propose a continuously variable

sampling scheme, based on a quantitative measure of the likelihood of a process distributional

shift at each observation time point, provided by the p-value of the conventional cumulative sum

(CUSUM) charting statistic. For convenience of the design and implementation, the variable

sampling scheme is described by a parametric function in the flexible Box-Cox transformation

family. Second, the resulting CUSUM chart using the variable sampling scheme is combined

with an adaptive estimation procedure for determining its reference value, to effectively protect

against a range of unknown shifts. Numerical studies show that it performs well in various cases.

A real data example from a chemical process illustrates the application and implementation of

our proposed method. This paper has supplementary materials online.

Key words: Adaptive Estimation; Bootstrap; Dynamic Sampling; Monte Carlo Simulation;

Variable Sampling.

1 Introduction

Statistical process control (SPC) charts provide us an effective tool for monitoring the performance

of a sequential process over time. They have broad applications in manufacturing industries and in

biology, genetics, medicine, finance and many other areas as well (Montgomery 2009). Three widely

used control charts include the Shewhart chart (Shewhart 1931), cumulative sum (CUSUM) chart

(Page 1954), and exponentially weighted moving average (EWMA) chart (Roberts 1959). See, e.g.,

Chen et al. (2001), Chen and Zhang (2005), Hawkins and Olwell (1998), Montgomery (2007, 2009),

Qiu (2013), Woodall (2000), and Yeh et al. (2004) for related discussions.

1



The three conventional control charts mentioned above have their own strengths. For instance,

the Shewhart chart is more effective in detecting large and isolated shifts while the CUSUM and

EWMA control charts are more efficient in detecting small and persistent shifts (Lucas and Sac-

cucci 1990). These charts give a signal whenever their charting statistics fall outside their control

limits. By using these charts, users would know whether the process is in-control (IC) or not at

each time point. But, the charts cannot provide us a quantitative measure of the likelihood of a

potential process distributional shift, even after a signal of shift has been given. In practice, such

a quantitative measure is useful for taking appropriate subsequent actions. For instance, in cases

when a variable sampling scheme is possible (Reynolds et al. 1990), even if a signal of shift is not

delivered at a given time point, the quantitative measure of the shift likelihood can be used for

adjusting the next sampling time properly. We can wait longer for the next sampling time if the

shift likelihood is smaller, and shorter otherwise. In the context of hypothesis testing, the p-value

approach is often preferred nowadays, compared to the conventional “rejection region” approach,

because the former provides us not only a decision about whether the null hypothesis should be

rejected at a given significance level but also a quantitative measure of the evidence in the observed

data to support such a decision.

In recent years, control charts with variable sampling rate (VSR) schemes have attracted con-

siderable attention of statisticians. As pointed out by Montgomery (2007), one important area of

SPC research continues to be the use of adaptive control charts with variable sample sizes and/or

sampling intervals. By a VSR scheme, the sampling rate changes over time, depending on the

current and prior sampling results. One major advantage of a VSR chart, compared to a chart

using a fixed sampling rate (FSR), is that it can detect small to moderate shifts effectively, given

the IC average run length (denoted as ARL0), and the IC average sampling rate. There are several

different ways to change the sampling rate, including the variable sampling intervals (VSI), vari-

able sample sizes (VSS), and variable sample sizes and sampling intervals (VSSI). See Montgomery

(2009) for a more detailed description. In the literature (Costa 1998, Wu et al. 2007, Reynolds and

Arnold 2001), the sampling interval function d(·) usually takes only two possible values. Recently,

Stoumbos et al. (2011) derived the optimal sampling interval function in terms of the adjusted

average time to signal (AATS) using a quadratic programming algorithm. They showed that this

optimal function could be approximated by a function with only two values d1 and d2. Thus, they

recommended using this simplified sampling interval function in practice. However, they pointed
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out that a control chart using such a simplified sampling interval function would be “strongly tuned

towards the size of shift for which the charts have been optimized, at the significant expense of

some of the other shift sizes.” Moreover, they found that “with a dual-sampling-interval policy,

large values of d2 make the chart more efficient for small shifts, and small values of d2 make it

more efficient for large shifts.” Therefore, although the simplified sampling interval function is

recommended because of its simplicity, it is not optimal, and has much room for improvement.

In this paper, we suggest choosing d(·) to be a continuous function of the p-value of the

charting statistic of our proposed CUSUM chart. The sampling scheme with such a sampling

interval function is called a dynamic sampling scheme in this paper. For convenience of the design

and implementation of our proposed control chart, we suggest approximating the sampling interval

function by a parametric function in the flexible Box-Cox transformation family. It will be shown

that such a dynamic sampling scheme has good performance in various cases.

It is well known that the CUSUM chart has an attractive theoretical property that it is the

optimal shift detection procedure if its reference value, denoted by k, is chosen properly for a

particular shift size (Lorden 1971, Pollack 1985, Moustakides 1986). Here, the optimality means

that, among all control charts with their ARL0 values equal or smaller than a given value, the

CUSUM chart has the smallest value of maxτ ARL1, where τ is the true position of a shift with a

give size and ARL1 is the out-of-control (OC) average run length of the CUSUM chart for detecting

that shift. See Qiu (2013, Chapter 4) for a detailed discussion about the CUSUM chart. In practice,

however, the size of a potential shift is unknown. To overcome this difficulty, for the VSR chart with

a simplified sampling interval function, Stoumbos et al. (2011) recommended that d1 be chosen

as small as possible, d2 chosen between 1.20 and 3.00 time units, and k chosen between 0.10 and

0.60. As mentioned above, such a recommended design is tuned towards certain shift sizes at the

significant expense of some other shift sizes. To overcome this limitation, in this paper, we suggest

using the scheme by Sparks (2000) to adaptively estimate the size of a potential shift at each time

point and then choose the reference value of our proposed CUSUM chart accordingly.

As far as we know, this paper is the first to define the sampling interval function d(·) as a

function of the p-value of the charting statistic of a control chart. Unlike most existing control

charts with VSR schemes, in which d(·) usually takes only two values, we suggest adjusting d(·)

by a continuous parametric function of the p-value. This paper is also the first to combine the

idea to use a continuously-changing sampling interval function d(·) and the idea by Sparks (2000)

3



to adaptively estimate the shift size. The remainder of the article is organized as follows. In

the next section, our proposed CUSUM chart is described in detail. Its numerical performance is

investigated in Section 3. Then, our method is demonstrated using a real data example in Section

4. Some remarks conclude the article in Section 5. Some numerical results, computer codes, and

the real-data discussed in Section 4 are provided in online supplementary files.

2 Proposed CUSUM Chart

We describe our proposed CUSUM chart in three parts. In Section 2.1, we give a brief introduction

to CUSUM charts using p-values. In Section 2.2, the dynamic sampling scheme is described. Then,

in Section 2.3, adaptive selection of the reference value of the proposed CUSUM chart is discussed.

2.1 CUSUM charts using p-values

In the literature, there have been some discussions about designing a control chart using the p-value

of its charting statistic. For instance, in their technical reports, Benjamini and Kling (1999, 2002,

2007) proposed the idea to present the p-values of the charting statistic of a traditional control chart

(e.g., theX-chart) for monitoring processes in cases when the IC process distribution was completely

known. In their proposal, the p-value was computed using the Markov chain representation of the

charting statistic (e.g., Brook and Evans 1972). In cases when the IC process distribution is

assumed normal with a known variance, Grigg and Spiegelhalter (2008) provided an approximation

formula for the IC distribution of the charting statistic of the conventional CUSUM chart. Li and

Tsung (2009) studied the false discovery rate in multistage process monitoring, in which p-value

calculation of the charting statistics used in different stages of process monitoring is discussed. Li

et al. (2013) systematically discussed how to design control charts using p-values in cases when

the IC process distribution was completely known, in cases when the IC process distribution had

a parametric form with unknown parameters, and in cases when the IC process distribution was

completely unknown. The last scenario (unknown IC process distribution) is briefly introduced

below.

Let X1, X2, . . . , Xτ be a sequence of independent and identically distributed (i.i.d.) random

variables with mean µ0, variance σ2, and a cumulative distribution function (cdf) F0(·), and
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Xτ+1, Xτ+2, . . . be a sequence of i.i.d. random variables with the same distribution except that

their common mean is µ1 6= µ0, where τ is an unknown change point. Then, the charting statistic

of the conventional CUSUM for detecting an upward mean shift is defined by





C+
0 = 0,

C+
n = max(0, C+

n−1 +Xn − µ0 − k),

where k > 0 is its reference value. If k is chosen as (µ1 − µ0)/2, then the chart is optimal for

detecting the particular shift µ1. The chart gives a signal of an upward mean shift when

C+
n > h,

where h > 0 is a control limit chosen to achieve a given ARL0 value. An analagous charting statistic

can be defined for detecting a downward mean shift.

By using the above conventional CUSUM charts, we can only know whether the process is IC

or not at a given time point. It is usually unknown to us the likelihood of a potential shift, even

after a signal of shift is given. To overcome this limitation, we can use the p-value of its charting

statistic in its design, which is described below in the case for detecting an upward mean shift. The

other cases for detecting a downward or arbitrary shift can be discussed similarly. Let C+∗

n be the

observed value of the charting statistic C+
n . Then, the p-value at the n-th time point is defined by

P
C+∗

n
= P

(
C+
n > C+∗

n

)
. (1)

As in the context of hypothesis testing, at a pre-specified significance level α, if

P
C+∗

n
< α, (2)

then we conclude that the process is OC at the n-th time point. Otherwise, it is IC. There are

several benefits to use the p-value to make decisions about the process performance. First, the

control limit of the above chart is always α which has a probability interpretation. Therefore, the

chart (1)-(2) is easy to construct and interpret. Second, the p-value provides a numerical measure

of the likelihood of a potential shift, based on which we can take appropriate subsequent actions.

For instance, if P
C+∗

n
is much larger than α, then we can adjust the next sample accordingly, by

either waiting longer than usual for the next sample or collecting less observations at the next

regular sampling time. In cases when P
C+∗

n
< α, the control chart gives a signal of shift and the

process monitoring should be stopped. In practice, however, even in such cases, the p-value P
C+∗

n
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is helpful in taking proper post-signal actions. For instance, if P
C+∗

n
is much smaller than α, then

the production process should be stopped immediately. In cases when P
C+∗

n
is only marginally

smaller than α, we may want to keep the production process running, collect one more sample in a

shorter-than-usual period of time (which can also be determined by our proposed dynamic sampling

scheme introduced in Section 2.2), and make an appropriate decision based on the information in

the new sample. Further study of the use of the p-value as a diagnostic aid will be considered in

the future.

To calculate the p-value P
C+∗

n
, we need to specify the IC distribution of C+

n . In cases when the

IC process distribution is known, the IC distribution of C+
n can be determined by a Monte Carlo

simulation. It is well known that this IC distribution is stable when n is large (e.g., n ≥ 50), which

is the so-called steady-state distribution in the literature (e.g., Hawkins and Olwell 1998, page 61).

Therefore, in such cases, we only need to determine the IC distributions of C+
n for cases when n

is small, and determine the steady-state distribution for approximating the IC distributions of C+
n

in cases when n is large. These distributions can be easily tabulated by a simulation beforehand,

and the p-value P
C+∗

n
can be computed accordingly. If it is reasonable to assume that the shift can

only occur after n ≥ 50, then only the steady-state distribution of C+
n is needed to compute the

p-values P
C+∗

n
, for n ≥ 50. In cases when the IC process distribution is unknown but an IC dataset

is available, the IC distribution of C+
n can be determined by a bootstrap procedure described as

follows, which is similar to the method discussed in Chatterjee and Qiu (2009). By the bootstrap

method (Efron 1979, Efron and Tibshirani 1993), we repeatedly draw observations with replacement

from the IC data, which are called the resampled data, and the resampled data are used as Phase

II observations to compute the values of C+
n , for any given n. Then, this process is repeated B

times, and the B values of C+
n are used for estimating the IC distribution of C+

n , where B > 0 is

the so-called bootstrap sample size. Again, we only need to estimate the IC distributions of C+
n

when n is small. When n is large, we can use a single steady-state distribution to approximate all

IC distributions of C+
n , as discussed above.

2.2 CUSUM charts using a dynamic sampling scheme

As mentioned in Section 2.1, with the CUSUM chart (1)-(2), it is natural to adjust the next

sampling time according to the observed p-value P
C+∗

n
at the current time point n. If P

C+∗

n
is

larger, then we can wait longer to collect the next observation. Otherwise, the next observation
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time should be sooner than usual. See Table 2 in Section 4 for a demonstration. Therefore,

the sampling interval function d(·) should be an increasing function of P
C+∗

n
. To specify this

function, it is important to strike a balance between a rigid parametric form and an overly complex

function. A complex function will have too many parameters to choose, while a rigid parametric

form may not be sufficiently flexible to give the desired chart performance. To trade off these two

considerations, we suggest choosing d(·) from the Box-Cox transformation family (Box and Cox

1964), because this family is flexible enough for most applications and it contains many commonly

used parametric monotone functions, such as the log, linear, and quadratic functions. Some other

types of transformation family, such as the Johnson transformation family, are not considered here

due to their complexity and inferior performance (Qiu and Li 2011a). Define

d(P
C+∗

n
) = a∗ + b∗Bλ

(
P
C+∗

n

)
, (3)

where a∗ and b∗ are two coefficients, Bλ(PC+∗

n
) is the Box-Cox transformation of P

C+∗

n
defined by

Bλ

(
P
C+∗

n

)
=





Pλ

C
+∗

n

−1

λ
if λ 6= 0

log(P
C+∗

n
) if λ = 0,

and λ ≥ 0 is a parameter. Substituting Bλ(PC+∗

n
) into equation (3), we have

d(P
C+∗

n
) =





a+ bP λ
C+∗

n

if λ 6= 0

a+ b log(P
C+∗

n
) if λ = 0,

(4)

where




a = a∗ − b∗

λ
, b = b∗

λ
if λ 6= 0

a = a∗, b = b∗ if λ = 0.

In cases when the sampling interval remains constant in a process, the average run length

(ARL) is traditionally employed in the SPC literature as a performance measure of a control chart.

However, when the sampling interval is variable, the time to signal is not a constant multiple of the

ARL, and thus ARL may not be appropriate for evaluating the effectiveness of a VSI control chart.

In such cases, two widely used performance measures are the average time to signal (ATS), defined

as the expected value of the time interval from the start of the Phase II process monitoring to the

time when a chart gives an OC signal, and the adjusted average time to signal (AATS), defined

as the expected value of the time interval from the occurrence of a shift to the time when the

chart gives an OC signal. When the process is IC, the ATS provides a measure of the false alarm
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rate (denoted ATS0) for a control chart: the chart with a larger IC ATS would have a lower false

alarm rate. When the process is OC, the AATS can be used to measure the OC performance of

a chart (denoted AATS1): the chart with a smaller OC AATS would perform better for detecting

the related shift.

In the sampling interval function d(·) defined in (4), there are three parameters a, b and λ to

determine. For a VSI chart, it is often required that ATS0 = ARL0. Therefore, as long as a and λ

are determined, b can be determined accordingly to satisfy this requirement. For this reason, next,

we discuss the selection of a and λ only.

To investigate the effect of a, let us consider cases when the IC process distribution is N(0, 1),

ATS0 = 200, k = 0.25, λ values are chosen from 0, 0.5, 1, 1.5, 2, 2.5, 3, 6, and 10, and a values

are chosen from 0, 0.2, 0.4, 0.6, 0.8 and 1.0. When the process mean has a shift at the initial

observation time with the size 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, or 2.0, the AATS1 values of the

chart (2)-(3) with λ = 0 and 0.5, computed from 10,000 replicated simulation runs, are presented

in Figure 1. The AATS1 values of the chart (2)-(3) with λ values chosen from 0, 0.5, 1, 1.5, 2, 2.5,

3, 6, and 10, are presented in Figure S.1 of the online supplementary material. Note that in the

VSR problems such as the one discussed here, the basic time unit is assumed to be well defined

beforehand, and we collect one sample every one basic time unit under a FSR scheme. Therefore,

by assuming ATS0 = 200, we actually assume that the IC ATS is 200 basic time units. In this

example, the value of a is chosen in the interval [0, 1] for the following reason. If a is chosen a

negative number, then the sampling interval by (4) could be negative. If a is chosen larger than 1,

then the sampling interval would be consistently larger than 1 in cases when λ > 0, which is not

reasonable because the chart (2)-(3) is supposed to take the next sample sooner than usual when

the observed p-value P
C+∗

n
is close to α. From Figure 1 and Figure S.1, it can be seen that (i)

when λ = 0, the AATS1 value decreases when a increases, and (ii) when λ > 0, the AATS1 value

increases when a increases. Based on this study, we should choose a = 1 when λ = 0, and a = 0

when λ > 0.

To investigate the effect of λ, we consider nine λ values {0, 0.5, 1, 1.5, 2, 2.5, 3, 6, 10} in the

interval [0, 10]. By the results in the above example, a is chosen 1 when λ = 0, and 0 when

λ > 0. All other setup is the same as that in the above example. The computed AATS1 values of

the chart (2)–(3) are shown in Figure 2(a). From the plot, it seems that the performance of the

chart gets better when λ increases; but, the performance does not change much when λ ≥ 2. To

8



0.0 0.5 1.0 1.5 2.0

1
2

5
10

50

shift

A
AT

S
1

10
50

a=0
a=0.2
a=0.4
a=0.6
a=0.8
a=1.0

(a) λ = 0

0.0 0.5 1.0 1.5 2.0

1
2

5
10

50

shift

A
AT

S
1

10
50

(b) λ = 0.5

Figure 1: AATS1 values of the chart (2)–(3) when the IC process distribution is N(0, 1), the mean
shift size at the initial observation time changes from 0.05 to 2.0, ATS0 = 200, and k = 0.25.

further investigate this issue, we consider another nine λ values {1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4}

around 2. The corresponding AATS1 values are shown in Figure 2(b), from which it can be seen

that AATS1 is indeed stable when λ ≥ 2. Based on these results and on the practical guideline to

choose a simple number for λ when using the Box-Cox transformation (e.g., Weisberg 2005, Section

7.1), it seems that λ = 2 is a reasonable choice.

Based on results in Figures 1 and 2, in cases when the IC process distribution is N(0, 1), we

suggest choosing the sampling interval function of the chart (2)–(3) to be

d(P
C+

n
) = b · P 2

C+
n

. (5)

Note that this sampling interval function is based on our empirical study. Much more future research

is required to further justify this choice using mathematically more rigorous arguments. It should

be pointed out that, there is only one parameter b in equation (5), which can be determined to

satisfy the requirement that ATS0 = ARL0. As a comparison, in a conventional VSI control chart

(reviewed in Section 3 below), there are usually two or more parameters involved in its sampling

interval function. Therefore, our proposed control chart described in (1)-(5) would be easier to

use, compared to the conventional VSI control chart. Also, although theoretically speaking, the

sampling interval function defined in (5) can take any values in (0, b), in practice it can only take

integer multiples of the smallest time unit (e.g., one hour) in a specific application. Therefore, the
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Figure 2: AATS1 values of the chart (2)–(3) when the IC process distribution is N(0, 1), the mean
shift size at the initial observation time changes from 0.05 to 2.0, ATS0 = 200, and k = 0.25. Plot
(b) considers a narrower range of λ values.

computed sampling intervals need to be rounded when necessary.

From its definition, our charting statistic P
C+

n
is uniquely determined by the distribution of the

conventional CUSUM charting statistic C+
n , and the latter converges to a steady-state distribution

when n is reasonably large. Therefore, we expect that the IC and OC performance of the chart

(2)-(3) would also have the steady-state property. To demonstrate this, in the example of Figure

2, we consider cases when a = 0, λ = 0.5, 1, 1.5, or 2, the shift time τ = 1, 5, 10, or 50, and the

other setup is unchanged. The computed AATS values of the chart (2)-(3) with λ = 2 are shown

in Figure 3 and the corresponding results with λ = 0.5, 1, and 1.5 are shown in Figure S.2 of the

online supplementary file. From these figures, it can be seen that (i) τ does have a substantial

impact on the OC performance of the chart when it is small, and (ii) the OC performance of the

chart is stable when τ ≥ 10.

2.3 Adaptive selection of the reference value

To use our proposed control chart (2)–(5), we still need to choose the reference value k that is

contained in the definition of the charting statistic C+
n . For the conventional CUSUM chart with
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Figure 3: AATS1 values of the chart (2)–(3) when the IC process distribution is N(0, 1), the mean
shift size at the initial observation time changes from 0.05 to 2.0, ATS0 = 200, k = 0.25, the shift
time τ = 1, 5, 10, or 50, a = 0, and λ = 2.

a constant sampling interval function, practitioners often pre-specify the value of k. However, the

resulting CUSUM chart is only optimal for detecting a specific shift of the size 2k, and it may not

perform well for detecting shifts of other sizes. To overcome this limitation, Sparks (2000) suggested

estimating the shift size at each time point and then choosing the reference value k accordingly. This

scheme for choosing k is often called the adaptive selection scheme in the literature. In this paper,

we suggest using the adaptive selection scheme in our proposed control chart (2)–(5), described

briefly as follows. Let

δ̂n = max
{
δmin, (1− r)δ̂n−1 + rXn

}

be an estimator of the size of a potential mean shift at the current time point, where δmin > 0 is

the minimum shift size that we are interested in detecting, δ̂0 = δmin, and 0 < r ≤ 1 is a weighting

parameter. Then, we define kn = δ̂n/2, and the resulting charting statistic becomes





C+
0 = 0,

C+
n = max

(
0, C+

n−1 + (Xn − µ0 − kn)/hn
)
,

(6)
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where hn > 0 is a control limit. Shu and Jiang (2006) provided the following formula to compute

the corresponding control limit hn such that a pre-specified ARL0 could be approximately reached:

hn =
log(1 + 2k2n ·ARL0 + 2.332kn)

2kn
− 1.166,

which is a modification of the formula proposed by Siegmund (1985). Both Sparks (2000) and

Shu and Jiang (2006) have demonstrated that the CUSUM chart with the above adaptive selection

scheme could perform well in various cases, and they also provided some practical guidelines for

choosing the parameters δmin and r.

Next, we demonstrate numerically that the charting statistic defined in (6) with the adaptively

selected reference value kn still has the steady-state property. To this end, we consider four com-

binations of (r, δmin): (0.2, 0.5), (0.2, 1.0), (0.1, 0.5), (0.1, 1.0). For each combination, the empirical

distribution of C+
n defined by (6) is obtained by a Monte Carlo simulation with 1 million replications

when n = 10, 20, 50, 100, 200 and 500. Then, the p-values P
C+∗

n
for various observed values C+∗

n of

C+
n can be computed, and those when (r, δmin) = (0.2, 0.5) and (0.2, 1.0) are shown in the two plots

of Figure 4 here and those when (r, δmin) = (0.1, 0.5) and (0.1, 1.0) are presented in Figure S.3 of

the online supplementary file. (Note that 1− P
C+∗

n
is just the empirical distribution of C+

n .) From

the two figures, it can be seen that (i) the empirical distribution of C+
n is almost identical when

n ≥ 50 in all cases considered, (ii) the empirical distribution of C+
n depends on n in a substantial

way only in cases when n is small and when δmin is small as well, and (iii) when δmin is relatively

large (i.e., δmin = 1.0 in the current example), the empirical distribution of C+
n is almost identical

when n is as small as 10. This example also shows that the weighting parameter r has little effect

on the distribution of C+
n .

In the above example, the empirical distribution of C+
n , or the p-values P

C+∗

n
, are computed

using Fortran codes (available from the online supplementary material) together with the IMSL

subroutine “cpsec”. For each combination of (r, δmin), the CPU times for finding the p-values

based on 1 million replicated simulations are 51.54, 52.82, 53.95, 54.88, 56.74 and 60.82 seconds,

respectively, in cases when n = 10, 20, 50, 100, 200 and 500, on an Intel 2 with CPU processor 2.4

GHz. Note that, in practice, to use our proposed method, we only need to specify the empirical

distributions of C+
n in cases when n ≤ 50 and these empirical distributions can be tabulated and

saved in our computers beforehand. Therefore, it is actually quite convenient to use our proposed

method.

12



0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

Cn
+*

P
C

n+
*

n=10
n=20
n=50
n=100
n=200
n=500

(a) (r,δmin)=(0.2,0.5)

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

Cn
+*

P
C

n+
*

(b) (r,δmin)=(0.2,1.0)

Figure 4: p-value P
C+∗

n
computed from the empirical distribution of C+

n defined by (6) in cases
when n = 10, 20, 50, 100, 200 and 500.

As a summary, our proposed CUSUM chart uses the charting statistic defined in (6), and its

sampling interval function is defined in (5), where b is chosen to satisfy the requirement ATS0 =

ARL0. The chart gives a signal of process mean shift if the expression (2) is true. This chart

is called the dynamic-sampling CUSUM (DyS-CUSUM) chart hereafter. An illustration of the

implementation of the DyS-CUSUM chart is given by Table 2 in Section 4.

3 Simulation Study

In this section, we present some simulation results to evaluate the numerical performance of our

proposed chart DyS-CUSUM. In this section, all AATS values are computed based on 10,000

replicated simulation runs. In such cases, the standard errors of the computed AATS values are

usually less than 2% of the AATS estimates, enabling us to draw reasonable conclusions about the

performance of the DyS-CUSUM chart. The empirical distribution of C+
n is computed based on a

million replicated simulation runs, as in the previous section.

In our numerical study, we compare the DyS-CUSUM chart with the VSI adaptive CUSUM

chart suggested by Luo et al. (2009), called the VSI-ACUSUM chart hereafter. The VSI-ACUSUM

chart uses the conventional CUSUM charting statistic described in Section 2.1, the VSI sampling

13



scheme described below, and the adaptive selection of the reference value discussed in Section 2.3.

The VSI sampling scheme used by VSI-ACUSUM is the conventional 2-interval sampling scheme.

Let d1 and d2 be two possible sampling intervals with 0 < d1 < d2. Then, the corresponding

sampling interval function d(·) is defined to be

d(C+
n ) =





d1, if C+
n ∈ Rw

d2, if C+
n ∈ Rc,

(7)

where Rc = [0, h1] is the central region, Rw = (h1, h2] is the warning region, 0 < h1 < h2 are two

control limits, and they are chosen such that (i) a given value of ARL0 is achieved, and (ii) ARL0

is about the same as ATS0. Existing research on VSI (e.g., Costa 1998, Wu et al. 2007, Reynolds

and Arnold 2001, Stoumbos et al. 2011) shows that d1 should be chosen as small as possible, and

d2 should be chosen as large as possible. Reynolds et al. (1990) showed that the VSI sampling

scheme with d1 = 0.1 and d2 = 1.9 can give good results in various cases, which was used in Luo

et al. (2009) and is used here as well.

From the above description, it can be seen that the major differences between the VSI-

ACUSUM chart and our proposed DyS-CUSUM chart are that (i) the VSI-ACUSUM chart uses

a conventional 2-interval sampling scheme while we use a dynamic sampling scheme, and (ii) the

VSI-ACUSUM chart uses the conventional control limits in its design and we use the p-value of the

charting statistic in the design of the DyS-CUSUM chart.

In our numerical study, the ATS0 values of both related charts are set to be 400, as in Luo

et al. (2009). We assume that the IC process distribution is N(0, 1), and the mean shift changes

its value among 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, and 2.0. For both the DyS-CUSUM and

VSI-ACUSUM charts, their reference values are chosen adaptively by the procedure described in

Section 2.3. Following Shu and Jiang (2006), the weighting parameter r and minimum shift size

δmin are set to be r = 0.2 and δmin = 0.05. Then, the b value is computed to be 3.1562 so that

ATS0 = ARL0 = 400. To evaluate the performance of the related control charts, besides the

AATS1 values, we also consider the so-called integral of the relative AATS (IRAATS) measure to

evaluate the overall performance of the control charts in detecting different shifts, which was first

suggested by Luo et al. (2009). For a control chart C, its IRAATS value is defined by

IRAATS =
1

p

p∑

j=1

AATS1,C(δj)

AATS1,min(δj)
,

where AATS1,C(δj) is theAATS1 value of the control chart C for detecting the shift δj , AATS1,min(δj)
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is the smallest AATS1 value of all control charts considered for detecting the shift δj , and p is the

total number of shifts considered. By this measure, a control chart with a smaller IRAATS value

is considered to be more effective in detecting the related shifts. Note that one may intentionally

lower the IRAATS value of a control chart by including more cases with large shifts, because the

chart would have small AATS1 values for detecting large shifts. Similarly, one can intentionally

increase the IRAATS value of the chart by considering more cases with small shifts.

Table 1: AATS1 values of the control charts DyS-CUSUM and VSI-ACUSUM when they are
used for detecting mean shifts δj . It is assumed that the IC process distribution is N(0, 1) and
ATS0 = 400 for both control charts.

δj DyS-CUSUM VSI-ACUSUM
adaptive k=0.2 adaptive k=0.2

0.05 198.26 244.45 192.47 268.95
0.10 97.48 137.74 97.79 164.17
0.20 33.84 49.96 36.29 56.07
0.40 12.76 13.25 12.32 12.10
0.60 6.49 6.40 7.10 6.00
0.80 4.27 3.79 4.94 3.82
1.00 2.70 2.84 3.61 2.88
1.50 1.69 1.82 2.09 1.86
2.00 1.35 1.42 1.50 1.47

IRAATS 1.03 1.17 1.14 1.22

The results of the two charts are presented in Table 1 in columns labeled by “adaptive.” It

can be seen from the table that DyS-CUSUM is better than VSI-ACUSUM in all cases except the

one with δj = 0.05. The IRAATS value of the DyS-CUSUM chart is about 10.5% smaller than

that of the VSI-ACUSUM chart. Therefore, the overall performance of the DyS-CUSUM chart is

better than that of the VSI-ACUSUM chart. As mentioned above, the main difference between

the charts DyS-CUSUM and VSI-ACUSUM is that the former uses the dynamic sampling scheme

while the latter uses the regular 2-interval sampling scheme. So, this example demonstrates that

the dynamic sampling scheme has certain advantage, compared to the regular 2-interval sampling

scheme. To further demonstrate this result, we also present the corresponding results of the two

charts when their reference values are both fixed at k = 0.2 in the same table. It can be seen that

similar conclusions can be made in such cases.

In the next example, we investigate the effectiveness of the dynamic sampling scheme used in

the DyS-CUSUM chart. To this end, in the control chart (1)-(2) using the p-value of its charting

statistic, we consider three different sampling schemes: (i) d(C+
n ) = 1, (ii) d(C+

n ) is the conventional

2-interval scheme defined by equation (7) with d1 = 0.1 and d2 = 1.9 as in the VSI-ACUSUM chart,
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and (iii) the dynamic sampling scheme defined in equation (5). In each case, the reference value

k is chosen by the adaptive scheme, and the other parameters are chosen such that ATS0 = 400.

In this study, we assume that the IC process distribution is unknown. Instead, we have 2,000 IC

observations from the N(0, 1) distribution. Therefore, in the control chart (1)-(2), the bootstrap

approach with B = 1, 000, 000 is used for computing the p-value, as described in the last paragraph

of Section 2.1. The AATS1 values of the chart in various different cases are presented in Figure

5(a). From the plot, it can be seen that the conventional 2-interval VSI scheme does improve the

constant sampling scheme, but the dynamic sampling scheme can further improve the conventional

2-interval VSI scheme.
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Figure 5: AATS1 values of the control chart (1)–(2) when its reference value k is chosen by the
adaptive selection scheme, and the sampling interval function d(·) is chosen by (i) the fixed sampling
interval (FSI) scheme d(C+

n ) = 1, (ii) the conventional 2-interval VSI scheme defined by equation
(7), and (iii) the dynamic VSI scheme defined by equation (5). In plot (a), the p-value of the
charting statistic is computed by the bootstrap approach with B = 1, 000, 000. In plot (b), the
p-value is computed by the distribution estimation approach. In each case, ATS0 is fixed at 400.

As an alternative to the bootstrap approach, one can also estimate the IC distribution pa-

rameters from an IC dataset in cases when the IC distribution family is given. Then, the p-value

of the charting statistic can be computed as if the IC distribution is known. To investigate this

approach, we assume that the IC distribution is univariate normal, and its mean and standard

deviation are estimated from 2,000 IC observations generated from the N(0, 1) distribution. Then,
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we treat the estimated mean and standard deviation as their true values and compute the p-value

of the charting statistic based on this estimated IC distribution. The AATS1 values of the chart

with estimated parameters in various different cases are presented in Figure 5(b). From the plot,

we can see that the same conclusions as those from Figure 5(a) can be made here. To compare

the bootstrap approach with this distribution estimation approach, we show the AATS1 values

by both approaches in cases with the constant sampling scheme, the 2-interval VSI scheme and

the dynamic sampling scheme in Figure S.4(a)-(c) of the online supplementary file, respectively.

From that figure, it can be seen that our bootstrap approach has nearly the same accuracy as the

distribution estimation approach. But, the bootstrap approach does not require to specify the IC

distribution family, while the distribution estimation approach does.

In our proposed DyS-CUSUM chart, the process observations are assumed to be independent.

In practice, however, this assumption is often invalid, especially when the sampling times are close

to each other. In the next example, we investigate the performance of the DyS-CUSUM chart when

process observations are correlated. More specifically, assume that the current observation Xn and

the previous observation Xn−1 are t time units apart, and they follow the following time series

model discussed in Reynolds et al. (1996):

Xn = (1− φt)µ0 + φtXn−1 + ǫn, n = 1, 2, . . . , (8)

where µ0 is the IC process mean, ǫn is the standard normal random error, and 0 < φ < 1 is

an autoregressive parameter. From this model, it is easy to check that the correlation coefficient

between Xn−1 and Xn is φt. It approaches 0 when the time difference t gets large, and approaches

1 when t tends to 0. In cases when ATS0 = 200, φ =0, 0.25, 0.5, and 0.75, and the mean shift

changes its value among 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, and 2.0, and the other setup is the

same as those in Figure 1, the AATS values of DyS-CUSUM are shown in Figure 6. From the

figure, we can make three conclusions. First, as the correlation coefficient φ becomes larger, the

actual ATS0 value when the process is IC is farther away from the nominal ATS0 value of 200. For

instance, when φ = 0.75, the actual ATS0 value is 176, which is substantially below 200. Second,

when φ increases, the actual AATS1 value would increase as well when detecting most mean shifts.

Third, when φ ≤ 0.5, it seems that the impact of the autocorrelation on the performance of the

DyS-CUSUM chart is limited.
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Figure 6: AATS1 values of the DyS-CUSUM chart when process observations follow the time series
model (8) with various values of the autocorrelation parameter φ, and the mean shift changes its
value from 0.05 to 2.0.

4 Real Data Example

In this section, we demonstrate our proposed DyS-CUSUM chart using a real-data obtained from a

chemical process. The data set contains 149 readings of triglyceride content of chemical products,

which is described in more detail in Chapter 3 of Hawkins and Olwell (1998). The data can be

downloaded from http://www.stat.umn.edu/cusum/data.htm.

Hawkins and Olwell (1998) have shown that the process mean appears to be well within its al-

lowable range in the early part of the data set. Based on that result, we use the first 75 observations

as an IC dataset, and the remaining observations are used for testing. The Shapiro-Wilk test for

normality, which can be accomplished by the R function shapiro.test, gives a p-value of 0.03852

when it is applied to the first 75 observations. This test shows that the IC process distribution is

marginally significantly different from a normal distribution. Therefore, in this example, we use

both the bootstrap approach, which does not require the specification of a parametric form for the

IC process distribution, and the distribution estimation approach, which assumes that the IC pro-

cess distribution is a normal distribution, when computing the p-value of the charting statistic C+
n ,

as discussed in the example of Figure 5. The two versions of the DyS-CUSUM chart are denoted

as DyS-CUSUM-B and DyS-CUSUM-E, respectively. In both versions, we choose ARL0 = 400,
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r = 0.2 and δmin = 0.05, as in Section 3. The significance level α used in (2) is computed to be

0.025 and 0.024, respectively, for DyS-CUSUM-B and DyS-CUSUM-E. Then, the DyS-CUSUM-B

chart is shown in Figure 7 and the DyS-CUSUM-E chart is shown in Figure S.5 of the online sup-

plementary file. In both charts, the horizontal dashed lines denote the corresponding significance

levels. From the two figures, we can see that both versions of the DyS-CUSUM chart give signals

of process mean shift at the 123rd time point and the subsequent p-values are all well below the

significance levels. Therefore, these signals are convincing enough, and they are also consistent

with the findings in Hawkins and Olwell (1998).
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Figure 7: Control chart DyS-CUSUM-B for monitoring a univariate chemical process. The hori-
zontal dashed line in the plot denotes the significance level of the chart such that ARL0 = 400.

At the end of this section, we would like to use this example to illustrate the implementation of

the DyS-CUSUM chart. In the illustration, we use the bootstrap approach only when computing

the p-value of the charting statistic C+
n . Note that, in the original data, observations are collected at

equally spaced time points. However, for the illustration purpose, we assume that they are collected

using a dynamic sampling scheme specified by the sampling interval function (5) of our DyS-CUSUM

chart. The coefficient b in equation (5) is computed to be 3.3711 such that ATS0 = ARL0 = 400.

For the testing data (i.e., 76th to 149th observations), the adaptively selected reference values

kn, the charting statistic values C+∗

n , the corresponding p-values P
C+∗

n
, and the sampling intervals

d(P
C+∗

n
) of the DyS-CUSUM chart are presented in Table 2. Note that, such values are not given

for observations 123-149, because an OC signal is already given at n = 123. From Table 2, after
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the 76th observation is obtained, the value of P
C+∗

n
is computed to be 0.083, which is quite close

to the significance level. Therefore, we collect the 77th observation after b · P 2

C+∗

n

= 0.0235 time

units, which is much sooner than the regular sampling interval of 1 time unit. At the time point

n = 81, the p-value P
C+∗

n
is computed to be 0.740, which is quite large, indicating that a mean shift

is unlikely at that time point. The computed value of d(P
C+∗

n
) is 1.8435, indicating that we collect

the next observation after 1.8435 time units. The results at other time points can be explained in

a similar way.

Table 2: Values of kn, C
+∗

n , P
C+∗

n
and d(P

C+∗

n
) of the DyS-CUSUM chart based on the bootstrap

approach when computing the p-value of the charting statistic C+
n .

n kn C
+∗

n P
C

+∗

n

d(P
C

+∗

n

) n kn C
+∗

n P
C

+∗

n

d(P
C

+∗

n

)

76 0.466 0.9589 0.083 0.0235 113 0.250 0.0000 0.740 1.8435
77 0.250 0.7034 0.153 0.0794 114 0.250 0.0000 0.740 1.8435
78 0.250 0.5919 0.192 0.1236 115 0.279 0.0816 0.576 1.1203
79 0.250 0.2884 0.355 0.4260 116 0.250 0.0181 0.719 1.7402
80 0.250 0.0809 0.615 1.2729 117 0.250 0.0000 0.740 1.8435
81 0.250 0.0000 0.740 1.8435 118 0.250 0.0000 0.740 1.8435
82 0.250 0.0000 0.740 1.8435 119 0.441 0.4295 0.267 0.2412
83 0.376 0.2690 0.370 0.4627 120 0.496 0.6552 0.169 0.0968
84 0.250 0.0615 0.640 1.3829 121 0.605 1.0732 0.064 0.0135
85 0.376 0.3306 0.327 0.3615 122 0.499 0.9883 0.078 0.0202
86 0.250 0.0750 0.617 1.2854 123 0.672 1.6264 0.018 *
87 0.250 0.0000 0.740 1.8435 124 0.713 1.9695 0.008 *
88 0.250 0.0000 0.740 1.8435 125 0.682 2.1055 0.005 *
89 0.250 0.0000 0.740 1.8435 126 0.754 2.5642 0.002 *
90 0.250 0.0000 0.740 1.8435 127 0.876 3.3047 0.001 *
91 0.250 0.0000 0.740 1.8435 128 0.845 3.5331 0.001 *
92 0.250 0.0326 0.663 1.4840 129 0.916 4.1563 0.001 *
93 0.344 0.2322 0.401 0.5434 130 0.941 4.6476 0.001 *
94 0.250 0.0727 0.620 1.2937 131 0.929 5.0004 0.001 *
95 0.250 0.0000 0.740 1.8435 132 0.984 5.6416 0.001 *
96 0.250 0.0000 0.740 1.8435 133 0.931 5.8570 0.001 *
97 0.311 0.1371 0.500 0.8444 134 0.953 6.3496 0.001 *
98 0.361 0.2794 0.363 0.4429 135 0.680 5.8784 0.001 *
99 0.250 0.1679 0.465 0.7304 136 0.752 6.3367 0.001 *
100 0.250 0.2005 0.431 0.6247 137 0.649 6.2826 0.001 *
101 0.250 0.1371 0.515 0.8923 138 0.824 7.1202 0.001 *
102 0.250 0.1697 0.465 0.7273 139 1.126 8.9729 0.001 *
103 0.250 0.0102 0.732 1.8038 140 0.980 8.8884 0.001 *
104 0.250 0.0000 0.740 1.8435 141 1.347 11.6756 0.001 *
105 0.250 0.0000 0.740 1.8435 142 1.124 11.3328 0.001 *
106 0.250 0.0000 0.740 1.8435 143 1.237 12.5827 0.001 *
107 0.250 0.0000 0.740 1.8435 144 0.940 11.9645 0.001 *
108 0.250 0.0000 0.740 1.8435 145 1.089 13.1164 0.001 *
109 0.250 0.0000 0.740 1.8435 146 1.015 13.3133 0.001 *
110 0.250 0.0000 0.740 1.8435 147 1.117 14.3168 0.001 *
111 0.250 0.0000 0.740 1.8435 148 1.134 14.9881 0.001 *
112 0.250 0.0326 0.663 1.4840 149 1.051 15.1752 0.001 *
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5 Concluding Remarks

In this paper, we have presented a CUSUM chart designed by the p-value of its charting statistic

using a dynamic sampling scheme. When using this chart, users can get a measure of the likelihood

of a potential shift so that a subsequent action can be taken accordingly. One natural subsequent

action is the dynamic sampling scheme that is described in the paper, by which the sampling

interval for collecting the next observation depends on the p-value computed at the current time

point. If the p-value is larger, then the sampling interval would be longer. In this paper, we have

demonstrated that the dynamic sampling scheme can improve the conventional 2-interval variable

sampling scheme that is extensively studied in the literature.

Although our proposed method is demonstrated using the univariate CUSUM chart (1)-(2) for

detecting a process mean shift in this paper, it is actually quite general and can be applied to other

control charts, such as the univariate and multivariate Shewhart and EWMA charts. It can also

be applied to control charts for detecting other types of process distributional shifts, such as the

process variance shifts. For instance, if it is confirmed that the process distribution is non-normal,

then certain nonparametric control charts can be considered (cf., Qiu and Hawkins 2001, Qiu and

Li 2011b), and the p-value and dynamic sampling scheme can be applied to such nonparametric

control charts accordingly.

We should point out that the proposed CUSUM chart with dynamic sampling intervals has some

disadvantages. First, the sampling intervals specified by the dynamic sampling interval function in

equation (5) change continuously, and it may bring some inconvenience to real-world implementa-

tion. Second, the implementation of the proposed control chart may require the use of a computer

for computing the p-value of the charting statistic at each time point. This disadvantage might be

minor nowadays because many manufacturing facilities have been equipped with computers. Third,

our scheme is based on the usual assumption that successive measurements are independent, which,

however, may become less plausible as the sampling frequency increases, since measurements made

at closer time points are more likely to be correlated. It requires much future research to handle

correlated data when using our proposed CUSUM chart.
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Supplementary Materials

supplemental.pdf: This pdf file presents some extra numerical results.

ComputerCodesAndData.zip: This zip file contains Fortran source codes of our proposed

method and the triglyceride data used in the paper.
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