
WSRP v2.0 Specification

Web Services for Remote Portlets

Specification v2.0

OASIS Standard

1 April 2008

Specification URIs:

This version:

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.html

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.pdf

Previous Version:

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-cs-02.html

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-cs-02.pdf

Latest Version:

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.pdf

Latest Approved Version:

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.html

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.pdf

Technical Committee:

OASIS Web Services for Remote Portlets TC

Chair(s):

Rich Thompson, IBM Corporation <richt2@us.ibm.com>

Editor:

Rich Thompson, IBM Corporation <richt2@us.ibm.com>

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (1 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Related Work:

This specification replaces or supercedes:

WSRP v1.0 specification

Declared XML Namespace(s):

urn:oasis:names:tc:wsrp:v2:types

urn:oasis:names:tc:wsrp:v2:intf

urn:oasis:names:tc:wsrp:v2:bind

urn:oasis:names:tc:wsrp:extra

Abstract:

Integration of remote content and application logic into an End-User presentation has been a task requiring

significant custom programming effort. Typically, vendors of aggregating applications, such as a portal, write

special adapters for applications and content providers to accommodate the variety of different interfaces and

protocols those providers use. The goal of this specification is to enable an application designer or administrator

to pick from a rich choice of compliant remote content and application providers, and integrate them with just a

few mouse clicks and no programming effort. This revision of the specification adds Consumer managed

coordination, additional lifecycle management and a set of related aggregation enhancements.

This specification is the effort of the OASIS Web Services for Remote Portlets (WSRP) Technical Committee

which aims to simplify the effort required of integrating applications to quickly exploit new web services as they

become available.

This standard layers on top of the existing web services stack, utilizing existing web services standards and will

leverage emerging web service standards (such as policy) as they become available. The interfaces defined by

this specification use the Web Services Description Language (WSDL).

Status:

This document was last revised or approved by the WSRP TC on the above date. The level of approval is also

listed above. Check the "Latest Version" or "Latest Approved Version" location noted above for possible later

revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email

list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the

Technical Committee’s web page at http://www.oasis-open.org/committees/wsrp.

For information on whether any patents have been disclosed that may be essential to implementing this

specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of

the Technical Committee web page (http://www.oasis-open.org/committees/wsrp/ipr.php).

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/wsrp.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (2 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Notices

Copyright © OASIS® 1993–2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property

Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on

or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole

or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all

such copies and derivative works. However, this document itself may not be modified in any way, including by

removing the copyright notice or references to OASIS, except as needed for the purpose of developing any

document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to

copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other

than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE

OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be

infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC

Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner

consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent

claims that would necessarily be infringed by implementations of this specification by a patent holder that is not

willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical

Committee that produced this specification. OASIS may include such claims on its website, but disclaims any

obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be

claimed to pertain to the implementation or use of the technology described in this document or the extent to which

any license under such rights might or might not be available; neither does it represent that it has made any effort to

identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable

produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made

available for publication and any assurances of licenses to be made available, or the result of an attempt made to

obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS

Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no

representation that any information or list of intellectual property rights will at any time be complete, or that any

claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only

to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of,

specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-

open.org/who/trademark.php for above guidance.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (3 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Short Table of Contents

1 Introduction

2 General Considerations

3 Interface Overview

4 Service Description Interface

5 Markup Interface

6 Registration Interface

7 Portlet Management Interface

8 Security

9 Markup

10 User Information

11 Well Known Extensions

12 Constants

13 Fault Messages

14 WSDL Interface Definition

15 Conformance Statements

Appendix A. Glossary (Non-Normative)

Appendix B. Common Values (Non-Normative)

Appendix C. Types of state (Non-Normative)

Appendix D. Coordination mechanisms (Non-Normative)

Appendix E. Data Structures List (Non-Normative)

Appendix F. Acknowledgments (Non-Normative)

Table of Contents

1 Introduction

1.1 Terminology

1.2 Normative References

1.3 Non-Normative References

1.4 Motivation

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (4 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

1.5 Actors

1.5.1 Portlet

1.5.2 Producer

1.5.3 Consumer

1.5.4 End-User

1.6 Typical Process Flow

2 General Considerations

2.1 Related Standards

2.1.1 Existing Standards

2.1.2 Emerging Standards

2.2 Foundations

2.3 Data Objects

2.4 Lifecycles

2.5 Scopes

2.6 Leasing

2.7 Types of Stateful Information

2.8 Statefulness

2.9 Producer Mediated Data Sharing

2.10 Consumer Mediated Coordination

2.11 Information Passing Mechanisms

3.12 Three-step protocol

2.13 Transport Issues

2.14 Load Balancing

3 Interface Overview

3.1 Service Description Operations

3.2 Markup Operations

3.3 Registration Operations

3.4 Portlet Management Operations

4 Service Description Interface

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (5 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

4.1 Data Structures

4.1.1 Extension Type

4.1.2 Handle Type

4.1.3 Key Type

4.1.4 ID Type

4.1.5 LocalizedString Type

4.1.6 ResourceValue Type

4.1.7 Resource Type

4.1.8 ResourceList Type

4.1.9 ItemDescription Type

4.1.10 MarkupType Type

4.1.11 EventDescription Type

4.1.12 PropertyDescription Type

4.1.13 ModelTypes Type

4.1.14 ModelDescription Type

4.1.15 ParameterDescription Type

4.1.16 PortletDescription Type

4.1.17 Property Type

4.1.18 ResetProperty Type

4.1.19 PropertyList Type

4.1.20 CookieProtocol Type

4.1.21 ExtensionPart Type

4.1.22 ExtensionDescription Type

4.1.23 ExportDescription Type

4.1.24 ServiceDescription Type

4.1.25 Lifetime Type

4.1.26 RegistrationState Type

4.1.27 RegistrationContext Type

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (6 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

4.1.28 desiredLocales

4.2 getServiceDescription Operation

5 Markup Interface

5.1 Data Structures

5.1.1 SessionContext Type

5.1.2 SessionParams Type

5.1.3 RuntimeContext Type

5.1.4 PortletContext Type

5.1.5 Standard UserScopes

5.1.6 CacheControl Type

5.1.7 Templates Type

5.1.8 CCPPProfileDiff Type

5.1.9 CCPPHeaders Type

5.1.10 ClientData Type

5.1.11 NamedString Type

5.1.12 NavigationalContext Type

5.1.13 MimeRequest Type

5.1.14 MarkupParams Type

5.1.15 ResourceParams Type

5.1.16 MimeResponse Type

5.1.17 ResourceContext Type

5.1.18 ResourceResponse Type

5.1.19 MarkupContext Type

5.1.20 MarkupResponse Type

5.1.21 EventPayload Type

5.1.22 Event Type

5.1.23 UpdateResponse Type

5.1.24 BlockingInteractionResponse Type

5.1.25 ErrorCodes Type

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (7 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

5.1.26 HandleEventsFailed Type

5.1.27 HandleEventsResponse Type

5.1.28 StateChange Type

5.1.29 UploadContext Type

5.1.30 InteractionParams Type

5.1.31 EventParams Type

5.1.32 User Profile Types

5.1.33 UserContext Type

5.2 getMarkup Operation

5.2.1 Caching of markup fragments

5.3 getResource Operation

5.3.1 Caching of resources

5.4 Interaction Operations

5.4.1 performBlockingInteraction Operation

5.4.2 handleEvents Operation

5.4.3 Updating Enduring Portlet State

5.5 initCookie Operation

5.6 releaseSessions Operation

5.7 Consumer Transitions across Bindings

5.8 Stateful Portlet Scenarios

5.8.1 No State

5.8.2 Navigational State Only

5.8.3 Local state

5.9 Modes

5.9.1 "wsrp:view" Mode

5.9.2 "wsrp:edit" Mode

5.9.3 "wsrp:help" Mode

5.9.4 "wsrp:preview" Mode

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (8 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

5.9.5 Custom Modes

5.10 Window States

5.10.1 "wsrp:normal" Window State

5.10.2 "wsrp:minimized" Window State

5.10.3 "wsrp:maximized" Window State

5.10.4 "wsrp:solo" Window State

5.10.5 Custom Window States

5.11 Defined Events

5.11.1 wsrp:eventHandlingFailed

5.11.2 wsrp:newNavigationalContextScope

5.12 User Categories

5.12.1 User Category Assertions

6 Registration Interface

6.1 Data Structures

6.1.1 RegistrationData Type

6.2 register Operation

6.3 modifyRegistration Operation

6.4 deregister Operation

6.5 getRegistrationLifetime Operation

6.6 setRegistrationLifetime Operation

7 Portlet Management Interface

7.1 Data Structures

7.1.1 FailedPortlets Type

7.1.2 DestroyPortletsResponse Type

7.1.3 PortletDescriptionResponse Type

7.1.4 PortletPropertyDescriptionResponse Type

7.1.5 CopiedPortlet Type

7.1.6 CopyPortletsResponse Type

7.1.7 ExportedPortlet Type

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (9 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

7.1.8 ExportPortletsResponse Type

7.1.9 ImportPortlet Type

7.1.10 ImportedPortlet Type

7.1.11 ImportPortletsFailed Type

7.1.12 ImportPortletsResponse Type

7.1.13 PortletLifetime Type

7.1.14 GetPortletsLifetimeResponse Type

7.1.15 SetPortletsLifetimeResponse Type

7.2 getPortletDescription Operation

7.3 clonePortlet Operation

7.4 destroyPortlets Operation

7.5 getPortletsLifetime Operation

7.6 setPortletsLifetime Operation

7.7 copyPortlets Operation

7.8 exportPortlets Operation

7.9 importPortlets Operation

7.10 releaseExport Operation

7.11 setExportLifetime Operation

7.12 setPortletProperties Operation

7.13 getPortletProperties Operation

7.14 getPortletPropertyDescription Operation

8 Security

8.1 Authentication of Consumer

8.2 Confidentiality & Message Integrity

8.3 Access control

9 Markup

9.1 Encoding

9.2 URL Considerations

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (10 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

9.2.1 Consumer URL Rewriting

9.2.2 Producer URL Writing

9.2.3 Extended BNF Description of URL formats

9.2.4 Method=get in HTML forms

9.3 Namespace Encoding

9.3.1 Consumer Rewriting

9.3.2 Producer Writing

9.4 Markup Fragment Rules

9.4.1 HTML

9.4.2 XHTML

9.4.3 XHTML Basic

9.5 CSS Style Definitions

9.5.1 Links (Anchor)

9.5.2 Fonts

9.5.3 Messages

9.5.4 Sections

9.5.5 Tables

9.5.6 Forms

9.5.7 Menus

10 User Information

10.1 Passing User Information

10.2 User Identity

11 Well Known Extensions

11.1 wsrp-extra:doctype

11.2 wsrp-extra:extendedURLParameters

11.3 wsrp-extra:sharedResource

12 Constants

13 Fault Messages

14 WSDL Interface Definition

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (11 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

15 Conformance Statements

Appendix A. Glossary (Non-Normative)

Appendix B. Common Values (Non-Normative)

B.1 Standard User Categories

Appendix C. Types of state (Non-Normative)

Appendix D. Coordination mechanisms (Non-Normative)

Appendix E. Data Structures List (Non-Normative)

Appendix F. Acknowledgments (Non-Normative)

F.1 WSRP Technical Committee members

1 Introduction

The Web Services for Remote Portlets specification defines a web service interface for accessing and interacting

with interactive presentation-oriented web services. It has been produced through the efforts of the Web Services for

Remote Portlets (WSRP) OASIS Technical Committee. It is based on the requirements gathered and on the

concrete proposals made to the committee.

Scenarios that motivate WSRP functionality include:

● Content hosts, such as portal servers, providing Portlets as presentation-oriented web services that can be

used by aggregation engines.

● Aggregating frameworks, including portal servers, consuming presentation-oriented web services offered by

content providers and integrating them into the framework.

Many of the non-portal use cases were originally defined by the Web Services for Interactive Applications (WSIA)

OASIS Technical Committee. The WSIA use cases
[1]

 have become input to the ongoing effort in this area by the

WSRP OASIS Technical Committee. For additional details and documents, refer to the committee information

available at http://www.oasis-open.org/committees/wsrp/ and http://www.oasis-open.org/committees/wsia/.

This specification accounts for the fact that Producers (web services conforming to this specification) and

Consumers (applications consuming Producers in a manner conforming to this specification) may be implemented

on very different platforms, be it as a [J2EE] based web service, a web service implemented on Microsoft's [.Net]

platform or a Portlet published directly by a portal [A100]. Special attention has been taken to ensure this platform

independence. At the same time, attention has also been paid to ensure a reasonable mapping to technologies for

producing markup fragments (e.g. webparts, JSR 168 portlets, etc).

These web services are built on standard technologies, including [SSL/TLS], [URI/URL], [WSDL] and [SOAP], and

expects to leverage future applicable Web Service standards, such as WS-Policy [A102] in future versions.

1.1 Terminology

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (12 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,

“RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in [RFC2119].

Cross references to the [Requirements] developed by both the WSIA and WSRP technical committees are

designated throughout this specification by a hyperlink to the requirement contained where the requirement number

is enclosed in square brackets (e.g. [A100]).

Whenever this specification uses the prefix "wsrp:" in what appears to be a QName, it is referring to the URI urn:

oasis:names:tc:wsrp:v2:types.

The normative definitions for all data structures defined by this specification are contained in the WSDL referenced

in [Section 14]. For the convenience of the reader, the types are also declared in a non-normative manner just prior

to the first use of the structure. These non-normative declarations use an IDL like syntax to describe the structures,

where the leading [R] indicates a field is required and [O] indicates it is optional. These indicators are followed by an

indication of the type for the field and then its name. If the type is one defined by this specification, then the type

declaration also serves as a hyperlink to the definition of that type. All types not defined by this specification come

from the XML Schema Datatype definitions in http://www.w3c.org/TR/xmlschema-2/. An example of a type being

declared in this IDL like style is:

NewTypeDefinition

 [R] WSRPDefinedType someRequiredField

 [O] xsdDefinedType someOptionalField

1.2 Normative References

[CC/PP] http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

[Character Sets] http://www.iana.org/assignments/character-sets

[MTOM] http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

[Namespaces] http://www.w3.org/TR/REC-xml-names/

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/

rfc2119.txt, IETF RFC 2119, March 1997.

[Schema] http://www.w3.org/TR/xmlschema-0/

[SchemaTypes] http://www.w3.org/TR/xmlschema-2/

[SOAP] http://www.w3.org/TR/SOAP/

[SSL/TLS] http://www.ietf.org/html.charters/tls-charter.html

[URI/URL] http://www.ietf.org/rfc/rfc2396.txt

[WSDL] http://www.w3.org/TR/wsdl

1.3 Non-Normative References

[Boyer-Moore] http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (13 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

[J2EE] http://java.sun.com/j2ee/

[JSR168] http://www.jcp.org/jsr/detail/168.jsp

[.NET] http://www.microsoft.com/net/

[P3P] http://www.w3.org/TR/P3P/

[Security Tech Note] http://docs.oasis-open.org/wsrp/TechNotes/wsrp-security.doc

[Requirements] http://www.oasis-open.org/committees/wsia/documents/Requirements2002-09-17.html

[SAML] https://www.oasis-open.org/committees/security/

[UDDI] http://www.uddi.org/specification.html

[WS-I.org] http://www.ws-i.org/

[ebXML Registry] http://www.oasis-open.org/committees/regrep/

[WSRP Whitepaper]
Thomas Schaeck and Richard Thompson, Web Services for Remote Portals (WSRP)

Whitepaper, http://docs.oasis-open.org/wsrp/Misc/Whitepaper.doc , 28 May, 2003

[WS-N] http://www.oasis-open.org/committees/wsn/

[WS-Security] http://www.oasis-open.org/committees/wss/

[XACML] https://www.oasis-open.org/committees/xacml/

[XCBF] http://www.oasis-open.org/committees/xcbf/

[XForms] http://www.w3.org/TR/xforms/

[XML Digital Signatures] http://www.w3.org/Signature/

[XML Encryption] http://www.w3.org/TR/xmlenc-core/

1.4 Motivation

Portals and other Web applications render and aggregate information from different sources and provide it in a

compact and easily consumable form to End-Users.

Among typical sources of information are web services. Traditional data-oriented web services, however, require

aggregating applications to provide specific presentation logic for each of these web services. Furthermore, each

aggregating application communicates with each web service via its unique interface. This approach is not well

suited to dynamic integration of business applications and content as a plug-and-play solution.

This specification solves this problem by introducing a set of presentation-oriented web service interfaces that allow

the inclusion of and interaction with content from a web service. Such a presentation-oriented web service provides

both application logic and presentation logic. This specification provides a common protocol and a set of interfaces

for presentation-oriented web services. Thus, aggregating applications can easily incorporate content from these

web services using code which is not specific to the content source.

1.5 Actors

This specification uses four roles (End-User, Consumer, Producer and Portlet) to help delineate responsibilities.

Implementations are free to combine multiple roles provided all resulting responsibilities are met.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (14 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

The protocol defined by this specification describes the conversation between Producers and Consumers on behalf

of End-Users (clients of the Consumer). Producers are presentation-oriented web services that host Portlets which

are able to render markup fragments and process user interaction requests. Consumers use these web services as

part of presenting markup to End-Users and managing the End-User's interaction with the markup.

1.5.1 Portlet

Portlets are hosted by Producer web services and generate markup as well as processing interactions with that

markup. In general a Portlet includes both logic conforming to some specification of the Producer's environment and

a particular configuration of any settings or properties the Portlet exposes.

1.5.2 Producer

Producers are modeled as containers of Portlets. The Producer provides a set of web service interfaces, including:

● Service Description: A required interface that allows Consumers to find out the capabilities of the Producer

web service and about the Portlets it hosts, including the metadata necessary for a Consumer to properly

interact with each Portlet.

● Markup: A required interface used to request and interact with markup fragments.

● Registration: An optional interface used to establish a relationship between a Producer and a Consumer (e.

g. for billing or book-keeping purposes).

● Portlet Management: An optional interface that grants access to the life-cycle of the hosted Portlets. This

interface also includes Property Management, which enables programmatic access to a Portlet's enduring

state (defined in [Section 2.7]).

In order to allow different levels of sophistication for both the Producer and Consumer, parts of this functionality are

optional. Various examples of how a Producer might implement particular functionality for varying levels of

sophistication and with regards to implementing some of the optional portions of the protocol are contained

throughout this document.

The Producer optionally manages Consumer registrations. The Producer may require Consumers to register prior to

discovering and interacting with Portlets. A registration represents a relationship (often including both technical and

business aspects) between the Consumer and Producer which provides the scope for a set of interactions between

them.

1.5.2.1 Portlet Management

A particular Portlet is identified with a portletHandle. The Consumer uses portletHandles throughout the

communication to address and interact with Portlets through the Producer's web service interfaces. The Portlets a

Producer publishes as available for all Consumers to interact with are called "Producer Offered Portlets". Producer

Offered Portlets are pre-configured and not modifiable by Consumers.

If the Producer chooses to expose the Portlet Management interface, it is allowing Consumers to clone the Portlets

offered by the Producer and customize those cloned Portlets, the details of which are discussed later. Such a

uniquely configured Portlet is called a "Consumer Configured Portlet". Like Producer Offered Portlets, a

portletHandle is used to address Consumer Configured Portlets. This portletHandle is both; 1) invariant until

released and 2) unique within and scoped to the Consumer registration.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (15 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

1.5.3 Consumer

A Consumer is an application that incorporates, in part or whole, an intermediary function that communicates with

presentation-oriented web services (i.e. Producers and the Portlets they host) on behalf of its End-Users. It gathers

and aggregates the markup delivered by the Portlets and other view components for presentation to the End-User.

Because of this intermediary role, Consumers are often compared to "message switches" that route messages

between various parties. One typical Consumer is a portal, which mediates the markup and the interaction with this

markup between End-Users and presentation-oriented web services. Another typical Consumer is an e-Commerce

application that aggregates manufacturer-provided content with its own content. Since the Consumer is an

intermediary, aggregating system, the markup sent for display to the End-User and most interactions with that

markup flow through the Consumer. This often results in situations where the End-User implicitly trusts the

Consumer to respect their privacy and security concerns with regards to this information flow. Additionally, the event

distribution and public navigational state portions of this specification cause Consumers to also have the role of a

coordination broker, providing inter-Portlet and End-User / Consumer to Portlet coordination.

While this specification is neutral as to the markup used to represent the user interface to the End-User, we note that

general performance concerns favor markup technologies that push the processing of user interface logic, such as

the validation of End-User input, as far toward the user agent as possible. Client-side scripting and XForms
[2]

represent technologies that can be leveraged to address these performance concerns. Note that use of such

technologies does not relieve the need for a Portlet to validate the input data it receives.

1.5.4 End-User

The main purpose of a Consumer acting as a content intermediary for various Producer/Portlets is the preparation

and presentation of aggregated markup to an End-User. In addition, the Consumer needs to manage the processing

of interactions with that markup in order to properly correlate the interactions with the (potentially stateful)

environment that produced the markup.

1.6 Typical Process Flow

While some of the following steps are optional, the typical flow of interactions between these actors is:

1. Consumer "discovers" the Producer. This involves the Consumer learning the URL of the web service end-

point for the Producer and getting the Producer's metadata with its description of the registration

requirements and possibly an indication of the Portlets the Producer is exposing.

2. Establishment of a relationship between the Consumer and Producer. This may involve the exchange of

information regarding capabilities, security requirements or other business and/or technical aspects of the

relationship.

3. Consumer learning the full capabilities and services of the Producer based on the now established

relationship.

4. Establishment of a relationship between the Consumer and End-User. This permits the Consumer to

authenticate the End-User and may allow the End-User to customize the aggregated pages presented by the

Consumer.

5. Production of aggregated pages. This typically involves the Consumer defining some base level of page

design (often with customized Portlets) and may involve further customization of those pages by the End-

User.

6. Request for a page. This typically results when the End-User directs a user-agent (e.g. browser) to the

Consumer's URL, but also occurs indirectly as a result of processing an interaction with the markup of a

previous page.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (16 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

7. Processing interactions. Some End-User interactions with the markup of a page will result in an invocation on

the Consumer to provide some logical function. The Consumer will process this invocation to determine the

Producer/Portlet that the interaction has targeted and the nature of the invocation requested for that Portlet.

The Portlet's response may trigger the Consumer to mediate coordination activity among the Portlets. Since

the resulting invocation of that Portlet is likely to change its state (and may also change the state of other

Portlets), the Consumer must also treat this as an indirect request for a page and thereby loop back to step 6.

8. Destruction of relationships. Producers and Consumers may choose to end a registration relationship at any

time, potentially due to the expiration of a lease on the item used to refer to the relationship. The protocol

provides means by which the Producer and Consumer may inform each other that the relationship (or some

portion of it) has ended and that related items may be cleaned up.

2 General Considerations

The major design goals for the protocol defined by this specification are simplicity, extensibility and efficiency. This

specification seeks to accomplish these goals whenever possible by leveraging other standards. It also seeks to

accomplish these goals in a manner that is neutral as to the platform any particular actor may be using to participate

in interactions governed by this specification.

2.1 Related Standards

This specification seeks to leverage both existing and emerging web service standards whenever possible. The

following are particularly noted as relevant standardization efforts:

2.1.1 Existing Standards

CC/PP - Defines syntax for describing a device's capabilities and user preferences.

Character Sets - Character set encoding

JSR168 - Java Community Process effort defining the Java Portlet Specification.

P3P - Defines how a Producer/Portlet may publish its privacy policy so that a Consumer could enforce End-User

privacy preferences.

Namespaces - Defines how XML Namespaces are declared and used.

SAML - Defines how authentication and authorization information may be exchanged.

Schema - Defines how types are defined and associated with each other.

SOAP - Defines how to invoke web service interfaces.

SSL/TLS - Defines secure transport mechanisms.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (17 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

URL - Defines URI (includes URL) syntax and encoding. We note that this is being superceded by the definition of

an IRI (see http://www.ietf.org/rfc/rfc3987.txt), but are waiting for greater support in the marketplace before changing

the descriptions to be IRI oriented. Those using IRIs locally will need to properly encode their IRIs into URIs during

this transition period.

WSDL - Defines how abstract interfaces and their concrete realizations are defined.

WS-I.org - Has defined a base profile for use of the WSDL, SOAP and UDDI web services standards such that

interoperability is maximized.

WS-Security - Defines how document level security standards apply to SOAP messages.

XACML - Defines syntax for expressing authorization rules.

XCBF - Defines how to exchange biometric data.

XML Digital Signatures - Defines how portions of an XML document are digitally signed.

XML Encryption - Defines how to encrypt/decrypt portions of an XML document.

XOP/MTOM - Defines how to move binary elements of an XML InfoSet into and out of separate parts of a multipart

mime message such that the XML InfoSet may be transported efficiently.

2.1.2 Emerging Standards

JSR286 - Java Community Process effort defining v2 of the Java Portlet Specification.

WS-I.org - Defining additional profiles (e.g. Security) for use of web service standards such that interoperability is

maximized.

WS-Notification - Defining how to discover, subscribe to and receive notifications using web services.

2.2 Foundations

As a specification that enables aggregating applications to use generic proxy code to easily integrate compliant web

services, the foundations for the specification become critical. The text of this specification uses an IDL-like syntax to

describe the interface in a non-normative manner. The ONLY normative description of the interface itself is

contained in the WSDL referenced by [Section 14]. The textual portion of this specification does not contain

normative statements regarding the exact syntax of XML passed between Consumer and Producer, but it does

contain normative statements about the manner and order in which messages must be exchanged in order to be

conformant. The chapters below are organized along the lines of the portTypes defined in the WSDL and the IDL

descriptions of the data types reflect the normative schema definitions from the WSDL.

Since there are multiple ways to secure a message exchange between the Consumer and Producer (there are

transport means such as SSL/TLS and message level means such as WS-Security) this specification uses the term

"secure communication" to mean that at least one of these means will be used to secure messages. Note that this

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (18 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

specification does not include mechanisms to reach agreement about which means to use as other efforts are

addressing that issue in a manner that applies to all web services.

2.3 Data Objects

It is often necessary to pass data to operations. Typed data objects are defined as the transport mechanism

wherever possible. The schema definitions of these structures includes the <any namespace="##other"/> construct

as a standard means for data extensions. Producers/Portlets employing these extensions are encouraged to provide

typing information for the extended data items [A505]. The preferred means for this typing information includes using

the schema defined
[3]

 "type" attribute to reference the correct schema on each such extension element, and use of

either the Producer's WSDL (default), or the WSRP defined "wsrp-extra" (urn:oasis:names:tc:wsrp:extra)

namespace or a "schemaLocation" attribute as per standard schema usage to declare the details of all non-simple

types. This allows Consumers to provide type checking outside of that done by typical interface layers. This

specification introduces various data structures as they are needed for operations and has a list of all these data

structures in Appendix C.

2.4 Lifecycles

"Lifecycle" is a term used to describe how items become available, are interacted with, and finally are destroyed.

The two lifecycles included in this specification are:

Enduring: This lifecycle starts with an explicit operation to create the item and ends either via a lifetime expiring

(when leasing is in use) or via an explicit operation to destroy the item. Examples include the registrationHandle

and context of a Consumer Configured Portlets.

Transient: This lifecycle can either start with an explicit operation OR as a side effect of some other operation

[A204]. The item created is transient and no explicit operation is required to destroy it. This specification generally

includes an expires element when a transient item is created so that anything at the Consumer related to the item

may be reclaimed at an appropriate time. An example of items using this lifecycle is session creation.

2.5 Scopes

Scope is a term used to describe when something is valid. An item often scopes both the usage and lifecycle of

other items. Scopes that are referenced in this specification are:

Registration scope: This scope is initiated when a Consumer registers with a Producer and ends when the handle

referring to that registration is released. As such it encompasses any Portlets the Consumer configures and any

interactions with the Portlets of the Producer. From the Producer's perspective, this scope has an enduring lifecycle.

This scope is referenced throughout the protocol using a registrationHandle. The registrationHandle is

created and destroyed using either the in band mechanism, i.e. by declaring support for the Registration portType,

or by an out of band mechanism, whereby the registrationHandle is created and destroyed by means outside this

specification [R354]. If a Producer supports the leasing feature, then this scope can also be ended in a scheduled

manner.

Portlet scope: This scope is initiated for a Producer Offered Portlet when the Portlet is added to the set returned in

the metadata of the Producer. This scope is initiated for a Consumer Configured Portlet when the Portlet is cloned

and as such will be encapsulated by a registration scope, if one exists. This scope ends for Consumer Configured

Portlets when the reference to the Portlet is explicitly released or, if the Producer supports the leasing feature,

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (19 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

released in a scheduled manner. As such it encompasses all interactions with the Portlet. This scope has an

enduring lifecycle and is referenced using a portletHandle. The Producer optionally exposes this scope by

declaring support for the PortletManagement portType. If the Producer exposes the PortletManagement portType,

then the Consumer can clone the Producer Offered Portlets and uniquely configure them for its own use. The

Consumer can also choose to directly use the Producer Offered Portlets.

Session scope: This scope is initiated when a Portlet needs to store transient state on the Producer and is always

encapsulated by the Portlet's scope. This scope ends when the session holding that state is released (either via an

explicit operation on the Producer or via a timeout mechanism). As such it encompasses a set of operation

invocations in which the Consumer has supplied the session's identifier. This scope has a transient lifecycle and is

established by the Producer returning a new sessionID. The Consumer MUST respect this new session scope as

described in [Section 5.1.1].

2.6 Leasing

WSRP defines a number of items which can use a leasing concept (scheduled destruction of the item with

opportunity for extending the scheduled termination time). All such items go through three stages of availability;

namely:

● Active: A leased item in this stage is available for normal usage. The termination time on the lease refers to

the time expected for the item to exit this stage.

● Suspended: A leased item in the suspended stage is not available for normal use, but is available for

renewal. Renewal could be as simple as renewing the lease or as complicated as negotiating an updated

business relationship. Producers are free to not support the suspended stage or to automatically move a

suspended item to the active stage upon use.

● Expunged: An expunged item is no longer available for reference or renewal.

2.7 Types of Stateful Information

Because the WSRP protocol operates over connectionless technologies, the Producer must be able to return

information to the Consumer, with the understanding that this information will be sent back to it [A200]. Three types

of stateful information exist:

Navigational state: This is the state that allows the current page fragment to be correctly generated multiple times.

Web applications typically store this type of state in the URL so that both page refresh and bookmarked pages will

generate what the End-User expects. To supply the bookmarking and page refresh capabilities End-Users expect,

the Consumer MAY store this type of state, or a reference to it, in the URL.

Transient state: This is state that applies to a restricted set of operations. This specification defines two kinds of

transient state; namely:

● Interaction State: This opaque state is supplied to the processing of an interaction with a Portlet's markup

and is often used as the equivalent of input parameters to that processing.

● Session State: This state is stored on the Producer and is related to a sequence of operations (for example,

an e-Commerce site may store a shopping cart in its session state). Once a session is generated, the

Producer returns a reference to it and the Consumer must return this reference on future invocations (as

described in [Section 5.1.2]) in order for a Portlet to reconnect to this type of state and process End-User

interactions in an expected manner.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (20 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Enduring state: This is state that has an enduring lifecycle, that is, exists until either the Consumer or Producer

explicitly discards it, potentially as part of the expiration of a lease. This specification defines two kinds of enduring

state with each referred to via a handle that MUST remain invariant once the Producer supplies it to the Consumer:

● Consumer Registration: Represents a relationship between a Consumer and Producer (also a registration

scope). Data that is part of the Consumer registration state impacts all invocations within the scope of the

registration (see [Section 4.1.27]). The opaque reference to Consumer registration state is referred to as a

registrationHandle.

● Portlet: In addition to the Portlets a Producer offers for all Consumers to use, the ability of a Consumer to

create a unique configuration of one of those Portlets for its own use is defined. The opaque reference to a

configured Portlet is referred to as a portletHandle (also correlates to a Portlet scope), see [Section 5.1.4].

While each of these types of state can have portions which are opaque to the Consumer, each can also have

portions which are described to the Consumer such that programmatic impacts, such as state-based coordination,

can be effected by the Consumer.

2.8 Statefulness

This specification does not mandate that either the Producer or the Consumer is stateful [A201]. In the getMarkup,

handleEvents and performBlockingInteraction calls, the navigationalContext field carries the state necessary

for the Portlet to render the current markup to be returned to the Consumer. This enables the Consumer to

reasonably support page refresh and bookmarking by the End-User. In order to support the URL length restrictions

of some browsers, the Consumer may need to cache the navigational type of state and just supply a reference to it

on the URL. If the Producer utilizes local state, storing this state in an implementation-dependent manner, then it will

return a sessionID to the Consumer for use during the lifetime of the session.

If the Consumer is operating in a stateless manner, then it may choose the way to achieve this. In the case of HTTP

transport the Consumer may employ standard HTTP mechanisms (cookies or URL-rewriting) to propagate the

navigational state or sessionID out to its client. If operating in a stateful manner, the Consumer may employ any

number of persistence/caching mechanisms [A202].

The nature of the conversation between the client and the Consumer, for purposes of this section, is out of scope

[A304]. This does not mean that information about the client, including user profile data, is opaque to the Producer.

There are many use cases for which user identity must be conveyed to the Producer [A501] [A606].

2.9 Producer Mediated Data Sharing

Producers may implement data sharing mechanisms through techniques such as a shared area within sessions for

Portlets to use. The Producer indicates which Portlets share such data areas via the groupID parameter in the

Portlet metadata. [Section 4.1.20] specifies how the Consumer is to process Producer's grouping, which are defined

by the groupID parameters.

Shared data areas introduce implementation challenges in clustered environments. In such an environment, multiple

concurrent requests may be routed to different cluster nodes. The Producer must ensure that Portlets with a

common shared data area have access to the shared data even in such situations.

2.10 Consumer Mediated Coordination

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (21 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Consumers may implement mechanisms through which Portlets, and any other view components the Consumer

aggregates, react in a coordinated manner. Each of these mechanisms enables event-driven Consumer

applications. This specification defines two such mechanisms:

1. Event Distribution: This mechanism provides for Portlets generating and consuming events that carry both

semantic meaning, through their name, and data, in their payload. In addition, Consumers can also generate

events for distribution to Portlets. All events are distributed by the Consumer such that any current Portlet

state which is stored at the Consumer can be supplied along with the event to the Portlet. This also allows

the Consumer to apply whatever policies it chooses to control the event distribution.

2. State Distribution: This mechanism allows Portlets to expose portions of its state which the Consumer can

then manipulate and/or transfer to other Portlets or Consumer constituents. This specification defines a state

distribution mechanism for navigational state. This mechanism exposes a portion of the Portlet's navigational

state to the Consumer such that coordinated updates across multiple Portlets can be effected (see [Section

5.1.12]).

2.11 Information Passing Mechanisms

All information passing enabled by this specification is between exactly one Producer and one Consumer.

Implementation of data sharing, including both policy and side effects, within a particular Producer service is outside

the scope of this specification.

2.12 Three-step protocol

This specification attempts to account for both isolated interactions between a Consumer and a Producer, and also

those interactions that may cause state changes in other Portlets the Consumer aggregates from the same Producer

[A503]. Common causes of such shared state include use of a common backend system (e.g. database) and

Producer-mediated data sharing. In addition, the Consumer can selectively distribute events, including ones it

generates itself, among the Portlets. For these reasons, there is a "three-step" capability built into the protocol. Note

that this is an extension of the WSRP v1 two-step protocol as the additional step, event distribution, is entirely

optional. This enables Consumers to provide coordinated cross-portlet response to the End-User's interaction while

providing the equivalent user experience as WSRP v1 for those Consumers not supporting event distribution [C409].

The three non-overlapping steps of the protocol are:

1. (optional) The Consumer invokes performBlockingInteraction on the Portlet whose markup the End-User

interacted with. The Consumer MUST NOT invoke operations on any Portlets within the context of the

initiating request from the client of the Consumer until either the receipt of a response or the invocation of

performBlockingInteraction fails (e.g. times out).

2. (optional) The Consumer has the option of distributing events among the Portlets using handleEvents. Note

that the Consumer could distribute multiple events to a Portlet in this step (see [Section 5.4.2.1]), including

via multiple concurrent invocations [C408]. The Consumer MUST NOT begin to gather markup until it

considers all Portlets to have finished the event distribution step.

3. The Consumer invokes getMarkup on the Portlets being aggregated.

Examples of when one of the optional steps (performBlockingInteraction and handleEvents) might not be used

include:

● The End-User interacting with a URL that simply looks to render the Portlet's markup with a different

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (22 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

navigational state (e.g. with the next set of results from a search). In this case, both of the first two steps

could be skipped.

● The initial page construction for the End-User. This may involve the Consumer distributing events (step two)

in order to initialize a Portlet's state, but should not involve the first step as the End-User has not interacted

with the Portlet's markup (Note that a bookmarked page could be an exception to this, but that a bookmarked

interaction involving step one of the protocol is unlikely to have the same impact the interaction had during

the session when the bookmark was generated).

Interaction semantics are well-defined across the spectrum of interaction styles supported in the protocol. In other

words, the results of the Consumer invoking performBlockingInteraction on a Portlet and distributing events

among the Portlets using handleEvents, regardless of whether those interactions have side effects on other Portlets

at the Producer, is well-defined independent of the order of getMarkup invocations on the Portlets.

2.13 Transport Issues

Since the transport layer is often used to store various pieces of information (e.g. J2EE load balancing depends on a

session cookie and HTTP transport), and these pieces of information often will pertain to a client session with the

Consumer rather than the Consumer itself, Consumers that manage transport layer issues, such as cookies, MUST

return them to the Producer only for subsequent invocations within the Markup Interface during the same client

session. In addition, any supplying of cookies to resources the Portlet references needs to be in conformance with

the rules established by RFC2109
[4]

. Not scoping their return in this manner will likely result in a loss of privacy for

the End-User and unexpected behavior in general. Failure to return them for this full duration will often result in a

loss of state at the Producer and unexpected behavior for the End-User. We also note that failure to properly do this

management will eliminate the ability to use Producers that set requiresInitCookie to a value other than "none".

2.14 Load Balancing

Load balancing is a part of the Producer environment that cannot easily be managed from within the protocol. Load

balancing is highly dependent on mechanisms in the transport, for example the use of cookies in HTTP. In order to

permit load balancing to function, regardless of the transport binding in use, the Consumer needs to manage

transport level issues itself. Using HTTP as an example, if the Producer requires such support of Consumers, it

MUST indicate so by setting the requiresInitCookie metadata to a value other than "none". If the Producer set

requiresInitCookie to a value other than "none", the Consumer MUST ensure that cookies are properly supplied

in subsequent requests for the End-User.

3 Interface Overview

This specification defines four interfaces whose operations have the following signatures:

3.1 Service Description Operations

The Service Description interface, a required interface, defines an operation for acquiring the Producer's metadata.

ServiceDescription = getServiceDescription (registrationContext, desiredLocales,

portletHandles, userContext);

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (23 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

3.2 Markup Operations

The Markup interface, a required interface, defines operations for getting the markup from a Portlet as well as

processing user interactions with that markup. This interface also contains the operation for Consumer assistance in

pre-initializing HTTP cookies. Having this operation in this interface avoids the problems associated with moving

cookies between bindings.

MarkupResponse = getMarkup (registrationContext, portletContext, runtimeContext, userContext,

markupParams);

ResourceResponse = getResource (registrationContext, portletContext, runtimeContext,

userContext, resourceParams);

BlockingInteractionResponse = performBlockingInteraction (registrationContext, portletContext,

runtimeContext, userContext, markupParams, interactionParams);

HandleEventsResponse = handleEvents (registrationContext, portletContext, runtimeContext,

userContext, markupParams, eventParams);

ReturnAny = initCookie (registrationContext,

userContext);

ReturnAny = releaseSessions (registrationContext, sessionIDs[],

userContext);

3.3 Registration Operations

The Registration interface, an optional interface, defines operations for establishing, updating and destroying a

registration. Each registration reflects a particular relationship between a Consumer and a Producer.

RegistrationContext = register (registrationData, lifetime,

userContext);

RegistrationState = modifyRegistration (registrationContext, registrationData,

userContext);

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (24 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

ReturnAny = deregister (registrationContext,

userContext);

Lifetime = getRegistrationLifetime (registrationContext,

userContext);

Lifetime = setRegistrationLifetime (registrationContext, userContext,

lifetime);

3.4 Portlet Management Operations

The Portlet Management interface, an optional interface, defines operations for getting Portlet metadata, cloning

Portlets for further customization and interacting with the property interface.

PortletDescriptionResponse = getPortletDescription (registrationContext, portletContext,

userContext, desiredLocales);

PortletContext = clonePortlet (registrationContext, portletContext, userContext,

lifetime);

DestroyPortletsResponse = destroyPortlets (registrationContext, portletHandles[],

userContext);

GetPortletsLifetimeResponse = getPortletsLifetime (registrationContext, portletContext[],

userContext);

SetPortletsLifetimeResponse = setPortletsLifetime (registrationContext, portletContext[],

userContext, lifetime);

CopyPortletsResponse = copyPortlets (toRegistrationContext, toUserContext,

fromRegistrationContext, fromUserContext, fromPortletContexts[], lifetime);

ExportPortletsResponse = exportPortlets (registrationContext, portletContext[], userContext,

lifetime, exportByValueRequired);

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (25 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

ImportPortletsResponse = importPortlets (registrationContext, importContext, importPortlet[],

userContext, lifetime);

ReturnAny = releaseExport (exportContext,

userContext);

Lifetime = setExportLifetime (registrationContext, exportContext, userContext,

lifetime);

PortletContext = setPortletProperties (registrationContext, portletContext, userContext,

propertyList);

PropertyList = getPortletProperties (registrationContext, portletContext, userContext,

names);

PortletPropertiesDescriptionResponse = getPortletPropertyDescription (registrationContext,

portletContext, userContext, desiredLocales);

4 Service Description Interface

A Producer may be discovered through mechanisms such as [UDDI] or [ebXML Registry], which also provide

information concerning the capabilities of the service. Other discovery mechanisms (e.g. emailed URL to a properly

enabled user-agent) do not expose these capabilities. The getServiceDescription operation provides a discovery

mechanism-agnostic means for a Consumer to ascertain a Producer's or Portlet's capabilities [A110]. This interface

is required of all Producers to provide a well-defined means for Consumers to ascertain the requirements to register

or use the Producer.

4.1 Data Structures

The following data structures are needed by this interface:

4.1.1 Extension Type

The Extension structure contains the payload extension mechanism for vendor and application extensions. These

arbitrary elements are required to be from namespaces other than the WSRP "types" namespace (urn:oasis:names:

tc:wsrp:v2:types) and extend their containing data structure. They are designed to communicate extended

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (26 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

information between the Consumer and Producer. Consumers and Producers SHOULD NOT rely on receiving back

any extensions passed to or returned from an invocation. Each such extension element carries a single child

element which MUST declare its type using the schema-defined "type" attribute
[5]

. It is RECOMMENDED

extensions be of type xsd:string (where xsd stands for http://www.w3c.org/2001/XMLSchema) , or be of a type

from the WSRP-defined "wsrp-extra" namespace (urn:oasis:names:tc:wsrp:extra) or be of a type defined in the

Producer's WSDL as this enables Consumers to prepare an appropriate serializer/deserializer. We expect many

extensions will be of the type QNamedString or QNamedStringArray (from the "wsrp-extra" namespace) and

encourage their use in this manner. The other option is for each message to connect the extension to a type

declared in a schema using the "schemaLocation" attribute as used by schema. Consumers and Producers are not

required to process information supplied using these extension elements.

Extension

 [R] Object any

Members:

● any: This field has a schema declaration that allows any elements from namespaces other than WSRP.

While the element definitions for these extensions are required to be in a namespace other than the WSRP

types namespace, the use of the types defined within the XML Schema and WSRP "wsrp-extra" namespace

is encouraged as this increases the likelihood of the receiving party being able to deserialize the extension in

a highly typed manner. Overlap with the fields defined in the containing structure SHOULD be avoided.

4.1.2 Handle Type

Handles are opaque references that are passed between the Consumer and Producer.

Handles are represented as restricted strings in the protocol. Although a string is principally unlimited in length, the

length of the handle is restricted for the following reasons:

● Handles may be stored in databases and may be used for indexing.

● The Consumer will likely embed handles in client URLs.

● Comparison of handles should be efficient.

The maximum length of a handle is restricted to 255 characters. It is strongly RECOMMENDED these characters be

chosen from the first 127 characters of the Unicode character set so that it is feasible to represent the value in no

more than 255 bytes of storage. Not following this recommendation will likely cause information to be lost as the

Consumer stores and retrieves the value. The Consumer MAY truncate longer handles to 255 characters.

Handle restricts string (maximum length =

255)

4.1.3 Key Type

Keys are similar to Handles except that they are not opaque references. They are used for keying data and therefore

need to support efficient comparisons. As a result their length is restricted to 255 characters. We STRONGLY

RECOMMEND these characters be chosen from the first 127 characters of the Unicode character set so that it is

feasible to represent the value in no more than 255 bytes of storage. Not following this recommendation will likely

cause information to be lost as the value is stored and retrieved.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (27 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Key restricts string (maximum length =

255)

4.1.4 ID Type

IDs are used to refer to something, but are unlikely to be used as keys. As a result the length restriction is relaxed to

4096 characters. We STRONGLY RECOMMEND these characters be chosen from the first 127 characters of the

Unicode character set so that it is feasible to represent the value in no more than 4096 bytes of storage. Not

following this recommendation will likely cause information to be lost as the value is stored and retrieved. Those

originating an ID are encouraged to keep them as small as possible relative to impacts on the other party's

performance when storing large numbers of these (e.g. a sessionID is per user per Portlet and therefore a

Consumer is likely to store a very large number of them).

ID restricts string (maximum length =

4096)

4.1.5 LocalizedString Type

The LocalizedString structure describes both the value for a particular locale and the name that can be used to

extract the value for other locales from a ResourceList.

LocalizedString

 [R] string xmlLang

 [R] string value

 [O] string resourceName

Members:

● xmlLang: The locale for this supplied localized value. This is carried in the WSDL using the xml:lang

attribute.

● value: The value for this localized string in the declared locale.

● resourceName: The name assigned to this localized string for dereferencing into a ResourceList for values

from other locales. When the resourceName is not supplied, there are no values for additional locales

available in the ResourceList.

4.1.6 ResourceValue Type

This structure provides the value of a resource for a locale.

ResourceValue

 [R] string xmlLang

 [R] string value

 [O] Extension extensions[]

Members:

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (28 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● xmlLang: The locale for this localized value. This is carried in the WSDL using the xml:lang attribute.

● value: The value for this localized string in the declared locale.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.7 Resource Type

The Resource structure carries the values for a resource in a set of locales.

Resource

 [R] string resourceName

 [R] ResourceValue values[]

 [O] Extension extensions[]

Members:

● resourceName: The name of the resource for which this is a list of localized values.

● values: Each member of this array provides the value for the resource in a locale.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.8 ResourceList Type

This is an array of Resource structure, each of which carries the values for a localized resource in various locales.

ResourceList

 [R] Resource resources[]

 [O] Extension extensions[]

Members:

● resources: Each member of this array provides the localized values for a resource.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.9 ItemDescription Type

This structure is used to describe custom items a Consumer is allowed to use when interacting with the Portlets at

the Producer.

ItemDescription

 [R] string itemName

 [R] LocalizedString description

 [O] LocalizedString displayName

 [O] Extension extensions[]

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (29 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Members:

● itemName: The name for this item. The preferred form is a URI such that it is definitively namespaced.

● description: A localized, free form description of the item. Expected use of this field is for display at the

Consumer to someone who will provide a mapping to Consumer information.

● displayName: A localized name for the item. Expected use of this field is for display to someone when there

is no direct mapping to Consumer information for this item.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.10 MarkupType Type

The MarkupType data structure is used to carry Portlet metadata that is mimeType specific.

MarkupType

 [R] string mimeType

 [R] string modes[]

 [R] string windowStates[]

 [O] string locales[]

 [O] Extension extensions[]

Members:

● mimeType: A mime type supported by the Portlet (e.g. text/html, application/xhtml+xml, text/vnd.wap.wml) for

which the remainder of this structure applies. In addition to these fully specified mime types, use of

"*" (indicates all mime types are supported) and type/* (where type includes things such as "text") from the

HTTP definition
[6]

 MAY be specified. The Consumer does not have to process any optional parameters that

can be included on mime type declarations.

● modes: The modes (defined in [Section 5.9]) that are supported by the Portlet for this mimeType. Possible

values are:

❍ Those defined by this specification in [Section 5.9];

❍ Modes supplied by the Consumer in consumerModes;

❍ Any custom modes the Producer wishes to advertise as valid (see [Section 5.9.5].

Localized descriptions are only needed for the last category since the first two do not require manual

interpretation.

● windowStates: The windowStates (defined in [Section 5.10]) that are supported by the Portlet for this

mimeType. Possible values are:

❍ Those defined by this specification in [Section 5.10];

❍ Window states supplied by the Consumer in consumerWindowStates;

❍ Any custom window states the Producer wishes to advertise as valid (see [Section 5.10.5].

Localized descriptions are only needed for the last category since the first two do not require manual

interpretation.

● locales: An optional array of locales or which this mimeType is available (e.g. "en-US"). If this array is not

supplied, the Consumer can assume the Portlet will attempt to generate markup for any requested locale.

Note that current practice on the Internet uses the format [2 char language code]
[7]

 "-" [2 char country code]
[8]

as per the provided example with the full definition being found in RFC3066 and its successors. Values only

using a two character language code mean that the Portlet is willing to generate markup of this type for any

locale starting with the specified language code.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (30 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.11 EventDescription Type

The EventDescription structure provides the information needed to describe a Portlet's events.

EventDescription

 [R] QName name

 [O] QName aliases[]

 [O] QName type

 [O] anyURI schemaLocation

 [O] ModelTypes schemaType

 [O] LocalizedString description

 [O] LocalizedString hint

 [O] LocalizedString label

 [O] Extension extensions[]

Members:

● name: A namespaced name for the event being described. If this event's payload is not carried within the

NamedStringArray alternative of the EventPayload structure, this name also becomes the XML element

name carrying the payload with the type field defining the type of the element.

● aliases: An array of the QNames of events known to be semantically equivalent to this event. While this

can provide a hint to the Consumer concerning potential items that could be correlated with this event, it

remains the Consumer's responsibility do any transformations required to produce the described event.

● type: A reference to a schema-defined payload the event will carry at runtime. If the type is not supplied,

the Consumer SHOULD treat this as an opaque event payload. Note that this includes those events which

are signals and therefore carry no payload.

● schemaLocation: This optional field carries a URI which resolves into a schema containing the type for the

described Event. If a URI can not be provided for resolving the type definition, the schemaType field in the will

need to contain the definition for the type.

● schemaType: This field can carry a schema defining the type for the described Event for those cases where

a URI which resolves to a schema defining the type is not available.

● description: A localized, free form description of the event. Expected use of this field is for display at the

Consumer to someone who will choose how this event is mapped to other events.

● hint: A relatively short description of the event. Intended for display (for example, as a tooltip) in any

Consumer-generated user interface for processing/distributing the event.

● label: A short, human-readable name for the event. Intended purpose is for display in any Consumer-

generated user interface for processing/distributing the event.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

Since the local part of an event's name can be referred to in a wildcard fashion (see [Section 4.1.16]), Portlet

developers are encouraged to organize their event's local names in a hierarchical manner and MUST use the '.'

character to delimit levels within the hierarchy. An example of such an organization would be events carrying

changed address information on an application being organized as "applicant.address.streetChanged", "applicant.

address.cityChanged", etc. Such an organization would allow another Portlet's metadata to simply say that it is

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (31 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

interested in all events with names in the "applicant.address" branch of the hierarchy by specifying an interest in

"applicant.address.". The trailing '.' tells the Consumer that this is not the end of the hierarchy and the the Portlet is

interested in all events with names in this branch of the hierarchy.

4.1.12 PropertyDescription Type

Each property of a Portlet is described using the following structure.

PropertyDescription

 [R] QName name

 [R] QName type

 [O] anyURI schemaLocation

 [O] LocalizedString description

 [O] LocalizedString label

 [O] LocalizedString hint

 [O] string usage[]

 [O] QName aliases[]

 [O] Extension extensions[]

Members:

● name: Name of the property being described. If this property's value is not carried within the stringValue

alternative of the Property structure, this name also becomes the name of the XML element carrying the

property's value with the type field defining the type of this element.

● type: Type of the property, using a namespace qualified name. We would encourage these to either be from

the set of schema-defined types or be explicitly typed in the schema element of an enclosing

ModelDescription. This allows the Consumers to prepare the appropriate serializer/deserializer. The

namespace for the schema-defined types used by this specification is http://www.w3c.org/2001/XMLSchema.

Producers can assume that all Consumers support the basic types defined by http://www.w3c.org/TR/

xmlschema-2/.

● schemaLocation: This optional field carries a URI which resolves into a schema containing the type for the

described Property. If a URI can not be provided for resolving the type definition, the field of type

ModelTypes in the enclosing structure will need to contain the definition for the type.

● description: A localized, free form description of the property. Expected use of this field is for display at the

Consumer to someone who will choose how this property is mapped to other properties/data.

● label: A short, human-readable name for the property. Intended purpose is for display in any Consumer-

generated user interface for administering the Portlet.

● hint: A relatively short description of the property. Intended for display, for example, as a tooltip in any

Consumer-generated user interface for editing the property.

● usage: An array of values where the following definitions providing an initial set of values. We encourage

those adding values to this extensible set to use qualified names in order to reduce instances of name

clashes:

❍ wsrp:nonmodifiable: This capability means the party using the property is not allowed to change

the property [A605]. If this term is not specified, the party using the property may presume the right to

change the property's value.

❍ wsrp:required: This capability means that the party using the property has to supply a value for this

property. If wsrp:required is not specified, the party using the property may choose whether or not to

supply a value.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (32 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● aliases: An array of the QNames of properties known to be semantically equivalent to this property. While

this can provide a hint to the recipient concerning potential items that could be correlated with this property, it

remains the recipient's responsibility to do any transformations required to produce the described property.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.13 ModelTypes Type

The ModelTypes structure contains the payload mechanism for declaring the types referenced by the description

types.

ModelTypes

 [R] Object any[]

Members:

● any: This field has a schema declaration that allows any elements from the schema namespace.

4.1.14 ModelDescription Type

The set of properties of a Portlet are described in its metadata using the following structure.

ModelDescription

 [O] PropertyDescription propertyDescriptions[]

 [O] ModelTypes modelTypes

 [O] Extension extensions[]

Members:

● propertyDescriptions: An array of property descriptions.

● modelTypes: A container for type definitions for the properties of this model. It is expected that XML schema

will commonly be used to define Portlet-specific datatypes referenced in the propertyDescriptions.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.15 ParameterDescription Type

Portlet parameters are modeled as an array of strings, such that type information does not need to be declared, and

are described using the following structure.

ParameterDescription

 [R] string identifier

 [O] QName names[]

 [O] LocalizedString description

 [O] LocalizedString label

 [O] LocalizedString hint

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (33 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 [O] Extension extensions[]

Members:

● identifier: A Producer defined identifier for this parameter which is REQUIRED to be unique for the

portletHandle providing this ParameterDescription. The value in this field is used to reference the

parameter on both URLs (see [Section 9.2.1.3]) and within the publicValues array of

NavigationalContext.

● names: Qualified names specifying the semantics supported by the parameter being described. The purpose

of these names is assisting Consumers doing state-based coordination to properly associate items based on

their semantics.

● description: A localized, free form description of the parameter. Expected use of this field is for display at

the Consumer to someone who will choose how this parameter is mapped to other parameters.

● label: A short, human-readable name for the parameter. Intended purpose is for display in any Consumer-

generated user interface for administering the Portlet.

● hint: A relatively short description of the parameter. Intended for display, for example, as a tooltip in any

Consumer-generated user interface for editing the parameter.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.16 PortletDescription Type

The PortletDescription structure contains a set of fields that provide the metadata to describe the Portlet as well

as any clones of the Portlet.

PortletDescription

 [R] Handle portletHandle

 [R] MarkupType markupTypes[]

 [O] ID groupID

 [O] LocalizedString description

 [O] LocalizedString shortTitle

 [O] LocalizedString title

 [O] LocalizedString displayName

 [O] LocalizedString keywords[]

 [O] ID portletID

 [O] QName publishedEvents[]

 [O] QName handledEvents[]

 [O] ParameterDescription navigationalParameterDescriptions[]

 [O] string userCategories[]

 [O] string userProfileItems[]

 [O] string portletManagedModes[]

 [O] boolean usesMethodGet

 [O] boolean defaultMarkupSecure

 [O] boolean onlySecure

 [O] boolean userContextStoredInSession

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (34 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 [O] boolean templatesStoredInSession

 [O] boolean hasUserSpecificState

 [O] boolean doesUrlTemplateProcessing

 [O] boolean mayReturnPortletState

 [O] Extension extensions[]

Members:

● portletHandle: The handle by which Consumers can refer to this Portlet. Note that Handles are restricted

to a maximum length of 255 characters.

● markupTypes: Each member of this array specifies metadata for a single mimeType.

● groupID: Identifier for the group within which the Producer places this Portlet or any Portlets derived from it

via the cloning processes.

● description: Localized descriptions of the Portlet. This is intended for display in selection dialogs, etc.

● shortTitle: Localized short title for the Portlet.

● title: Localized title for the Portlet. This value is intended for display in a titlebar decoration for the Portlet's

markup.

● displayName: Localized value intended for display in a Consumer's tooling for building aggregated page. In

general this value is shorter than either title, though the available title values can be used as a default if this

value is missing.

● keywords: Array of localized keywords describing the Portlet which can be used for search, etc.

● portletID: A Portlet assigned identifier which is invariant across deployments of compatible versions of the

Portlet. Note that this breadth of invariance can only be achieved via an identifier assigned during the

packaging of the Portlet for distribution to those who would deploy it.

● publishedEvents: This array provides the event names for the events the Portlet could generate.

Consumers doing event distribution are REQUIRED to match event names ending with a "." character to any

event whose local name starts with the characters before the "." character and also specifies the same

namespace. An example of where this is useful is when a set of events have been declared in an external

source and this Portlet could generate a particular subset of those events (e.g. "applicant.address."). Note

that this wildcarding only applies to the local portion of the event name. While Portlets are allowed to

generate events that are not described in this array, portlet developers choosing to not declare what events

could be generated should carefully consider scenarios involving Consumers where events are only

distributed if the page designer (i.e. the Consumer application developer) explicitly says to distribute an event

generated by one Portlet to another set of Portlets. The information in non-declared events will not be

distributed by such Consumers since the page designer was unaware of them.

● handledEvents: This array provides the event names the Portlet is willing to process. Each name specified

is allowed to end with a "." character to indicate the Portlet is willing to process any event whose name starts

with the characters before the "." character. Consumer responsibilities are the same as the

publishedEvents field. An example of where this is useful is when a set of events have been declared in an

external source and this Portlet could handle a particular subset of those events (e.g. "applicant.address.").

● navigationalParameterDescriptions: This array describes the Portlet's public or exposed navigational

state [A504] [A505] [A506] [C407]. For a more complete description of navigational state see [Section

5.1.12]. Each state value is uniquely defined by the identifier field within the description. The

navigationalParameterDescriptions array MUST NOT contain two descriptions with the same

identifier.

● userCategories: An array of category names for the Producer's user categories which the Portlet supports.

Each of these user categories has to have a ItemDescription available to the Consumer through the

Producer's ServiceDescription. [R416]

● userProfileItems: An array of strings that enumerate what portions of the UserContext structure the

Portlet needs to provide full functionality. For the fields this specification defines, the named profile items a

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (35 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Portlet uses MUST all come from the "Profile Name" column of the table found in [Section 10]. Any use of

additional userProfile items specified as available when the Consumer registered SHOULD use the names

the Consumer supplied. Any additional items specified SHOULD be interpreted by the Consumer as

additional items the Portlet could use if the Consumer is able to supply the data.

● portletManagedModes: An array of strings, each of which an enumerates one of the

customModeDescriptions supplied in the ServiceDescription as a Portlet-managed specialization of the

Consumer's wsrp:view mode. The Consumer SHOULD allow transition into any of these modes unless the

Portlet has supplied a validNewModes array which does not include them.

● usesMethodGet: A flag indicating the Portlet generates markup that uses method=get in an HTML form. If

the Consumer uses a Portlet which specifies usesMethodGet as "true", the Consumer MUST format its URLs

in a manner that keeps user-agents from throwing away information (see [Section 9.2.4] for a description of

the difficulties in using forms with method=get). The default value of this flag is "false".

● defaultMarkupSecure: Flag that indicates whether this Portlet requires secure communication on its default

markup. This flag applies to all markup not generated as a direct result of an End-User interaction. The

default value for this flag is "false".

● onlySecure: Flag that indicates whether this Portlet requires secure communication on all its markup

[R403]. The intent of this flag is to allow Consumers to treat the Portlet specially because of this

characteristic. The default value for this flag is "false".

● userContextStoredInSession: A flag indicating the Portlet will store any supplied UserContext in the

current session. Setting this flag to "true" allows the Consumer to optimize when the UserContext is

included on operation invocations. Since some data in the UserContext is sensitive, many Consumers will

require that secure communication be used when the information is passed [A610]. Not requiring this of all

invocations can result in a significant performance difference. Note that the Consumer MAY send

UserContext information on any invocations as a replacement for information the Portlet MAY be storing in a

session. The default value of this flag is "false".

● templatesStoredInSession: A flag indicating the Portlet will store any supplied templates in the current

session. Setting this flag to "true" allows the Consumer to optimize when the templates structure is set in

MarkupParams. Since the content of the templates structure can get quite large, not requiring it to be passed

can result in a significant performance difference. Note that the Consumer MAY send templates on any

invocations as a replacement for information the Portlet MAY be storing in a session. The default value of this

flag is "false".

● hasUserSpecificState: A flag indicating the Portlet will store enduring state specific to each End-User.

Setting this flag to "true" suggests to the Consumer to clone the Portlet when placing it on an aggregated

page rather than waiting for the processing described in [Section 5.4.3]. The default value of this flag is

"false".

● doesUrlTemplateProcessing: A flag indicating the Portlet will process any templates supplied so as to

correctly write URLs in its markup. For Portlets setting doesUrlTemplateProcessing to "true", Consumers

MUST provide the URL writing templates and namespacePrefix field. The default value of this flag is

"false".

● mayReturnPortletState: A flag indicating the Portlet might return at least a portion of its enduring state to

the Consumer. The default value of this flag is "false".

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.17 Property Type

The Property data structure is used to carry typed information between the Consumer and the Producer. Each

property includes a name and type (carried using the xsi:type attribute) [A505] [A507]. The primary reason for

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (36 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

including type information is situations when the receiving party does not have a relevant PropertyDescription.

Property

 [R] QName name

 [O] QName type

 [O] string xmlLang

 [O] Object value[]

Members:

● name: Name of the property.

● type: A reference to a schema-defined type for the property's payload. If a PropertyDescription was

supplied with a matching name, it is an error for this type to not match the type supplied in that

PropertyDescription.

● xmlLang: The optional locale for the supplied localized value. This is carried in the WSDL using the xml:

lang attribute and is optional as some, though not all, values are likely to be localized.

● value: The property's value. The type information needed to properly serialize / deserialize this value is

carried in the relevant PropertyDescription. Note that the WSDL from [Section 14] defines two means by

which this field may be sent, either as a generic array of elements or as a single element with a type of string.

This second choice was added as many properties are likely to be of this type and it allows the web stack to

automatically do the (de)serializing to the wire format.

4.1.18 ResetProperty Type

The ResetProperty data structure carries the name of a Property for which the Consumer wants the value reset to

the default.

ResetProperty

 [R] QName name

Members:

● name: Name of the property whose value is to be reset; MUST have a non-zero length.

4.1.19 PropertyList Type

A PropertyList gathers a set of Property structures together for transmitting between the Consumer and Producer.

PropertyList

 [O] Property properties[]

 [O] ResetProperty resetProperties[]

 [O] Extension extensions[]

Members:

● properties: Each member in this array is a Property structure carrying information concerning one

property.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (37 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● resetProperties: Each member in this array is a ResetProperty structure carrying a property to reset to

its default value.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

It is an error for a property to be referenced by both the properties and resetProperties arrays. The Producer

MUST return an InconsistentParameters fault message if the Consumer supplies a property in both the

properties array and the resetProperties array of a PropertyList.

4.1.20 CookieProtocol Type

This type is a restriction on the string type that is constrained to the values "none", "perUser" or "perGroup". These

values carry the following semantics:

● "none": The Producer does not need the Consumer to ever invoke initCookie.

● "perUser": The Consumer MUST invoke initCookie once per user of the Consumer, and associate any

returned cookies with subsequent invocations on behalf of that user.

● "perGroup": The Consumer MUST invoke initCookie once per unique groupID from the

PortletDescriptions for the Portlets it is aggregating on a page for each user of the Consumer, and

associate any returned cookies with subsequent invocations on behalf of that user targeting Portlets with

identical groupIDs.

4.1.21 ExtensionPart Type

The ExtensionPart structure contains a set of fields for describing one part of a protocol extension.

ExtensionPart

 [R] QName name

 [R] QName type

 [O] anyURI schemaLocation

 [O] ModelTypes schemaType

 [O] string extendedTypes[]

 [O] Extension extensions[]

Members:

● name: This field contains the full QName for the extension element used to carry this part of the extension.

● type: This field contains the QName of the type for the extension element.

● schemaLocation: This optional field carries a URI which resolves into a schema containing the type for the

described ExtensionPart. If a URI can not be provided for resolving the type definition, the schemaType field

in the will need to contain the definition for the type.

● schemaType: This field can carry a schema defining the type for the ExtensionPart for those cases where a

URI which resolves to a schema defining the type is not available.

● extendedTypes: This array names the WSRP types where this extension is used. The appearance of a type

within this list does not mean that the extension will always be sent when that type appears in a message, but

is intended as to assist in determining when and how to handle the extension. If no WSRP types are named,

then the extension could appear on any WSRP-defined type. As an example; an extension providing

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (38 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

additional user contact information might list "Contact" as an extendedType.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.22 ExtensionDescription Type

The ExtensionDescription structure contains a set of fields for describing a protocol extension.

ExtensionDescription

 [R] QName name

 [O] ExtensionPart parts[]

 [O] QName aliases[]

 [O] LocalizedString description

 [O] LocalizedString label

 [O] LocalizedString hint

 [O] Extension extensions[]

Members:

● name: This QName references the semantic definition of the extension.

● parts: This field contains an array of information regarding the various types involved in this extension and

where each might appear within the protocol structures.

● aliases: An array of the QNames of extensions known to be semantically equivalent to this extension.

While this can provide a hint to the recipient concerning potential items that could be correlated with this

extension, it remains the recipient's responsibility do any transformations required to produce the described

extension.

● description: This localized string provides a description of the extension. To be useful, this needs to

include the semantics, or a pointer to the semantics, of the extension.

● label: A short, human-readable name for the extension. Intended purpose is for display in any user

interface for handling the extension.

● hint: A relatively short description of the extension. Intended for display (for example, as a tooltip) in any

user interface for handling the extension.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.23 ExportDescription Type

The ExportDescription structure contains a set of fields for describing export capabilities and restrictions.

ExportDescription

 [O] integer recommendedExportSize

 [O] Extension extensions[]

Members:

● recommendedExportSize: A optional integer which indicates the normal limit the Producer places on the

number of Portlets it is willing to export on a single invocation. When this field is missing, the Producer is

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (39 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

providing no guidance to the Consumer concerning limiting the quantity of Portlets requested for export in

any one invocation.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.24 ServiceDescription Type

The ServiceDescription structure contains a set of fields that describe the offered services of the Producer.

ServiceDescription

 [R] boolean requiresRegistration

 [O] PortletDescription offeredPortlets[]

 [O] ItemDescription userCategoryDescriptions[]

 [O] ExtensionDescription extensionDescriptions[]

 [O] ItemDescription customWindowStateDescriptions[]

 [O] ItemDescription customModeDescriptions[]

 [O] CookieProtocol requiresInitCookie

 [O] ModelDescription registrationPropertyDescription

 [O] string locales[]

 [O] ResourceList resourceList

 [O] EventDescription eventDescriptions[]

 [O] ModelTypes schemaType

 [O] string supportedOptions[]

 [O] ExportDescription exportDescription

 [O] boolean mayReturnRegistrationState

 [O] Extension extensions[]

Members:

● requiresRegistration: A boolean indicating whether or not the Producer requires Consumer registration.

If requiresRegistration is set to "false" then it MUST be valid to not pass a RegistrationContext

parameter to all operations with this parameter. If requiresRegistration is set to "true" then the Producer

MUST return a fault message when no RegistrationContext is supplied to an operation, other than

getServiceDescription, which takes this field.

● offeredPortlets: An array of structures (defined in [Section 4.1.16]) containing the metadata for the

Producer Offered Portlets.

● userCategoryDescriptions: An array of ItemDescription structures as defined in [Section 4.1.9]. This

array includes entries for every user category the Producer is willing to have the Consumer assert for an End-

User, including the user category names defined in [Section B.1] of this specification. Note that user

categories are Producer-wide and therefore are inherently shared by the Producer's Portlets.

● extensionDescriptions: An array of ExtensionDescription structures defining extensions the Producer

supports. This includes both incoming and outgoing extensions.

● customWindowStateDescriptions: An array of ItemDescription structures as defined in [Section 4.1.9].

This array MUST include an entry for any custom window state the Producer supports.

● customModeDescriptions: An array of ItemDescription structures as defined in [Section 4.1.9]. This

array MUST include an entry for any custom mode the Producer supports.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (40 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● requiresInitCookie: A string (default value = "none") indicating whether or not the Producer requires the

Consumer to assist with cookie support of the HTTP protocol.

● registrationPropertyDescription: Property descriptions for information the Consumer needs to supply

during registration.

● locales: This array is a superset of locales for which the localized strings of this serviceDescription can

be requested. The existence of a locale in this array does not imply that all fields of the ServiceDescription

are available in the locale. Note that this is independent of the locales for which any of the Portlets of this

Producer might supply markup.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● eventDescriptions: This array of EventDescription structures, with unique event names, describes the

events the Portlets hosted at the Producer could either generate or handle. These descriptions match events

at runtime via the event name, with it being an error for an event's type to not match the type from the

EventDescriptions with the matching event name. This information is provided to assist the Consumer in

pre-determining the flow of events between its constituents. While this list is not required to be exhaustive (i.

e. the Portlet may generate an event it has not described), not describing an event greatly reduces its ability

to be distributed by some Consumers' event distribution systems.

● schemaType: This field can carry schemas with types that are referenced by extensionDescriptions and

eventDescriptions. While the descriptions can also reference schemas using a URI, this provides a

convenient mechanism to deliver schemas which do not have a publicly accessible URI.

● supportedOptions: This field provides a means to indicate which optional features the Producer supports.

This specification defines the following list of optional features:

❍ wsrp:events

❍ wsrp:leasing

❍ wsrp:copyPortlets

❍ wsrp:import

❍ wsrp:export

● exportDescription: This optional field carries any guidance/restrictions the Producer is publishing

concerning the export of Portlets.

● mayReturnRegistrationState: A flag indicating the Producer might return at least a portion of its enduring

registration state to the Consumer. The default value of this flag is "false".

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.25 Lifetime Type

The Lifetime structure provides information regarding when a particular item is scheduled to be expunged. This

introduces the ability of Producers and Consumers to cleanup related artifacts in scenarios such as the other party

no longer being available.

Lifetime

 [R] dateTime currentTime

 [R] dateTime terminationTime

 [O] duration refreshDuration

 [O] Extension extensions[]

Members:

● currentTime: This field holds the date and time at which the structure was created. This allows for sensible

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (41 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

use of the terminationTime field without requiring a protocol to synchronize clocks.

● terminationTime: This field holds the date and time when the party sourcing the structure which contains

this Lifetime information intends to expunge any underlying artifacts.

● refreshDuration: The appearance of this optional field tells the receiver that the originator of this

information will potentially adjust the terminationTime to a value of the supplied value plus the current time

on each use of the underlying artifact, should this calculation result in a terminationTime which is further in

the future. In particular, should adding the refreshDuration to the current time result in a dateTime which

occurs before the supplied terminationTime, the terminationTime will not be changed to this computed

value.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.26 RegistrationState Type

The RegistrationState structure contains fields related to a particular registration of a Consumer with a Producer.

It is returned by the modifyRegistration operation and contains the fields of a RegistrationContext that allow a

Producer to return enduring state at registration scope to the Consumer and indicate any change in the scheduled

destruction of the registration.

 [O] base64Binary registrationState

 [O] Lifetime scheduledDestruction

 [O] Extension extensions[]

Members:

● registrationState: This field is used only when the Producer wants the Consumer to provide enduring

storage for the state resulting from processing the registration. If the RegistrationState field has a value,

the Consumer MUST return this value on any subsequent calls in the context of this registration [R362].

● scheduledDestruction: This optional field informs the Consumer that the Producer has changed the

scheduled destruction of the underlying registration to the specified date and time. When this field is missing

from a response message, scheduled destruction is not in use and the explicit destruction operations MUST

be used instead.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.27 RegistrationContext Type

The RegistrationContext structure contains fields related to a particular registration of a Consumer with a

Producer. It is returned by the register operation and is a required parameter on most other operations.

RegistrationContext

 [R] Handle registrationHandle

 [O] base64Binary registrationState

 [O] Lifetime scheduledDestruction

 [O] Extension extensions[]

Members:

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (42 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● registrationHandle: An unique, invariant and opaque reference to the Consumer-Producer relationship.

This reference is generated by either the register operation [R355] or a process outside the scope of this

specification. Note that Handles are restricted to a maximum length of 255 characters.

● registrationState: This field is used only when the Producer wants the Consumer to provide enduring

storage for the state resulting from processing the registration. If the RegistrationState field has a value,

the Consumer MUST return this value on any subsequent calls in the context of this registration [R362].

● scheduledDestruction: This optional field informs the Consumer that the Producer has scheduled the

underlying registration to be destroyed on a certain date and time unless requested to change that date and

time. When this field is missing from a response message, scheduled destruction is not in use and the explicit

destruction operations MUST be used instead. Consumers do not need to send this field to the Producer on

any operation that takes the RegistrationContext structure as this is an output field only and will be

ignored when sent to the Producer.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

4.1.28 desiredLocales

This parameter is used to control the locales for which localized strings are returned. The desiredLocales

parameter is an array of strings, each of which specifies a single locale, whose order indicates the preference of the

Consumer as to the locales for which values are returned. Since localized strings use an indirection through

resources to carry the set of values for different locales, the first member of this array SHOULD be used as the

locale for the values returned directly in the structure. When no desiredLocales array is supplied, the Consumer is

requesting values for all returned localized strings in all locales where they are available. Since excessive amounts

of data can impact both network transmission times and processing time at the Consumer, Producers are

encouraged to only send the localized data the Consumer actually requests.

4.2 getServiceDescription Operation

This operation allows a Producer to provide information about its capabilities in a context-sensitive manner (e.g.

registration may be required to discover the full capabilities of a Producer) [R303].

ServiceDescription = getServiceDescription (registrationContext, desiredLocales,

portletHandles, userContext);

Faults: InvalidRegistration, ModifyRegistrationRequired, OperationFailed, ResourceSuspended

Producers may choose to restrict the information returned in serviceDescription based on the supplied

RegistrationContext. The minimum information a Producer MUST return from getServiceDescription is that

which declares what is required for a Consumer to register (i.e. the requiresRegistration flag and whenever

additional data is required, the registrationPropertyDescription field) with the Producer [R300] [R301] [R303].

Note that the RegistrationContext parameter is not likely to be supplied when an unregistered Consumer invokes

getServiceDescription. This allows the Consumer to gain access to the information required to successfully

register. It is recommended that Consumers invoke getServiceDescription after registering in order to receive a full

description of the capabilities the Producer offers within the context of that registration. Producers MUST return a

complete enough ServiceDescription to registered Consumers for them to properly interact with both the

Producer and Portlets it exposes.

When generating the ServiceDescription response the Producer SHOULD use the desiredLocales (an array of

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (43 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

strings) to control what locales are returned for localized strings.

While it is possible a ServiceDescription will change with time (e.g. Producer deploys additional Portlets),

Producers are encouraged to return as complete a ServiceDescription as possible.

The optional portletHandles parameter provides a means for a Consumer to restrict the set of Portlets for which it

is requesting getServiceDescription return information. When the Consumer does not supply this parameter, the

Producer MUST return a portletDescription for each of the "Producer Offered Portlets" the Consumer has

access to through the supplied registrationContext. If the Consumer supplies portletHandles that do not refer

to "Producer Offered Portlets", the Producer is free to ignore those portletHandles.

The primary purpose the nillable userContext is provided to this operation is Producer logging.

5 Markup Interface

As interactive presentation-oriented web services, all WSRP compliant services implement the markup interface.

This interface has operations to request the generation of markup and the processing of interactions with that

markup [A300]. This section explains both the signatures for these operations and how the concepts of mode and

window state impact the generation of the markup.

5.1 Data Structures

The following additional data structures are needed by this interface:

5.1.1 SessionContext Type

The SessionContext structure contains the ID and expires information the Consumer needs to refer to the session

in subsequent invocations.

SessionContext

 [O] ID sessionID

 [O] int expires

 [O] Extension extensions[]

Members:

● sessionID: An opaque string the Portlet defines for referencing state that is stored locally on the Producer. If

the Consumer fails to return this reference on future invocations, the Portlet will be unable to reference this

state and therefore likely not generate a markup fragment meeting the End-User's expectations. The

maximum length of a sessionID is 4096 characters, though Producers SHOULD keep it as short as possible

as this can have a significant impact on Consumer performance. Producers SHOULD also keep the

sessionID as stable as possible since changes in value can also have a significant impact on Consumer

performance.

● expires: Maximum number of seconds between invocations referencing the sessionID before the Producer

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (44 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

will schedule releasing the related items. A value of -1 indicates that the sessionID will never expire.

Returning a sessionID without an accompanying expires carries the semantics of the Producer providing

no information to the Consumer regarding the likely lifetime of the referenced session.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

If the Producer returns an InvalidSession fault message after returning a sessionID, the Consumer MUST NOT

resupply that sessionID on a subsequent invocation and SHOULD reinvoke the operation that caused the fault

message without any sessionID and supply any data that may have been stored in the session.

5.1.2 SessionParams Type

The SessionParams structure contains the session information the Consumer is supplying to the Portlet for

connection to a Portlet session.

SessionParams

 [O] ID sessionID

 [O] Extension extensions[]

Members:

● sessionID: An opaque string the Producer defines for referencing state stored locally on the Producer. If the

Producer has returned such a reference and the Consumer fails to return it in this field on future invocations,

the Portlet will be unable to reference this state and therefore likely not generate a markup fragment meeting

the End-User's expectations.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.3 RuntimeContext Type

The RuntimeContext structure defines a collection of fields used only in transient interactions between the Producer

and Consumer.

RuntimeContext

 [R] string userAuthentication

 [R] Key portletInstanceKey

 [R] string namespacePrefix

 [O] Templates templates

 [O] SessionParams sessionParams

 [O] string pageState

 [O] string portletStates

 [O] Extension extensions[]

Members:

● userAuthentication: String indicating how the End-User was authenticated. Common values include:

❍ wsrp:none: No authentication was done, user information is asserted for informational purposes only.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (45 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

❍ wsrp:password: The End-User identified themselves using the common userid/password scenario.

❍ wsrp:certificate: The End-User presented a security certificate to validate their identity.

❍ Other strings: Some authentication was done outside this limited set of possibilities.

● portletInstanceKey: An opaque string, unique within the RegistrationContext, which the Consumer

MUST supply as a reference to its use of the Portlet. The value which the Consumer supplies in the

portletInstanceKey field MUST remain constant for any one particular use of the Portlet. The intent of this

reference is to allow the Portlet, whenever needed, to use this key to namespace multiple instances of itself

within Producer supplied mechanisms. Examples include namespacing within a Producer-defined data

sharing mechanism. Since this reference is a Key, its length is restricted to 255 characters. Consumers

SHOULD keep their portletInstanceKey values as short as possible.

● namespacePrefix: This field provides a useful string for the Portlet prefixing of tokens that need to be

unique within the markup of the aggregated page (e.g. JavaScript variables [A303], HTML id attributes, etc.).

In order to support items that could become part of a URL activation, this token MUST remain constant for

the lifetime of the portletInstanceKey and be the value used for both Consumer and Producer

namespacing (see [Section 9.3]).

● templates: If this Portlet declared doesUrlTemplateProcessing as "true" in its PortletDescription,

then this field contains the templates the Consumer is supplying for that processing. If the

PortletDescription also has templatesStoredInSession set to "true", then the Consumer MAY elect to

only send these once for a sessionID.

● sessionParams: The Consumer uses this field to supply Portlet session information.

● pageState: This optional field provides state which the Consumer manages for the page. It is supplied for

the purpose of enhancing the cacheability of templates (for use, see [Section 9.2.2.9]). When a Producer is

writing a URI with a wsrp-urlType of "resource", omitting this state is equivalent to setting the wsrp-

resourceCacheability to a value of "full" or "portlet" relative to Consumer URL rewriting. Due to the

security concerns inherent in exposing such data to a third party, Consumers are encouraged to carefully

evaluate whether or not to supply this information to this particular Producer/Portlet. Those Consumers willing

to expose this data are encouraged to use a non-trivial method of encoding the relevant state into the

supplied value. Those Consumers not willing to expose this data are encouraged to provide resource

templates which result in a URI suitable for Consumer URL rewriting.

● portletStates: This optional field provides state which the Consumer manages for portlets, other than the

target portlet. It is supplied for the purpose of enhancing the cacheability of templates (for use, see [Section

9.2.2.9]). When a Producer is writing a URI with a wsrp-urlType of "resource", omitting this state is

equivalent to setting the wsrp-resourceCacheability to a value of "full" relative to Consumer URL

rewriting. Due to the security concerns inherent in exposing such data to a third party, Consumers are

encouraged to carefully evaluate whether or not to supply this information to this particular Producer/Portlet.

Those Consumers willing to expose this data are encouraged to use a non-trivial method of encoding the

relevant state into the supplied value. Those Consumers not willing to expose this data are encouraged to

provide resource templates which result in a URI suitable for Consumer URL rewriting.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.4 PortletContext Type

The PortletContext structure is used as a parameter on many operations to supply the Portlet information that

was returned to the Consumer.

PortletContext

 [R] Handle portletHandle

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (46 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 [O] base64Binary portletState

 [O] Lifetime scheduledDestruction

 [O] Extension extensions[]

Members:

● portletHandle: An opaque and invariant handle, unique within the context of the Consumer's registration

(unique within the Producer for Producers not supporting registration). Note that Handles are restricted to a

maximum length of 255 characters.

● portletState: An opaque field the Portlet uses when it depends on the Consumer to store its enduring

state [A205] [A502]. If the portletState field has a value, the Consumer MUST return this value on

subsequent calls using the same portletHandle [A512]. Note that such uses can span multiple starting and

stopping cycles of the Consumer and therefore this state MUST be persisted by the Consumer until the

Portlet's lifecycle ends via the destroyPortlets or deregister operations or expunging of the Portlet after the

expiration of a lease. Producers choosing to return portletState to the Consumer still need to persist for

themselves any information needed to clean up items related to the portletHandle.

● scheduledDestruction: This optional field informs the Consumer that the Producer has scheduled the

Portlet to be destroyed on a certain date and time unless requested to change that date and time. When this

field is missing, scheduled destruction is not in use and the explicit destruction operations MUST be used

instead. Consumers do not need to send this field to the Producer on any operation that takes the

PortletContext structure as this is an output field only and will be ignored when sent to the Producer.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.5 Standard UserScopes

This specification defines initial values for UserScopes. UserScope is an open set of values where the Producer

SHOULD restrict the values supplied to those specified in this specification or custom values the Consumer has

indicated it supports. If another value is specified and the Consumer does not understand it, the Consumer should

ignore the cache control and treat the content as non-cacheable. The following values are defined by this

specification:

● wsrp:perUser: The markup is specific to the userContext for which it was generated. Changes to the data of

the UserContext MUST invalidate the cached markup.

● wsrp:forAll: The markup is not specific to the UserContext and therefore may be supplied to all users of

the Consumer.

5.1.6 CacheControl Type

The CacheControl structure contains a set of fields needed for the Portlet to manage cached markup fragments.

Note that any key used by the caching system to locate this markup MUST include the MarkupParams structure that

was current when the content was originally cached.

CacheControl

 [R] int expires

 [R] string userScope

 [O] string validateTag

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (47 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 [O] Extension extensions[]

Members:

● expires: Number of seconds the markup fragment referenced by this cache control entry remains valid. A

value of -1 indicates that the markup fragment will never expire.

● userScope: A string indicating when the markup may be used by various users. If the Consumer does not

know how to process the specified userScope, it MUST NOT cache the markup.

● validateTag: A string the Consumer MAY use to attempt to revalidate markup once the expires duration

elapses. This potentially eliminates the need for the Portlet to regenerate the markup and thereby can

significantly improve the performance for the End-User.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.7 Templates Type

The Templates structure contains a set of fields that enable Producer URL writing. The template style format of

these fields is defined in [Section 9.2.2].

Templates

 [O] string defaultTemplate

 [O] string blockingActionTemplate

 [O] string renderTemplate

 [O] string resourceTemplate

 [O] string secureDefaultTemplate

 [O] string secureBlockingActionTemplate

 [O] string secureRenderTemplate

 [O] string secureResourceTemplate

 [O] Extension extensions[]

Members:

● defaultTemplate: This template provides the default value for all of the other template fields that do not

begin with the string "secure".

● blockingActionTemplate: This template provides the template for URLs that will be directed to the

Consumer and processed as a performBlockingInteraction on the Portlet.

● renderTemplate: This template provides the template for URLs that will be directed to the Consumer and

processed as a getMarkup on the Portlet.

● resourceTemplate: This template provides the template for URLs that will be directed to the Consumer and

processed either as a getResource invocation or a HTTP request on the named resource. When using the

HTTP mechanism, the Consumer should use the same verb as was used by the End-User's agent.

● secureDefaultTemplate: This template provides the default value for all the secure template fields.

● secureBlockingActionTemplate: This template provides the template for secure URLs that will be directed

to the Consumer and processed as a performBlockingInteraction on the Portlet using a secure protocol.

● secureRenderTemplate: This template provides the template for secure URLs that will be directed to the

Consumer and processed as a getMarkup on the Portlet using a secure protocol.

● secureResourceTemplate: This template provides the template for secure URLs that will be directed to the

Consumer and processed either as a getResource invocation or a HTTP request over SSL/TLS on the

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (48 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

named resource. When using the HTTP mechanism, the Consumer should use the same verb as was used

by the End-User's agent.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.8 CCPPProfileDiff Type

The CCPPProfileDiff structure holds the information defined by the CC/PP standard for declaring differences from

the referenced profiles.

CCPPProfileDiff

 [R] string diffName

 [R] string description

 [O] Extension extensions[]

Members:

● diffName: This field provides the header name consisting of the prefix "Profile-Diff-" and a number as

defined in the CC/PP exchange.

● description: This field carries the XML/RDF describing the difference.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.9 CCPPHeaders Type

The CCPPHeaders structure holds the information defined by the CC/PP standard.

CCPPHeaders

 [R] string profile

 [O] CCPPProfileDiff profileDiffs[]

 [O] Extension extensions[]

Members:

● profile: This field carries the list of profiles as defined in the CC/PP standard.

● profileDiffs: This array carries the profile-diff headers from the CC/PP exchange.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.10 ClientData Type

The ClientData structure contains information the client supplied to Consumer about itself, including user-agent

identification and capabilities.

ClientData

 [O] string userAgent

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (49 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 [O] CCPPHeaders ccppHeaders

 [O] string requestVerb

 [O] NamedString clientAttributes[]

 [O] Extension extensions[]

Members:

● userAgent: String identifying the user-agent of the End-User.

● ccppHeaders: Contains the WSRP representation of the CCPP Headers which were received or produced

by the Consumer.

● requestVerb: This field provides the means for the Producer to be notified of the transport level verb (e.g. in

HTTP these are: "GET", "POST", "PUT" and "DELETE") used for the End-User interaction. The primary

purpose of this field is to allow the Producer to communicate with other systems with the same semantics as

the End-User interaction.

● clientAttributes: Attributes received from the client (e.g. HTTP headers) which are not represented

elsewhere within the WSRP protocol and which the Consumer is choosing to supply to the Portlet. When this

structure is being supplied to the getResource operation, Consumers SHOULD supply the same set of items

which would have been supplied using the HTTP proxy method of serving the resource.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.11 NamedString Type

The NamedString type provides a standardized way of carrying a simple name/value pair.

NamedString

 [R] string name

 [O] string value

Members:

● name: The name to be associated with this value.

● value: The associated value. Uses of this structure will need to define the semantics for when a value is not

supplied.

5.1.12 NavigationalContext Type

The NavigationalContext type provides a means to carry both the opaque and public portions of the Portlet's

navigational state. Comments regarding this type of state from [Section 2.7], [Section 2.8] and [Section 5.8] apply

equally to all components of this structure.

NavigationalContext

 [O] string opaqueValue

 [O] NamedString publicValues[]

 [O] Extension extensions[]

Members:

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (50 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● opaqueValue: The portion of the Portlet's navigational state which is opaque to the Consumer.

● publicValues: The Portlet can declare a portion of its navigational state to the Consumer for the purpose of

coordination with other components the Consumer is aggregating. This declared portion of the Portlet's

navigational state is stored and managed by the Consumer in a manner equivalent to the opaque portion and

carried to the Portlet in this field on all relevant invocations [A502] [A503] [C404]. The Portlet also returns the

current values for the publicly exposed portion of its navigational state using this field. [C405]. Which of the

Portlet's navigational parameters is being referenced is identified by using the value of the identifier field

from the ParameterDescription, supplied with the Portlet's metadata, in the name field of the NamedString.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

Both the Producer and Consumer supply values to each other for the opaqueValue and publicValues fields. The

Consumer needs to return the current value for the opaqueValue field, but can apply updates to the publicValues

field as part of state-based coordination between Portlets and other Consumer constituents. These statements are

true for all operations receiving or returning the NavigationalContext structure [C401]. While Consumer policy will

govern when values from sources other than the Portlet update the publicValues, Consumers MUST apply Portlet

supplied values (i.e. supplied on a portlet url parameter or on a response from performBlockingInteraction or

handleEvents) to the publicValues and SHOULD supply the same value to Portlets which provide a

navigationalParameterDescription referencing the same QName in the names array. An example of when this

might not be appropriate is when the Portlets are related to the same Producer offered portlet handle. The context in

which the Consumer is using Portlets related to the same Producer offered portlet handle will determine whether or

not such Portlets will share the same publicValues. For example, a Consumer may choose to share a

publicValue related to the End User's name between such Portlets and not share a publicValue related to a stock

symbol.

5.1.13 MimeRequest Type

The MimeRequest structure contains information frequently used to control generation of items with varying mime

types.

MimeRequest

 [R] boolean secureClientCommuncation

 [R] string locales[]

 [R] string mimeTypes[]

 [R] string mode

 [R] string windowState

 [O] ClientData clientData

 [O] NavigationalContext navigationalContext

 [O] string markupCharacterSets[]

 [O] string validateTag

 [O] string validNewModes[]

 [O] string validNewWindowStates[]

 [O] Extension extensions[]

Members:

● secureClientCommuncation: A flag indicating whether or not the Consumer knows the delivery channel

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (51 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

between the client and Consumer to be secure [A609] [R401] [R408]. The Consumer MUST set the

secureClientCommunication flag as the Portlet MAY render different content when it knows the delivery

channel is secure.

● locales: An array of locales where the order in the array is the Consumer's order of preference for the

Portlet to generate the markup (e.g. "en-US"). Note that current practice on the Internet uses the format [2

char language code]
[9]

"-" [2 char country code]
[10]

 as per the provided example. The Consumer can supply

this information based on the setting the End-User has requested, but is encouraged to also take into

account the locales the PortletDescription declared were supported for the mime types being requested.

● mimeTypes: An array of Mime types
[11]

 (e.g. "text/html", "application/xhtml+xml", etc.) where the order in the

array is the order in which the Consumer would prefer the Portlet generate the markup (i.e. first is most

preferred, second is next preferred, etc.). In addition to these fully specified Mime types, use of "*" (indicates

all Mime types are acceptable) and type/* (where type includes things such as "text") from the HTTP definition
[12]

 MAY be specified. Portlets SHOULD generate markup in one of the specified Mime types. The Producer/

Portlet does not have to process any optional parameters that can be included on mime type declarations.

● mode: The mode for which the Portlet should render its output. A set of modes is defined in this specification

(see [Section 5.9]). In addition, the Portlet's metadata indicates which of these modes the Portlet supports

as well as any Producer-defined modes. The Consumer MUST specify either one of the modes from the

Portlet's metadata or "wsrp:view" (all Portlets are required to support this mode).

● windowState: The state of this Portlet's virtual window relative to other Portlets on the aggregated page.

Constants and definitions for the specification-defined states are found in [Section 5.10]. The Consumer

MUST specify either one of the windowStates from the Portlet's metadata or "wsrp:normal" (all Portlets are

required to support this windowState).

● clientData: A structure that provides information about the client device which will render the markup.

● navigationalContext: This field contains the navigational state for this Portlet. To exist, the opaque portion

of navigational state must be set explicitly on each URL activation or by setting its value upon return from the

performBlockingInteraction or handleEvents operations [C403]. The public portion of navigational state

could be set by the Consumer even if not supplied by the Portlet.

● markupCharacterSets: An array of characterSets
[13]

 (e.g. "UTF-8", "ISO-10646-Unicode-Latin1", etc.) the

Consumer is willing to have the Portlet use for encoding the markup (i.e. the character set for the aggregated

page). The order of this array indicates the preferred ordering of the Consumer with the first element in the

array being the most preferred. When the SOAP binding is in use, the Producer MUST either use one of the

markupCharacterSets, UTF-8 or UTF-16 for the response message as the nature of XML requires the

character set used for the markup to be the same as the response message.

● validateTag: This field MAY contain a validateTag previously supplied to the Consumer in a

CacheControl structure. When this field has a value, the Consumer is indicating it has cached a previous

response for this item for the Portlet, but the CacheControl structure governing the use of that cached item

no longer indicates it is valid. The Consumer is supplying the validateTag as a means for the Portlet to

avoid generating the item if the cached item can be validated. The Portlet sets the useCachedItem field in the

returned MimeResponse to "true" to indicate the item referenced by the validateTag is still valid.

● validNewModes: Current set of modes the Portlet MAY request changing to. These can be used to specify a

mode change either via an UpdateResponse or within an URL written into the returned markup. It should be

noted that this is no guarantee that a requested transition will be honored, as factors not easily represented

may cause the Consumer to reject a requested transition. The primary reason for supplying this information is

to assist the Portlet in preparing a user interface that does not contain links the Consumer will not honor. If no

values are supplied, the Portlet can assume that all transitions are valid. Consumers can indicate they

prohibit all transitions by supplying just the current mode in this array.

● validNewWindowStates: An array of windowStates which the Consumer is indicating as available to be

requested as a newWindowState in UpdateResponse. It should be noted that this is no guarantee that a

requested transition will be honored, as factors not easily represented may cause the Consumer to reject a

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (52 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

requested transition. The primary reason for supplying this information is to assist the Portlet in preparing a

user interface that does not contain links the Consumer will not honor. If no values are supplied, the Portlet

can assume that all transitions are valid. Consumers can indicate they prohibit all transitions by supplying just

the current windowState in this array.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

Custom modes, windowStates, userScopes and userAuthentication values MUST be URI's in order to reduce

name clashes with any values that may be defined by future versions of this specification.

5.1.14 MarkupParams Type

The schema definition of the MarkupParams structure extends the common MimeRequest definition (see [Section

5.1.13]) without any additional fields and provides the data needed for the Portlet to generate markup that will

enable the End-User to visualize the state of the Portlet. These are also supplied to the interaction processing

operations as they may impact that processing (e.g. validNewModes) and those operations are allowed to return

markup and thereby avoid an additional invocation.

5.1.15 ResourceParams Type

The schema definition of the ResourceParams structure extends the common MimeRequest definition (see [Section

5.1.13]) adding fields specific to invoking the getResource operation.

ResourceParams (also see the fields defined in [Section

5.1.13])

 [R] ID resourceID

 [R] StateChange portletStateChange

 [O] string resourceState

 [O] string resourceCacheability

 [O] NamedString formParameters[]

 [O] UploadContext uploadContexts[]

Members:

● resourceID: This field provides the identifier the Portlet had placed as the value of the wsrp-resourceID

portlet URL parameter.

● portletStateChange: A flag by which a Consumer indicates whether or not the processing of the request is

allowed to return a modified portletState. This flag is needed as only the Consumer knows whether or not

such a state change would be acceptable. This knowledge reflects whether a clone is needed before

portletState is changed, whether the Consumer could process either a cloning of the Portlet or new

portletState pushed back to it and whether the nature of the client request which caused the current

request to be sourced allows a change to this state. In many cases where the Consumer does not authorize

the End-User to modify the enduring state of the Portlet in use, it may permit the Producer to clone the Portlet

(i.e. set portletStateChange to "cloneBeforeWrite") and return a clone of the Portlet in addition to any

other return parameters. The full use of this flag is described in [Section 5.4.3].

● resourceState: This field provides the state encoded on the resource URL using the wsrp-resourceState

portlet URL parameter.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (53 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● resourceCacheability: This field provides the value encoded on the resource URL using the wsrp-

resourceCacheability portlet URL parameter.

● formParameters: Name/value pairs reflected, for example, in the case of HTML either from the query string

of a form submitted with method=get or in a request with mime type = "application/x-www-form-urlencoded"

submitted with method=post. For the case of query string parameters, Consumers should take care with

regard to how user-agents encode this data. In particular, common user-agents (e.g. web browsers) encode

posted data in the character set of the page containing the form. As the Producer is ignorant of this encoding

and the Consumer is required to consistently encode parameters passed to the Producer in the SOAP

message, Consumers MUST ensure that form data is properly decoded before it is passed to the Producer.

● uploadContexts: An optional field where mime types not parsed into formParameters are placed for

transfer to the Producer.

5.1.16 MimeResponse Type

The MimeResponse structure contains common fields relative to returning an item described by a mime type.

MimeResponse

 [O] boolean useCachedItem

 [O] string mimeType

 [O] string itemString

 [O] base64Binary itemBinary

 [O] string locale

 [O] boolean requiresRewriting

 [O] CacheControl cacheControl

 [O] string ccppProfileWarning

 [O] NamedString clientAttributes[]

 [O] Extension extensions[]

Members:

● useCachedItem: A boolean used to indicate whether the item the Consumer indicated it has cached is still

valid. The default value of this field is "false" (i.e. a new item is being returned for the Consumer's use). If the

value for useCachedItem is "true" the itemString and itemBinary fields MUST NOT be returned. If the

field's value is "true", any supplied cacheControl field MUST be processed as a replacement for the

cacheControl originally supplied with the cached item.

● mimeType: The mime type of the returned item. The mimeType field MUST be specified whenever an item is

returned, and if the itemBinary field is used to return the item, the mime type MUST include the character

set for textual mime types using the syntax specified in RFC1522
[14]

 (e.g. "text/html; charset=UTF-8"). In this

particular case this character set MAY be different than the response message.

● itemString: This is a string version of the item. If this is encoded in a SOAP message (i.e. XML), various

characters will likely need to be escaped using XML entities (e.g. "<" becomes "<"), either by the Portlet or

the Producer's runtime. The character set of the markup a Portlet returns MUST either match that requested

in MimeRequest, be UTF-8 or UTF-16. When a SOAP binding is used, the XML specification requires the

character set of the markup match the character set of the response message's document. This field is only

missing when the useCachedItem flag is "true" or the item is returned in the itemBinary field as this field is

mutually exclusive with the itemBinary field.

● itemBinary: The item represented as a binary stream. This is useful if the item is not easily mapped to the

string type or an attachment scheme is in use that moves binary types into separate message parts (e.g.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (54 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

DIME). This field is mutually exclusive with returning the item in the itemString field.

● locale: The locale, if any, for the returned item.

● requiresRewriting: A flag by which the Portlet/Producer indicates whether or not Consumer-side rewriting

(see [Section 9.2.1] and [Section 9.3.1]) is required. The Consumer MUST parse the item for rewriting if the

value of requiresRewriting is "true". The default value for this flag is "false".

● cacheControl: Defines the caching policies for the returned item. If the cacheControl field is not supplied,

the Portlet is indicating it does not consider the item cacheable. This is without prejudice to Consumer

specific caching policies.

● ccppProfileWarning: This field can carry a list of warning values as defined in the CC/PP standard.

● clientAttributes: Attributes which the Portlet wishes to set on the response to the Consumer's client.

Consumer policy will control which of these attributes are actually set on the response to the client. When this

field is supplied on the response from a getResource operation, Consumers SHOULD apply the same policy

which would have been used for the HTTP proxy method of serving the resource.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.17 ResourceContext Type

The schema definition of the ResourceContext structure extends the common MimeResponse definition (see

[Section 5.1.16]) without any additional fields.

5.1.18 ResourceResponse Type

The ResourceResponse structure contains fields for returning various items in response to a getResource

invocation.

ResourceResponse

 [R] ResourceContext resourceContext

 [O] SessionContext sessionContext

 [O] PortletContext portletContext

 [O] Extension extensions[]

Members:

● resourceContext: A structure carrying the returned resource and fields related to it.

● sessionContext: This structure contains session-oriented fields that may be returned from various

operations, including a new sessionID and the duration before it expires.

● portletContext: This structure is where a Portlet using Consumer-side enduring storage may return a

change in its enduring state, provided the portletStateChange flag in InteractionParams had been set to

"readWrite" or "cloneBeforeWrite". When the portletStateChange flag had been set to

"cloneBeforeWrite", this may also include a new portletHandle. The sequence by which a Portlet can

otherwise request changing this state is described in [Section 5.4.3].

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.19 MarkupContext Type

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (55 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

The schema definition of the MarkupContext structure extends the common MimeResponse definition (see [Section

5.1.16]), adding fields relative to returning a Portlet's markup.

MarkupContext (also see the fields defined in [Section

5.1.16])

 [O] string preferredTitle

 [O] string validNewModes[]

Members:

● preferredTitle: The title the Portlet would prefer to be used in any decoration of the markup. The locale

and markup type, for textual markup types only, of the preferred title has to be identical to that of the markup.

● validNewModes: The validNewModes field allows the Portlet to inform the Consumer about the subset of the

validNewModes which the Consumer supplied on the request which the Portlet consider valid for mode

transitions. This allows the Consumer to disable controls for any other modes. If the Portlet supplies no

values for this optional field, the Consumer can assume all the modes which it supplied to the Portlet as

validNewModes are actually valid.

5.1.20 MarkupResponse Type

The MarkupResponse structure contains fields for returning various items in response to a getMarkup invocation.

MarkupResponse

 [R] MarkupContext markupContext

 [O] SessionContext sessionContext

 [O] Extension extensions[]

Members:

● markupContext: A structure carrying the returned markup and fields related to the markup.

● sessionContext: This structure contains session-oriented fields that may be returned from various

operations, including a new sessionID and the duration before it expires.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.21 EventPayload Type

The EventPayload structure provides a wrapper for the data carried by an event.

EventPayload

 [R] Object any

Members:

● any: The wrapper element for the event's data. This is required to come from a namespace other than the

WSRP "types" namespace (urn:oasis:names:tc:wsrp:v2:types) unless it can be carried within the

NamedStringArray type (defined in the WSDL as an alternative for convenient serialization/deserialization of

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (56 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

this common type). The WSDL from [Section 14] defines a second wire format for carrying this field as the

payload for many events are likely to be of the NamedStringArray type and this option allows the web stack

to automatically do the (de)serializing to the wire format.

5.1.22 Event Type

The Event structure provides the references back to the QName and payload datatype provided by the

EventDescription.

Event

 [R] QName name

 [O] QName type

 [O] EventPayload payload

 [O] Extension extensions[]

Members:

● name: The namespaced name of the event.

● type: A reference to a schema-defined type for the event's payload. If an EventDescription was supplied

with a matching event name, it is an error for this type to not match the type supplied in that

EventDescription.

● payload: This optional field contains the data for the event and becomes a REQUIRED field when either the

relevant EventDescription or the Event structures specify a value for the type field. One example of when

this field might not be included is when the event is simply a signal and the event's name thereby carries all

of the semantics of the event. Its contents MUST conform to the schema referenced by the type field.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.23 UpdateResponse Type

The UpdateResponse structure contains the items normally returned by performBlockingInteraction or

handleEvents.

UpdateResponse

 [O] SessionContext sessionContext

 [O] PortletContext portletContext

 [O] MarkupContext markupContext

 [O] Event events[]

 [O] NavigationalContext navigationalContext

 [O] string newWindowState

 [O] string newMode

 [O] Extension extensions[]

Members:

● sessionContext: This structure contains session-oriented fields that may be returned from various

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (57 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

operations, including a new sessionID, the duration before it expires.

● portletContext: This structure is where a Portlet using Consumer-side enduring storage may return a

change in its enduring state, provided the portletStateChange flag in InteractionParams had been set to

"readWrite" or "cloneBeforeWrite". When the portletStateChange flag had been set to

"cloneBeforeWrite", this may also include a new portletHandle. The sequence by which a Portlet can

otherwise request changing this state is described in [Section 5.4.3].

● markupContext: Markup may be returned at the end of interaction processing as an optimization that avoids

an additional remote invocation. To ensure End-Users receive expected behavior from bookmarked pages, it

is important that Portlets taking advantage of this optimization use the navigational state that the Consumer

would have had for invoking getMarkup.

● events: An optional array of Event structures specifying the events generated during the processing of the

operation returning this structure.

● navigationalContext: The navigational state which the Portlet is returning to the Consumer to indicate the

navigational state to be supplied on future invocations of the Portlet, including for page refreshes and page

bookmarks [C402] [C403]. The semantics of returning a publicValue item without a value are to clear any

stored value for that item. This state is for the purpose of generating markup. The Consumer SHOULD

supply the returned values, along with any additional or updated publicValues, as the navigational state on

the subsequent invocations for this use of the Portlet for at least the duration of the End-User's interactions

with this aggregated page. The Consumer is not required to persist the navigationalContext for longer

than this set of interactions, but can provide such a persistence if desired.

● newWindowState: A request from the Portlet to change the window state. See [Section 5.10] relative to the

processing of such requests.

● newMode: A request from the Portlet to change the mode. See [Section 5.9] relative to the processing of such

requests.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

For optimization purposes this structure allows markup to be returned even while state changes, events and mode/

windowState change requests are also returned. The semantics of this are that the markup reflects the current

Portlet state and assumes any requested changes to the mode and/or windowState are honored by the Consumer.

5.1.24 BlockingInteractionResponse Type

The BlockingInteractionResponse structure contains the various items performBlockingInteraction can return.

BlockingInteractionResponse

 [O] UpdateResponse updateResponse

 [O] string redirectURL

 [O] Extension extensions[]

Members:

● updateResponse: This field captures the items returned when the Portlet is not directing the user to a

different URL. It is mutually exclusive with the redirectURL field.

● redirectURL: As a result of processing this interaction, the Portlet may indicate to the Consumer that it

would like the End-User to view a different URL. It is mutually exclusive with the updateResponse field. Note

that for this version of the specification, these URLs are required to be absolute URLs, however, they are

allowed to include values for parameters which utilize the URL rewriting mechanism defined in [Section

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (58 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

9.2.1]. Consumers MUST rewrite these URLs in the same manner as those contained within markup the

Portlet might return. An example of when this might be useful is passing a parameter containing a url for

returning to the current page when redirecting the End-User to a general page which handles a user sign-in

process.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.25 ErrorCodes

The following is an enumerated set of QNames (the wsrp: prefix refers to the URI "urn:oasis:names:tc:wsrp:v2:

types") defined as ErrorCodes by this specification for use in HandleEventsFailed, FailedPortlets and

ImportPortletsFailed types. These ErrorCodes have the following meanings:

● wsrp:AccessDenied: Required access to the specified item was denied.

● wsrp:ExportNoLongerValid: An importPortlets operation referenced an exported item that is no longer

available.

● wsrp:InconsistentParameters: The supplied parameters do not provide a consistent set of references.

● wsrp:InvalidRegistration: The supplied registrationHandle is invalid.

● wsrp:InvalidCookie: A supplied cookie was invalid for the referenced items. The Consumer can try a

recovery process as would be used if the equivalent fault had been returned.

● wsrp:InvalidHandle: The supplied portletHandle is not valid for the operation.

● wsrp:InvalidSession: The supplied session is no longer valid. The Consumer can try a recovery process

as would be used if the equivalent fault had been returned.

● wsrp:InvalidUserCategory: The supplied userCategory is not allowed to perform the requested action on

the referenced items.

● wsrp:ModifyRegistrationRequired: The supplied registrationHandle has been suspended pending

appropriate changes from a modifyRegistration request.

● wsrp:MissingParameters: The request did not supply the full set of parameters required to perform the

processing on the referenced items.

● wsrp:OperationFailed: An attempt to process the request resulted in a failure. Whether or not a retry

would likely succeed is unknown.

● wsrp:OperationNotSupported: The requested operation can not be performed on the referenced items.

● wsrp:ResourceSuspended: The requested operation can not be performed as the referenced resources

have been suspended.

● wsrp:TooBusy: The Producer has too many other processing needs to attend to the request at this time.

● wsrp:TooManyRequested: The request has taken all of the processing time the Producer is willing to allow.

Additional reasons may be constructed by Producers, though automatic recovery becomes less likely with such

additional definitions. As a result, the reason fields are defined as LocalizedString so that they are reasonable to

display to administrative users.

5.1.26 HandleEventsFailed Type

The HandleEventsFailed structure contains the 0-based index of an event in the incoming events array that could

not be processed fully by the Producer, and the reason for failure.

HandleEventsFailed

 [R] int index[]

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (59 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 [R] ErrorCodes errorCode

 [O] LocalizedString reason

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● index: The 0-based index of the events, each of which had their processing fail for the stated errorCode.

● errorCode: One of the enumerated ErrorCodes, describing why the handling of the referenced events

failed.

● reason: An explanation of the failure encountered which is intended for display to an End-User.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.27 HandleEventsResponse Type

The HandleEventsResponse structure contains the various items handleEvents can return.

HandleEventsResponse

 [O] UpdateResponse updateResponse

 [O] HandleEventsFailed failedEvents[]

 [O] Extension extensions[]

Members:

● updateResponse: This field captures the items normally returned from the Portlet having processed the set

of events. Note that Consumer policy will control how requested changes in windowState and mode are

handled, but that the difficulties in reconciling multiple requests to change windowState (impacts on overall

page layout could make it unusable) will cause many Consumers to not honor such requests.

● failedEvents: This optional array carries notifications to the Consumer of events the Portlet failed to

process. Since the Producer/Portlet is capable of appropriate retries for the processing of any given event,

the Consumer MUST NOT retry distributing failed events to the Portlet.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.28 StateChange Type

This type is a restriction on the string type that is constrained to the values "readWrite", "cloneBeforeWrite" or

"readOnly", the meanings of which are explained in [Section 5.4.3].

5.1.29 UploadContext Type

The UploadContext structure contains fields specific to uploading data to the Portlet.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (60 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

UploadContext

 [R] string mimeType

 [R] base64Binary uploadData

 [O] NamedString mimeAttributes[]

 [O] Extension extensions[]

Members:

● mimeType: Mime type of what is in the uploadData field. The syntax for this value is defined in RFC1522
[15]

(e.g. "text/html; charset=UTF-8").

● uploadData: A binary data blob that is being uploaded.

● mimeAttributes: Attributes received from the client (e.g. http headers, other attributes relative to the upload

file, etc.) that are not represented elsewhere within the protocol.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.30 InteractionParams Type

The InteractionParams structure contains fields specific to invoking the performBlockingInteraction operation.

InteractionParams

 [R] StateChange portletStateChange

 [O] string interactionState

 [O] NamedString formParameters[]

 [O] UploadContext uploadContexts[]

 [O] Extension extensions[]

Members:

● portletStateChange: A flag by which a Consumer indicates whether or not the processing of the interaction

is allowed to return a modified portletState. This flag is needed as only the Consumer knows whether or

not such a state change would be acceptable. In many cases where the Consumer does not authorize the

End-User to modify the enduring state of the Portlet in use, it may permit the Producer to clone the Portlet (i.

e. set portletStateChange to "cloneBeforeWrite") and return a clone of the Portlet in addition to any other

return parameters. The full use of this flag is described in [Section 5.4.3].

● interactionState: Opaque representation of transient information for use in processing this invocation of

performBlockingInteraction. The value for this field is supplied through the portlet URL parameter wsrp-

interactionState (see [Section 9.2.1.4]).

● formParameters: Name/value pairs reflected, for example, in the case of HTML either from the query string

of a form submitted with method=get or in a request with mime type = "application/x-www-form-urlencoded"

submitted with method=post. For the case of query string parameters, Consumers should take care with

regard to how user-agents encode this data. In particular, common user-agents (e.g. web browsers) encode

posted data in the character set of the page containing the form. As the Producer is ignorant of this encoding

and the Consumer is required to consistently encode parameters passed to the Producer in the SOAP

message, Consumers MUST ensure that form data is properly decoded before it is passed to the Producer.

● uploadContexts: An optional field where mime types not parsed into formParameters are placed for

transfer to the Producer.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (61 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.31 EventParams Type

The EventParams structure contains fields specific to invoking the handleEvents operation.

EventParams

 [R] StateChange portletStateChange

 [R] Event events[]

 [O] Extension extensions[]

Members:

● portletStateChange: A flag by which a Consumer indicates whether or not the processing of events is

allowed to return a modified portletState. This flag is needed as only the Consumer knows whether or not

such a state change would be acceptable. In many cases where the Consumer does not authorize the End-

User to modify the enduring state of the Portlet in use, it may permit the Producer to clone the Portlet (i.e. set

portletStateChange to "cloneBeforeWrite") and return a clone of the Portlet in addition to any other

return parameters. The full use of this flag is described in [Section 5.4.3].

● events: An array of events for the Portlet to process.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.32 User Profile Types

The UserProfile structure is used to carry information about the End-User. The Portlet uses the

userProfileItems in its metadata to describe the fields it uses to generate markup from this set and any others the

Consumer indicated were available when it registered. See [Section 10] for a complete description of this portion of

the protocol. We expect that most extensions of the types referenced by UserProfile will be of the type

QNamedString (from the "wsrp-extra" namespace) and encourage its use in this manner.

UserProfile

 [O] PersonName name

 [O] dateTime bdate

 [O] string gender

 [O] EmployerInfo employerInfo

 [O] Contact homeInfo

 [O] Contact businessInfo

 [O] Extension extensions[]

Members:

● name: A structure containing the various fields for the End-User's name.

● bdate: The End-User's birthdate. This uses the schema-defined datatype for DateTime rather than Date as

not all web stacks serialize / deserialize Date properly.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (62 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● gender: The End-User's gender ("M" = male, "F" = female).

● employerInfo: A structure containing various fields for the End-User employer's information.

● homeInfo: The End-User's home location information.

● businessInfo: The End-User's work location information.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.32.1 PersonName Type

The PersonName structure carries the detailed fields for the parts of an End-User's name.

PersonName

 [O] string prefix

 [O] string given

 [O] string family

 [O] string middle

 [O] string suffix

 [O] string nickname

 [O] Extension extensions[]

Members:

● prefix: Examples include Mr, Mrs, Ms, Dr, etc.

● given: The End-User's first or given name.

● family: The End-User's last or family name.

● middle: The End-User's middle name(s) or initial(s).

● suffix: Examples include Sr, Jr, III, etc.

● nickname: The End-User's preferred nick name.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.32.2 EmployerInfo Type

The EmployerInfo structure contains the detailed fields concerning the End-User's employer.

Employerinfo

 [O] string employer

 [O] string department

 [O] string jobtitle

 [O] Extension extensions[]

Members:

● employer: The name of the employer.

● department: The name of the department the End-User works within.

● jobtitle: The title of the End-User's job.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (63 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

from namespaces other than WSRP.

5.1.32.3 TelephoneNum Type

The TelephoneNum structure is used to describe the subfields of a phone number.

TelephoneNum

 [O] string intcode

 [O] string loccode

 [O] string number

 [O] string ext

 [O] string comment

 [O] Extension extensions[]

Members:

● intcode: The international telephone code.

● loccode: Local telephone area code.

● number: The telephone number.

● ext: Any telephone number extension.

● comment: Comment about this phone number.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.32.4 Telecom Type

The Telecom structure is used to describe the various phone contact information.

Telecom

 [O] TelephoneNum telephone

 [O] TelephoneNum fax

 [O] TelephoneNum mobile

 [O] TelephoneNum pager

 [O] Extension extensions[]

Members:

● telephone: Standard phone number.

● fax: Phone number for faxes.

● mobile: Phone number for mobile contact.

● pager: Phone number for activating a pager.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.32.5 Online Type

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (64 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

The Online structure is used to describe various types of web-oriented contact information.

Online

 [O] string email

 [O] string uri

 [O] Extension extensions[]

Members:

● email: Email address.

● uri: Relevant web page.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.32.6 Postal Type

The Postal structure carries the detailed fields describing a particular address.

Postal

 [O] string name

 [O] string street

 [O] string city

 [O] string stateprov

 [O] string postalcode

 [O] string country

 [O] string organization

 [O] Extension extensions[]

Members:

● name: The name to which items should be addressed.

● street: The street portion of the address.

● city: The city portion of the address.

● stateprov: The state or province portion of the address.

● postalcode: The postal code portion of the address.

● country: The country portion of the address.

● organization: Any organization needing to be specified in the address.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.32.7 Contact Type

The Contact structure is used to describe a location for the End-User.

Contact

 [O] Postal postal

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (65 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 [O] Telecom telecom

 [O] Online online

 [O] Extension extensions[]

Members:

● postal: Postal oriented contact information.

● telecom: Telephone oriented contact information.

● online: Web oriented contact information.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.1.33 UserContext Type

The UserContext structure supplies End-User specific data to operations. Note that this does not carry user

credentials (e.g. userID / password) as quite flexible mechanisms for communicating this information are being

defined elsewhere (e.g. WS-Security defines how to carry User Information in a SOAP header). There are several

use cases for the application-level information carried in this structure, particularly in the absence of authenticated

security-level information, namely; logging of remote invocations, interoperable assertions of unauthenticated

information, personalization of the user experience, etc.

UserContext

 [R] Key userContextKey

 [O] string userCategories[]

 [O] UserProfile profile

 [O] Extension extensions[]

Members:

● userContextKey: This key is a token that the Consumer supplies to uniquely identify the UserContext. The

userContextKey MUST remain invariant for the duration of a Consumer's registration. The Producer can use

this key as a reference to the user. One anticipated such usage relates to Producer logging regarding remote

invocations.

● userCategories: An array of strings, each of which specifies an Producer-defined user category in which

the Consumer places the End-User relative to the current operation [R418]. The Consumer MUST NOT

assert a user category for which no ItemDescription was part of the Producer's ServiceDescription. See

the discussion of user categories in [Section 5.12]. One anticipated usage of this field is application-level

decisions in the absence of security-level guidance.

● profile: End-User profile data structure as defined in [Section 5.1.32] [R409]. Note that while the

UserContext structure is passed to many operations, only the interaction oriented operations need this

optional field to be supplied.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

5.2 getMarkup Operation

The Consumer requests the markup for rendering the current state of a Portlet by invoking:

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (66 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

MarkupResponse = getMarkup (registrationContext, portletContext, runtimeContext, userContext,

markupParams);

Faults:

AccessDenied, InconsistentParameters, InvalidCookie, InvalidHandle,

InvalidRegistration, InvalidSession, InvalidUserCategory, MissingParameters,

ModifyRegistrationRequired, OperationFailed, ResourceSuspended, UnsupportedLocale,

UnsupportedMimeType, UnsupportedMode, UnsupportedWindowState

This operation's semantics are that the Consumer is aggregating a page which includes the Portlet's markup.

5.2.1 Caching of markup fragments

For performance reasons the Consumer might prefer to cache markup across a series of requests. The Producer

passes information about the cacheability of the markup fragment in the cacheControl structure returned in a

MarkupContext structure. The Consumer can infer from this information when it may cache markup and when the

cached markup needs to be invalidated and updated by a new call to getMarkup.

5.2.1.1 Cacheability

Whenever the cacheControl field of a MarkupResponse structure is filled in the Consumer MAY cache the markup

fragment. The Consumer MUST follow the defined invalidation policies from [Section 5.2.1.2] in order to keep the

cache up-to-date. If the cacheControl field is empty, the Portlet has provided no guidance and the Consumer MAY

apply whatever cache policy it chooses. For a Portlet to indicate the markup is not cacheable, it will need to return a

cacheControl structure with a value of zero in the expires field.

5.2.1.2 Cache Invalidation

The expires field of the cacheControl structure provides a time duration during which it is valid to supply the

markup from a cache. Once this time has elapsed, counting from the point in time when the MarkupContext

structure was returned, the Consumer can use the validateTag field of the MarkupParams structure to inquire

whether the markup is still valid, as this potentially avoids having the Portlet regenerate the same markup. Portlets

indicating the cached markup can be used SHOULD also supply a new CacheControl structure with a new expiry

for the markup.

Consumers should be aware that invoking performBlockingInteraction and/or handleEvents may cause cached

markup to become invalid. This version of the specification does not address how a Portlet can indicate that cached

markup is invalid, but it is anticipated that future versions will address this issue.

5.3 getResource Operation

The Consumer requests a resource by invoking:

ResourceResponse = getResource (registrationContext, portletContext, runtimeContext,

userContext, resourceParams);

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (67 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Faults:

AccessDenied, InconsistentParameters, InvalidCookie, InvalidHandle,

InvalidRegistration, InvalidSession, InvalidUserCategory, MissingParameters,

ModifyRegistrationRequired, OperationFailed, ResourceSuspended, UnsupportedLocale,

UnsupportedMimeType, UnsupportedMode, UnsupportedWindowState

This operation's semantics are that the client/client-agent has requested additional information in a manner that

utilized the Consumer as a proxy for supplying that information. As the Consumer is only being used as a proxy for

accessing the resource, a number of techniques for storing the Portlet's navigationalContext are not available to

it. As a result, while the Portlet's navigationalContext is supplied to this operation, neither the URL nor the

response are permitted to change this navigationalContext. If a logical side effect of the invocation is changing

the Portlet's navigationalContext, either the Portlet or the Producer will need to manage this change until the next

opportunity to return the navigationalContext to the Consumer.

This operation can be used to fetch a resource whenever the activated URL has specified a value for the wsrp-

resourceID portlet URL parameter and is the preferred mechanism whenever a value of true is specified for the

wsrp-preferOperation (see [Section 9.2.1.1.3.3]. It provides all the contextual information needed for a Portlet to

re-establish its state relevant to the End-User so that the generated response is able to take that state into account.

When the Portlet offers a choice to the Consumer between using the getResource operation or the HTTP proxy

method to retrieve the resource, the resource served to the End-User SHOULD NOT depend on how the Consumer

chooses to retrieve the resource.

Resources which are inserted into the Consumer's aggregated page MUST follow the guidelines in [Section 9.4] for

the mime types described there and the relevant fragment rules, if any, for other mime types.

5.3.1 Caching of resources

For performance reasons the Consumer might prefer to cache resources across a series of requests. The Producer

passes information about the cacheability of the resource representation in the cacheControl structure returned in a

MarkupContext structure. The Consumer can infer from this information when it may cache the resource and when

the cached resource needs to be invalidated and updated by a new call to getResource. All of the cache semantics

described in [Section 5.2.1] applies to the caching of resources as well.

In addition to Consumer caching, both browser and web-based caching may apply to the resource. Since resources

can contain URLs which need to be written using either the template or Consumer URL rewriting techniques

discussed in [Section 9.2], the URI used by the browser to fetch the resource will likely contain state information

which virtually guarantees the resource will not be retrieved from the cache on subsequent accesses. [Section

9.2.1.1.3.6] defines the wsrp-resourceCacheability portlet URL parameter for the purpose of increasing the hit

ratio for the browser and web caches of appropriate resources.

5.4 Interaction Operations

End-User interactions with the generated markup may result in invocations for the Portlet to respond to the

interactions [A400]. In the case where the invocations may change some data the Portlet is storing in a shared data

area (including a database), an operation is needed to carry the semantics of this type of update. The Consumer

MUST always propagate these End-User interactions to the Producer.

5.4.1 performBlockingInteraction Operation

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (68 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

This operation requires that both the Consumer beginning the generation of the aggregated page (because the

invocation can return a redirectURL), invoking other operations on Portlets and the gathering of markup from other

Portlets on the page (often because shared state, including state shared via a database, impacts the markup of

other Portlets) are blocked until performBlockingInteraction either returns or communication errors occur. The

Portlet will receive only one invocation of performBlockingInteraction per client interaction, excepting for retries.

BlockingInteractionResponse = performBlockingInteraction (registrationContext, portletContext,

runtimeContext, userContext, markupParams, interactionParams);

Faults:

AccessDenied, InconsistentParameters, InvalidCookie, InvalidHandle,

InvalidRegistration, InvalidSession, InvalidUserCategory, MissingParameters,

ModifyRegistrationRequired, OperationFailed, PortletStateChangeRequired,

ResourceSuspended, UnsupportedLocale, UnsupportedMimeType, UnsupportedMode,

UnsupportedWindowState

The Consumer has to wait for the response from performBlockingInteraction before invoking getMarkup on the

Portlets it is aggregating. This permits any Producer-mediated sharing to proceed safely (provided it happens in a

synchronous manner). Since this operation potentially returns state to the Consumer for storage, this operation also

allows Consumers who wish to store this by propagating it to their client to do so before opening the stream for the

aggregated page. Consumers doing this will enable End-User bookmarking of the aggregated page for later use. In

order to support such bookmarking and reduce issues related to potentially reinvoking a transaction for the End-

User, Consumers are encouraged to redirect the client in a manner that keeps a bookmarked page from reissuing a

request to invoke performBlockingInteraction. Producer still need to be prepared for such repeated invocations as

the End-User may activate the link that caused the invocation more than once.

Note, if the Producer chooses to use the optimized form of this operation and return markup directly, care must be

taken to ensure the markup is generated with the navigationalContext that will be returned from the operation and

not the navigationalContext that was passed to it. Also, the markup should be generated presuming that any

requested mode or windowState changes are honored. This ensures consistency when the optimization is not used

and the Consumer invokes getMarkup after performBlockingInteraction returns.

5.4.2 handleEvents Operation

A useful way of describing the distinction between an interaction and an event is that an interaction is an encodable

event (i.e. can be referenced by presentation markup) with an opaque payload which the Consumer will always

attempt to deliver to the Portlet that generated the markup. This differences result in the need for a different

signature that the Consumer uses to distribute events to a Portlet; namely:

HandleEventsResponse = handleEvents (registrationContext, portletContext, runtimeContext,

userContext, markupParams, eventParams);

Faults:

AccessDenied, InconsistentParameters, InvalidCookie, InvalidHandle,

InvalidRegistration, InvalidSession, InvalidUserCategory, MissingParameters,

ModifyRegistrationRequired, OperationFailed, OperationNotSupported,

PortletStateChangeRequired, ResourceSuspended, UnsupportedLocale, UnsupportedMimeType,

UnsupportedMode, UnsupportedWindowState

The events (carried within eventParams) provide a means by which a Portlet can be notified about changes in the

Consumer application incorporating the Portlet's markup. These notifications could have originated from another

Portlet or directly from the Consumer. It is the Consumer which determines which events to distribute to which

Portlets, usually based on the needs of the Consumer application and the metadata concerning the events Portlets

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (69 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

can publish and/or handle. Since events are independent notifications and the Consumer manages event

distribution, Portlets should not expect a particular event distribution behavior (either on event ordering or whether a

particular event is distributed to any of the Portlets that can process it).

5.4.2.1 Event handling

In order for the inherent overhead of remote invocations to not degrade End-User performance to unacceptable

levels, WSRP collapses invocations that are equivalent outside of the event being processed into a single invocation

that deals with an array of events.

Since events are independent notifications, both the Consumer and Producer/Portlet are encouraged to deal with

events in a simple time-ordered manner. The protocol defines no semantic meaning to the order of the events nor to

the invocation of handleEvents that carried a particular set of events to the Portlet.

As many technologies used to implement Portlets do not protect against concurrent updates to runtime state,

Producers hosting such Portlets will need to consider each, potentially concurrent, handleEvents invocation as

transferring a portion of the overall queue of events for the Portlet to process. The Producer could also need to

manage the serialization of the event processing with connections back to the response messages at appropriate

times.

5.4.2.2 State handling

The processing of an event can potentially impact any portion of a Portlet's state (namely; portletState, session

state and navigational state). Relevant to the enduring portletState, we would particularly note that cloning may

occur and that the handling of the portletStateChange flag, which provides the Consumer control over cloning, is

detailed in [Section 5.4.3]. Since the Consumer is allowed to send multiple arrays of events for a single Portlet to

process, care needs to be taken to produce proper results for the End-User. The Consumer SHOULD NOT send

multiple concurrent arrays of events to a Portlet if any of the invocations set the portletStateChange flag to

"cloneBeforeWrite", as the Producer will not neccessarily be able to connect these invocations together in a manner

that allows a cloned Portlet which is produced/returned to be used for processing later events. If a cloned Portlet is

produced during the processing of an array of events, the Producer SHOULD use the cloned Portlet in place of the

targeted Portlet for processing any remaining events and treat the portletStateChange flag as having a value of

"readWrite" while processing the rest of the events in the array.

5.4.2.3 Mode and WindowState handling

Events can return requests to the Consumer to change the mode or windowState of the Portlet. The Consumer

SHOULD honor a handleEvents invocation returning requests to change mode or windowState provided they do

not conflict with other such requests. Since the policy for handling conflicting requests is up to the Consumer

implementation, Portlet developers SHOULD be aware that the impact on the overall layout MAY cause the

Consumer to not honor a request to change windowState.

5.4.3 Updating Enduring Portlet State

In designing how a Portlet and Consumer interact in order to update the enduring state of the Portlet, the following

items were considered:

● Only the Portlet knows when such a state change is desired. While it is expected that changes to enduring

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (70 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

state will be relatively rare, they could occur on any interaction the Portlet has with an End-User.

● Only the Consumer knows whether or not a enduring state change would be safe. Reasons for this include

whether the enduring state is shared among a group of users, the authorization level of the End-User to

impact any shared enduring state and Consumer policies regarding whether the enduring state is modifiable.

This combination requires that all enduring Portlet state changes happen in a manner that has Consumer approval

for the change to occur, while the Portlet decides both when the change is required and its exact character. The

Consumer indicates whether or not it is safe for the Portlet to modify its enduring state by setting the

portletStateChange field in the InteractionParams or EventParams structures. If the Consumer has set the

portletStateChange flag to "readWrite", the Portlet MAY modify its enduring state regardless of whether it is

persisted on the Producer or Consumer. Only if the Portlet's enduring state is modified and it is persisted on the

Consumer should a PortletContext be returned to the Consumer and such a PortletContext MUST reference

the portletHandle which was supplied by the Consumer.

If the Consumer has set the portletStateChange field to "cloneBeforeWrite", enduring state changes are allowed

only if the Producer first clones the Portlet. If the Producer does not clone the Portlet, processing attempts to modify

enduring state MUST proceed as if the Consumer had specified "readOnly" for portletStateChange. If the

Producer clones the Portlet, processing attempts to modify enduring state on the new Portlet SHOULD proceed as if

the Consumer had specified "readWrite" for portletStateChange. The Producer returns the impact of any cloning

to the Consumer, regardless of whether the portletState is persisted on the Producer or Consumer. If the

Producer returns a new portletHandle without returning a new sessionID, the Consumer MUST associate the

current sessionID with the new portletHandle rather than the previous portletHandle. The metadata associated

with the original Portlet applies to any cloned Portlet as well.

If the Consumer has set the portletStateChange flag to "readOnly", the Portlet MUST NOT modify its enduring

state regardless of whether it is persisted on the Producer or Consumer and MUST throw a fault message if

processing the interaction requires changing its enduring state. Commonly Consumer's will only set the

portletStateChange flag to "readOnly" for End-Users that are not authorized to clone or customize the Portlet (e.

g. an End-User using a guest account).

If the Producer implements access control that prevents Portlets from updating enduring state and a Portlet is

unable to process the interaction without such an update, then the fault "PortletStateChangeRequired" MAY be

thrown indicating the interaction processing failed.

This set of possibilities is depicted in the following figure:

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (71 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

5.5 initCookie Operation

In general, the Producer completely manages its own environment, including items such as the initialization of

cookies when using the HTTP transport. There are cases, however, when assistance from the Consumer in

initializing these cookies is useful. Cookies needed to manage distribution of requests within a load balanced

environment are an example of such. This operation is how the Consumer provides such assistance:

ReturnAny = initCookie (registrationContext userContext);

Faults:
AccessDenied, InvalidRegistration, ModifyRegistrationRequired, OperationFailed,

OperationNotSupported, ResourceSuspended

If the Producer's metadata has set the requiresInitCookie field to any value other than "none", then the

Consumer MUST invoke initCookie and supply any returned cookies according to the semantics of the value of

requiresInitCookie as defined in [Section 4.1.20]. If at any time the Producer throws a fault message

("InvalidCookie") indicating the supplied cookies have been invalidated at the Producer, then the Consumer MUST

again invoke initCookie and SHOULD reprocess the invocation that caused the fault message to be thrown and

include any data that may have been stored in a session related to a cookie.

The primary purpose the nillable userContext is provided to this operation is Producer logging.

5.6 releaseSessions Operation

The Consumer MAY inform the Producer that it will no longer be using a set of sessions by invoking

releaseSessions (e.g. the Consumer is releasing items related to the sessionIDs):

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (72 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

ReturnAny = releaseSessions (registrationContext, sessionIDs[], userContext);

Faults:
AccessDenied, InvalidRegistration, MissingParameters, ModifyRegistrationRequired,

OperationFailed, OperationNotSupported, ResourceSuspended

After invoking releaseSessions the Consumer MUST NOT include any of the supplied sessionIDs on subsequent

invocations.

The primary purpose the nillable userContext is provided to this operation is Producer logging.

5.7 Consumer Transitions across Bindings

Consumers need to be careful about the support supplied by the web stack with regards to multiple bindings that will

be offered by many Producers. If a Producer indicates that it uses cookies, the Consumer MUST ensure that any

cookies the Producer sets are available on all invocations within the Markup interface. Another implication of the

Producer indicating it uses cookies is that the Consumer should be aware of the issues involved in protocol

transitions (e.g. from HTTP to HTTPS). Current technologies do not always manage cookies in a manner that allows

cookies to be shared across such a transition. In addition, moving cookies from an HTTPS to an HTTP connection

opens security issues that MUST be handled in the manner prescribed in RFC2109
[16]

. Consumers MUST respect

the security setting on each cookie.

5.8 Stateful Portlet Scenarios

There are several common scenarios for Portlets with varying needs regarding statefulness [A202] [A203]. This

section explains how they map into the operational signatures above.

5.8.1 No State

This type of Portlet maintains no state, but encodes everything required to generate the markup on the URL causing

the invocation of getMarkup [A201]. Often these Portlets involve only a single page, but could provide links on that

page that cause the generation of a completely different markup due to the parameters passed when the link is

activated.

Note: Invocations of performBlockingInteraction can happen in this scenario if the Portlet impacts some backend

system as a result of the invocation as this impact could change the markup some other Portlet will generate.

The following table outlines the values for certain key parameters that support this scenario.

Method Parameter/Field Value Comments

performBlockingInteraction RuntimeContext / sessionParams
Producer provided

session state

No value as this Portlet

uses no session.

 InteractionParams / interactionState
Consumer extracts

value from link.

Interaction state

encoded on the URLs

in the markup only.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (73 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 MarkupParams / navigationalContext
Consumer extracts

values from link.

Navigational state

encoded on the URLs

in the markup only.

InteractionResponse /

navigationalContext

This type of Portlet

does not return

navigational state.

handleEvents RuntimeContext / sessionParams
Producer provided

session state

No value as this Portlet

uses no session state.

 MarkupParams / navigationalContext

Consumer supplies

current value for the

Portlet.

Navigational state

encoded on the URLs

in the markup only.

HandleEvents Response /

navigationalContext

This type of Portlet

does not return

navigational state.

getMarkup RuntimeContext / sessionParams
Producer provided

session state

No value as this Portlet

uses no session state.

 MarkupParams / navigationalContext
Consumer extracts

value from link.

Navigational state from

the URL.

5.8.2 Navigational State Only

This type of Portlet does not maintain state at the Producer, but does return navigational state to the Consumer.

Both to support these Portlets and to assist Consumers in properly supporting End-User page refreshes and

bookmarks, Portlets are allowed to return their navigational state (i.e. the navigationalContext field) back to the

Consumer. It is then the responsibility of the Consumer to retransmit the navigational state to the Producer with each

request [A206].

A stateless Consumer can store the navigational state for all of its aggregated Portlets by returning them to the

client, for example by encoding them in the URL. Since this implementation option requires the URL to be generated

before the output stream is opened, the navigational state of all Portlets must be known before the Consumer begins

generating the output stream. In order to allow the Consumer to open the output stream before it has collected

markup from all Portlets aggregated on the page, a getMarkup invocation is not allowed to modify the navigational

state. Only invocations of performBlockingInteraction and handleEvents are allowed to modify the navigational

state of a Portlet.

The following table outlines the values for certain key parameters that support this scenario.

Method Parameter/Field Value Comments

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (74 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

performBlockingInteraction
RuntimeContext /

sessionParams
Producer provided session state

No value as

this Portlet

uses no

session state.

InteractionParams /

interactionState
Consumer extracts value from link.

Interaction

state encoded

on the URLs

in the markup

only.

MarkupParams /

navigationalContext

Consumer extracts values from link

or previous value.

InteractionResponse /

navigationalContext

Portlet may compute a changed

navigational state.

handleEvents
RuntimeContext /

sessionParams
Producer provided session state

No value as

this Portlet

uses no

session state.

MarkupParams /

navigationalContext

Consumer extracts values from link

or previous value.

HandleEventsResponse /

navigationalContext

Portlet may compute a changed

navigational state.

getMarkup
RuntimeContext /

sessionParams
Producer provided session state

No value as

this Portlet

uses no

session state.

MarkupParams /

navigationalContext

From link or from
performBlockingInteraction/

handleEvents operations.

5.8.3 Local state

Portlets storing state locally on the Producer establish a session and return an opaque reference (i.e. a sessionID)

which the Consumer then returns on all subsequent invocations of this Portlet instance on the aggregated page for

this End-User in order to reconnect the Portlet to the state stored in the session. These Portlets can also return

navigational state to the Consumer such that an End-User may bookmark some portion of the state for use in later

conversations. The means by which the Consumer enables this functionality for the End-User is a Consumer

implementation choice [A304].

The following table outlines the values for certain key parameters that support this scenario.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (75 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Method Parameter/Field Value Comments

performBlockingInteraction
RuntimeContext /

sessionParams
Producer provided session state

With session

state, the

session handle

offers ability to

store

information

without

increasing the

message size

to the

Consumer.

InteractionParams /

interactionState
Consumer extracts value from link.

Interaction

state encoded

on the URLs in

the markup

only.

MarkupParams /

navigationalContext

Consumer extracts values from link

or previous value.

InteractionResponse /

navigationalContext

Portlet may compute a changed

navigational state.

handleEvents
RuntimeContext /

sessionParams
Producer provided session state

With session

state, the

session handle

offers ability to

store

information

without

increasing the

message size

to the

Consumer.

MarkupParams /

navigationalContext

Consumer extracts values from link

or previous value.

HandleEventsResponse /

navigationalContext

Portlet may compute a changed

navigational state.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (76 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

getMarkup
RuntimeContext /

sessionParams
Producer provided session state

With session

state, the

session handle

offers ability to

store

information

without

increasing the

message size

to the

Consumer.

MarkupParams /

navigationalContext

From link or from
performBlockingInteraction/

handleEvents operations.

5.9 Modes

A Portlet should render different content and perform different activities depending on its current state, the operation

(with parameters) currently being processed, and the functionality requested by the End-User. A base set of

functions is defined which reflects those common for portal-portlet interactions. They are referred to as modes and

should be thought of as how the Consumer is managing the interaction with the End-User. Portlets may request

mode changes either through parameters on a link that an End-User activates or by returning a newMode in a

BlockingInteractionResponse or a HandleEventsResponse. The Consumer MUST respect requests to change

the mode outside of exceptional circumstances (e.g. access control restrictions), but the Portlet MUST NOT depend

on such a request being respected.

During getMarkup, getResource, handleEvents and performBlockingInteraction invocations the Consumer

indicates to the Portlet its current mode via the MarkupParams data structure.

Because modes are an extensible set of values, the following semantics apply relative to determining what modes

are valid for the interactions of a Consumer with a Portlet:

● Portlets specify what modes are supported through their PortletDescription. The Producer determines

whether or not this information is available to the Consumer prior to registration.

● During registration the Consumer informs the Producer about modes it uses on aggregated pages.

● After registration, the PortletDescription can dynamically modify the set of modes supported to

incorporate those specified by the Consumer during registration.

● The Consumer is required to use one of the modes specified by the PortletDescription (or the required

"wsrp:view" mode).

5.9.1 "wsrp:view" Mode

The expected functionality for a Portlet in wsrp:view mode is to render markup reflecting the current state of the

Portlet. The wsrp:view mode of a Portlet will include one or more screens that the End-User can navigate and

interact with or it may consist of static content devoid of user interactions.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (77 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

The behavior and the generated content of a Portlet in the wsrp:view mode may depend on configuration,

personalization and all forms of state.

Conformant Portlets MUST support the wsrp:view mode.

5.9.2 "wsrp:edit" Mode

Within the wsrp:edit mode, a Portlet should provide content and logic that let a user customize the behavior of the

Portlet, though such customizations are not limited to markup generated while in this mode. The wsrp:edit mode

can include one or more screens which users can navigate to enter their customization data.

Typically, Portlets in wsrp:edit mode will set or update Portlet enduring state. How such changes impact Consumer

management of Portlet usage by End-Users is discussed in [Section 5.4.3].

5.9.3 "wsrp:help" Mode

When in wsrp:help mode, a Portlet may provide help screens that explains the Portlet and its expected usage.

Some Portlets will provide context-sensitive help based on the markup the End-User was viewing when entering this

mode.

5.9.4 "wsrp:preview" Mode

In wsrp:preview mode, a Portlet should provide a rendering of its standard wsrp:view mode content, as a visual

sample of how this Portlet will appear on the End-User's page with the current configuration. This could be useful for

a Consumer that offers an advanced layout capability.

5.9.5 Custom Modes

The extensible RegistrationData structure provides a field for Consumers to declare additional custom modes. In

addition, the extensible PortletDescription structure provides a field for Portlets to declare what modes they

understand. The Portlet could receive a mode it does not currently support as it may have existed in a previous

PortletDescription. A Portlet MUST map any mode it does not understand to the wsrp:view mode. Custom

mode values are required to be URI's in order to reduce name clashes with any values that may be defined by other

parties, including future versions of this specification.

5.10 Window States

Window state is an indicator of the amount of page space that will be assigned to the content generated by a Portlet.

This hint is provided by the Consumer for the Portlet to use when deciding how much information to render in the

generated markup. Portlets may request window state changes either through parameters on a link that an End-

User activates or by returning a newWindowState from handleEvents or performBlockingInteraction. The

Consumer SHOULD choose to respect this request to change the window state, but since the Portlet cannot depend

on that choice it MUST NOT encode this new window state into any of its stateful settings. Rather, the Portlet MUST

compute any such impact on stateful settings after the Consumer has actually changed the window state.

Because window states are an extensible set of values, the following semantics apply relative to determining what

window states are valid for the interactions of a Consumer with a Portlet:

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (78 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

● Portlets specify what window states are supported through their PortletDescription. The Producer

determines whether or not this information is available to the Consumer prior to registration.

● During registration the Consumer informs the Producer about window states it uses on aggregated pages.

● After registration, the PortletDescription can dynamically modify the set of window states supported to

incorporate those specified by the Consumer during registration.

● The Consumer is required to use one of the window states specified by the PortletDescription (or the

required "wsrp:normal" window state).

5.10.1 "wsrp:normal" Window State

The wsrp:normal window state indicates the Portlet is likely sharing the aggregated page with other Portlets. The

wsrp:normal window state MAY also indicate that the target device has limited display capabilities. Therefore, a

Portlet SHOULD restrict the size of its rendered output in this window state.

Conformant Portlets MUST support the wsrp:normal window state.

5.10.2 "wsrp:minimized" Window State

When the window state is wsrp:minimized, the Portlet SHOULD NOT render visible markup, but is free to include

non-visible data such as JavaScript [A303] or hidden forms. The getMarkup operation can be invoked for the wsrp:

minimized state just as for all other window states.

5.10.3 "wsrp:maximized" Window State

The wsrp:maximized window state is an indication the Portlet is likely the only Portlet being rendered in the

aggregated page, or that the Portlet has more space compared to other Portlets in the aggregated page. A Portlet

SHOULD generate richer content when its window state is wsrp:maximized.

5.10.4 "wsrp:solo" Window State

The wsrp:solo window state is an indication the Portlet is the only Portlet being rendered in the aggregated page. A

Portlet SHOULD generate richer content when its window state is wsrp:solo.

5.10.5 Custom Window States

The extensible RegistrationData structure provides a field for Consumers to declare additional custom window

states. In addition, the extensible PortletDescription structure contains a field for Portlets to declare what window

states they understand. The Portlet could receive a window state it does not currently support as it may have existed

in a previous PortletDescription. A Portlet MUST map any window state it does not understand to wsrp:normal.

Custom windowState values are required to be URI's in order to reduce name clashes with any values that may be

defined by other parties, including future versions of this specification.

5.11 Defined Events

This specification defines the following events in the interest of promoting interoperability on a set of commonly

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (79 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

encountered scenarios. All of these are defined within the WSRP types namespace (i.e. urn:oasis:names:tc:

wsrp:v2:types).

5.11.1 wsrp:eventHandlingFailed

This is a Consumer generated event which signals to the Portlet that the Consumer detected that errors occurred

while distributing events. As a simple notification, this event carries no predefined payload, but does use an open

content definition.

5.11.2 wsrp:newNavigationalContextScope

This is a Consumer generated event which notifies the Producer/Portlet that Consumer policy has determined that

the scope of the navigationalContext has changed. While the value of the navigationalContext can change

within any one such scope, the changing of scope will reset both the value and management of the

navigationalContext. The purpose for this notification is to enable those Producers/Portlets which choose an

implementation style precluding the Consumer from fully managing the Portlet's navigationalContext to manage

an extension to this state in a manner consistent with the Consumer's management for other Producers/Portlets (i.e.

write a key into the Portlet's navigationalContext for later use in determining the correct extended state). Portlets/

Producers handling this event SHOULD be aware that idempotency concerns related to the Consumer's processing

of the request it received could limit how it processes items returned from the processing of this event. As a simple

notification, this event carries no payload, but does use an open content definition.

5.11.3 wsrp:newMode

This is a Consumer generated event which notifies the Producer/Portlet that the Consumer has changed the mode

for the Portlet. The purpose of this event is to ensure the Portlet has an opportunity to make state changes prior to

receiving a getMarkup request for the new mode. As such, the Consumer only distributes this event to the Portlet

whose mode was changed and who also indicated an interest in receiving this event. As a result of this restriction on

distribution of the event, this event carries no payload, but does use an open content definition.

5.11.4 wsrp:newWindowState

This is a Consumer generated event which notifies the Producer/Portlet that the Consumer has changed the

windowState for the Portlet. The purpose of this event is to ensure the Portlet has an opportunity to make state

changes prior to receiving a getMarkup request for the new windowState. As such, the Consumer only distributes

this event to the Portlet whose windowState was changed and who also indicated an interest in receiving this event.

As a result of this restriction on distribution of the event, the event carries no payload, but does use an open content

definition.

5.12 User Categories

A Producer's ServiceDescription MAY declare support for user categories. A Consumer MAY map End-Users to

the user categories a Producer declares in any manner it chooses, including ignoring them. Producers that use user

categories SHOULD implement appropriate default behavior in the event a Consumer does not assert any user

category for the End-User.

A Portlet optionally declares the user categories for which it personalizes markup in the PortletDescription

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (80 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

structure described in [Section 4.1.16]. The Consumer may assert any of these categories on behalf of a user.

Since the Producer has no means of authenticating that the End-User belongs to one of these categories, this

assertion should not be used for any security related purposes. If such an authentication is desired, standard

security protocols should be employed to provide the authentication.

5.12.1 User Category Assertions

Since user categories are an optional means for the Producer and Consumer to cooperatively apply personalization

that are relevant to the user, the following examines the various combinations of Producer and Consumer choices:

● Neither Producer nor Consumer support user categories. In this case the PortletDescription structures

from the Producer will not declare any user categories and the Consumer will never assert any user

categories in the UserContext structure.

● Both the Producer and Consumer support user categories. In this case the PortletDescription structures

from the Producer will declare user categories. The Consumer will need to map its information about the user

to this set from the Producer when asserting user categories in the UserContext structure in order to satisfy

the requirement that the asserted user categories come only from the Producer published user categories

[R417]. The Consumer controls the mechanism by which this mapping occurs.

● Producer supports user categories, but the Consumer does not. In this case the PortletDescription

structures from the Producer declare user categories, but the Consumer will never assert any user categories

in the UserContext structure. The Producer will need to default the user category it uses to process

invocations.

● The Producer does not support user categories, but the Consumer does. In this case the

PortletDescription structures from the Producer will not declare any user categories.

6 Registration Interface

A Producer that supports in-band registration of Consumers exposes the optional registration interface. Regardless

of whether or not the registration portType is exposed, Producers can offer out-of-band processes to register a

Consumer [R354]. All Producer registration processes MUST result in a unique, opaque token that may be used to

refer to the registration. This specification calls this token a registrationHandle (defined in [Section 4.1.25]).

6.1 Data Structures

The following additional data structures are needed by this interface:

6.1.1 RegistrationData Type

The RegistrationData structure provides the means for the Consumer to supply the data required for registration

with a Producer as well as protocol extensions that it supports [R355] [R356].

RegistrationData

 [R] string consumerName

 [R] string consumerAgent

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (81 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

 [R] boolean methodGetSupported

 [O] string consumerModes[]

 [O] string consumerWindowStates[]

 [O] string consumerUserScopes[]

 [O] ExtensionDescription extensionDescriptions[]

 [O] Property registrationProperties[]

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● consumerName: A name (preferably unique) that identifies the Consumer [R355] An example of such a name

would be the Consumer's URL.

● consumerAgent: Name and version of the Consumer's vendor [R356]. The consumerAgent value MUST

start with "productName.majorVersion.minorVersion" where "productName" identifies the product the

Consumer installed for its deployment, and majorVersion and minorVersion are vendor-defined indications of

the version of its product. This string can then contain any additional characters/words the product or

Consumer wish to supply.

● methodGetSupported: A flag that tells the Producer whether the Consumer has implemented portlet URLs

(regardless of whether they are written through Consumer URL rewriting or Producer URL writing, see

[Section 9.2]) in a manner that supports HTML markup containing forms with method="get".

● consumerModes: An array of modes, beyond the required wsrp:view mode, the Consumer is willing to

manage. This specification defines a set of constants for a base set of modes (see [Section 12]). This array

may reference both those constants and additional custom modes of the Consumer.

● consumerWindowStates: An array of window states, beyond the required wsrp:normal window state, the

Consumer is willing to manage. This specification defines a set of constants for a base set of window states

(see [Section 12]). This array may reference both those constants and additional custom window states of

the Consumer.

● consumerUserScopes: This field specifies the all the values for UserScope the Consumer is willing to

process, including those defined by this specification. If the Consumer fails to supplies any values for this

field, the Producer is free to specify any of the values defined by this specification.

● extensionDescriptions: An array of ExtensionDescription structures defining extensions the Consumer

supports. This includes both incoming and outgoing extensions [R304] [R357] [R360].

● registrationProperties: List of registration properties. The names of these properties SHOULD be from

the set declared in the registrationPropertyDescription from the Producer's ServiceDescription and

are not part of this specification.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

6.2 register Operation

Registration describes how a Consumer establishes a relationship with a Producer that will be referenced via an

opaque handle in subsequent invocations the Consumer makes of the Producer [R350] [R352]. Both the Consumer

and the Producer are free to end this relationship at any time [R500]. When the Consumer chooses to end the

relationship, it MUST attempt an invocation of the deregister operation [R400], unless the registration is using a

scheduled destruction, so that the Producer may release related items. When the Producer chooses to invalidate the

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (82 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

registration identifier, it MUST inform the Consumer of this through a fault message on the next invocation specifying

this registrationHandle so that the Consumer may release related items.

RegistrationContext = register (registrationData, lifetime,

userContext);

Faults: MissingParameters, OperationFailed,

If a Lifetime parameter is supplied, the Consumer is requesting the registration to be "leased" (i.e. use scheduled

destruction) with the supplied value providing what the Consumer would otherwise provide on a subsequent

setRegistrationLifetime invocation. If a Lifetime parameter is not supplied, the Consumer is indicating to not use

scheduled destruction. The returned RegistrationContext is used in all subsequent invocations to reference this

registration [R362]. If the Producer's metadata declares registration is not supported (i.e. requiresRegistration

flag was set to "false"), then it MUST be valid to not supply a RegistrationContext to operations with this

parameter. Whenever the registration attempt fails a fault message MUST be thrown indicating this to the Consumer

[R363].

A Producer supporting registration MUST allow a Consumer to register itself multiple times with potentially different

settings (e.g. billing settings) resulting in multiple registrationHandles [R351].

The primary purpose the nillable userContext is provided to this operation is Producer logging.

6.3 modifyRegistration Operation

This operation provides means for the Consumer to modify a relationship with a Producer [R353].

RegistrationState = modifyRegistration (registrationContext, registrationData, userContext);

Faults:
InvalidRegistration, MissingParameters, OperationFailed, OperationNotSupported,

ResourceSuspended

The supplied parameters reference a pre-existing registration and the modifications desired. If the Producer chooses

to have the Consumer provide enduring storage, the entire resulting registration state is carried in the

registrationState field of the returned RegistrationState structure.

The primary purpose the nillable userContext is provided to this operation is Producer logging.

6.4 deregister Operation

The Consumer MUST NOT consider a relationship with a Producer ended until either a successful invocation of

deregister , elapsing of the scheduled destruction time or receipt of an InvalidRegistration fault message from

the Producer on an invocation supplying the registrationHandle.

ReturnAny = deregister (registrationContext, userContext);

Faults:
InvalidRegistration, OperationFailed,

OperationNotSupported

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (83 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

After this operation is invoked, all handles created within the context of the RegistrationContext become invalid

[R500] [R501] [R503]. It is a Producer implementation choice whether this immediately aborts in-progress operations

or waits until all transient items time out. The Consumer MUST NOT use an invalidated registrationHandle,

where the invalidation occurs either by passing the handle to deregister or by receiving a InvalidRegistration

fault message from the Producer on an invocation supplying the handle. The Producer MUST return a

InvalidRegistration fault message whenever a Consumer supplies an invalid registrationHandle. If the

deregister operation fails, the Producer MUST return a fault message specifying the reason for the failure.

The primary purpose the nillable userContext is provided to this operation is Producer logging.

6.5 getRegistrationLifetime Operation

This operation allows a Consumer to refresh its understanding of the scheduled destruction for a registration.

Lifetime = getRegistrationLifetime (registrationContext, userContext);

Faults:
AccessDenied, InvalidHandle, InvalidRegistration, ModifyRegistrationRequired,

OperationFailed, OperationNotSupported, ResourceSuspended,

If the nillable response from getRegistrationLifetime is nil, then scheduled destruction is not in use for this

registration and the Consumer MUST use the deregister operation to destroy the registration.

The primary purpose the nillable userContext is provided to this operation is Producer logging.

6.6 setRegistrationLifetime Operation

This operation allows a Consumer to request a change to the scheduled destruction of a registration. The Producer

returns the actual change that was made.

Lifetime = setRegistrationLifetime (registrationContext, userContext, lifetime);

Faults:
AccessDenied, InvalidHandle, InvalidRegistration, ModifyRegistrationRequired,

OperationFailed, OperationNotSupported, ResourceSuspended,

If the nillable Lifetime parameter is nil, then this is a request to not use scheduled destruction as Consumer will

use the deregister operation to destroy the registration. A nil response indicates that the Producer is not using

scheduled destruction for this registration.

7 Portlet Management Interface

Producers MUST expose one or more logically distinct ways of generating markup and handling interactions with

that markup [A205], which this specification refers to as Portlets. The Producer declares the Portlets it exposes

through its description [A104]. This declaration contains a number of descriptive parameters; in particular it includes

a portletHandle that Consumers use to refer to the so-called "Producer Offered Portlet". These Portlets are pre-

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (84 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

configured and non-modifiable by Consumers.

In addition to the Producer Offered Portlets, a Producer can expose the PortletManagement portType and thereby

allow Consumers to clone and customize the Portlets the Producer offers. A Consumer MAY request a unique

configuration of one of these Portlets, either in an opaque manner (e.g. the "edit" button common on aggregated

pages which invokes a Portlet-generated page for setting the configuration) or by using the property definitions

found in the Portlet's metadata to configure it in an explicit manner [R600]. Such a configured Portlet is called a

"Consumer Configured Portlet".

Any Producer that supports cloning Portlets on performBlockingInteraction or handleEvents invocations MUST

support the destroyPortlets operation.

7.1 Data Structures

The following additional data structures are needed by this interface:

7.1.1 FailedPortlets Type

The FailedPortlets structure contains a set of portletHandles which failed to be processed for the same reason

and the reason for the failure.

FailedPortlets

 [R] Handle portletHandles[]

 [R] ErrorCodes errorCode

 [O] LocalizedString reason

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● portletHandles: An array of portletHandle which all failed to be processed for the supplied reason.

● errorCode: One of the enumerated ErrorCodes, describing why processing failed.

● reason: An explanation of the failure encountered, which is intended for display to an End-User.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.2 DestroyPortletsResponse Type

The DestroyPortletsResponse structure carries an array of failed destroys.

DestroyPortletsResponse

 [O] FailedPortlets failedPortlets[]

 [O] Extension extensions[]

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (85 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Members:

● failedPortlets: An array of failures returned by destroyPortlets. This is carried as a return message

since not all web stacks properly handle typed information in fault messages.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.3 PortletDescriptionResponse Type

The PortletDescriptionResponse structure contains the fields that getPortletDescription can return.

PortletDescriptionResponse

 [R] PortletDescription portletDescription

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● portletDescription: The metadata for the Portlet.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.4 PortletPropertyDescriptionResponse Type

The PortletPropertyDescriptionResponse structure contains the fields that getPortletPropertyDescription can

return.

PortletPropertyDescriptionResponse

 [O] ModelDescription modelDescription

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● modelDescription: The description of the Portlet's properties [R602].

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.5 CopiedPortlet Type

The CopiedPortlet structure provides the Consumer with the details for a Portlet the copyPortlets operation has

generated.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (86 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

CopiedPortlet

 [R] Handle fromPortletHandle

 [R] PortletContext newPortletContext

 [O] Extension extensions[]

Members:

● fromPortletHandle: The portletHandle used as the source for the copy operation.

● newPortletContext: The newly generated PortletContext.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.6 CopyPortletsResponse Type

The CopyPortletsResponse structure contains the fields that copyPortlets can return.

CopyPortletsResponse

 [O] CopiedPortlet copiedPortlets[]

 [O] FailedPortlets failedPortlets[]

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● copiedPortlets: An array returning information for the successfully copied Portlets.

● failedPortlets: An array returning information about the Portlets where the copy failed.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.7 ExportedPortlet Type

The ExportedPortlet structure represents a single exported Portlet.

ExportedPortlet

 [R] Handle portletHandle

 [R] base64Binary exportData

 [O] Extension extensions[]

Members:

● portletHandle: The portletHandle of the Portlet whose exported data is represented by this structure.

● exportData: The portlet-specific data which will be supplied to the importPortlets operation. As such, it

needs to contain all data and references needed for the importPortlets operation to reconstitute the Portlet.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (87 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

from namespaces other than WSRP.

7.1.8 ExportPortletsResponse Type

The ExportPortletsResponse structure contains the fields that exportPortlets can return. The exportPortlets

operation can export many Portlets in a single invocation and this structure represents the bulk response.

ExportPortletsResponse

 [O] base64Binary exportContext

 [O] ExportedPortlet exportedPortlets[]

 [O] FailedPortlets failedPortlets[]

 [O] Lifetime lifetime

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● exportContext: An opaque data structure containing common data that will be needed to import any of the

successfully exported Portlets. This field is only returned if there is such common data and at least one

Portlet was successfully exported.

● exportedPortlets: An array of ExportedPortlet structures where each exported Portlet MUST be

represented by a single entry in the array.

● failedPortlets: An array returning information about the Portlets where the export failed.

● lifetime: This field indicates that the exported data references data stored at the Producer and states how

long the Producer intends to make this data available. If this field is not supplied, the export data contains all

the information needed to import the Portlets and the Consumer is solely responsible for managing its

lifetime.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.9 ImportPortlet Type

The ImportPortlet structure represents a single exported Portlet representation which the Consumer wishes to

import.

ImportPortlet

 [R] ID importID

 [R] base64Binary exportData

 [O] Extension extensions[]

Members:

● importID: A Consumer defined identifier for the Portlet being imported. Unlike export, where the

portletHandle can be used to identify both the Portlet to export and the resulting exported data, the import

process will generate a new portletHandle. As Consumers still need to match requested imports with their

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (88 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

respective reconstituted Portlets, a different mechanism is needed. In this case, a Consumer defined

identifier is used. Consumers supply a importID with each import record. The Producer returns this

importID with the resultant reconstituted PortletContext in the result. By matching these IDs, the

Consumer can properly match each returned PortletContext with the Consumer's intended usage.

● exportData: The exported representation of the Portlet to be imported.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.10 ImportedPortlet Type

The ImportedPortlet structure represents a single response for the import of a Portlet representation.

ImportedPortlet

 [R] ID importID

 [R] PortletContext newPortletContext

 [O] Extension extensions[]

Members:

● importID: The ID which the Consumer supplied for identifying a particular Portlet representation.

● newPortletContext: The newly generated PortletContext representing the reconstituted Portlet.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.11 ImportPortletsFailed Type

The ImportPortletsFailed structure provides the Consumer with the details for a set of Portlets the

importPortlets operation failed to process into reconstituted Portlets.

ImportPortletsFailed

 [R] ID importIDs[]

 [R] ErrorCodes errorCode

 [O] LocalizedString reason

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● importIDs: An array of Consumer supplied IDs which all failed to be imported for the supplied reason.

● errorCode: One of the enumerated ErrorCodes, describing why the processing of the referenced Portlets

failed.

● reason: An explanation of the failure encountered which is intended for display to an End-User. Note that

while it is recommended Portlets with common failures be grouped into a single ImportPortletsFailed, it is

not required. In other words, it is permissible to have duplicate errorCode and reason values in the failed

array of the ImportPortletsResponse.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (89 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.12 ImportPortletsResponse Type

The ImportPortletsResponse structure contains the fields that importPortlets can return. The importPortlets

operation can import many Portlets in a single invocation and this structure represents the bulk response.

ImportPortletsResponse

 [O] ImportedPortlet importedPortlets[]

 [O] ImportPortletsFailed importFailed[]

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● importedPortlets: An array of ImportedPortlet structures where each member in the array represents a

single imported Portlet.

● importFailed: An array returning information about the Portlets where the import failed.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.13 PortletLifetime Type

The PortletLifetime structure represents the lifetime for a single Portlet.

PortletLifetime

 [R] PortletContext portletContext

 [R] Lifetime scheduledDestruction

 [O] Extension extensions[]

Members:

● portletContext: The PortletContext to which the Lifetime pertains.

● scheduledDestruction: This field informs the Consumer of the scheduled destruction of the Portlet.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.14 GetPortletsLifetimeResponse Type

The GetPortletsLifetimeResponse structure contains the fields that getPortletsLifetime can return. The

getPortletsLifetime operation can update many Portlets in a single invocation and this structure represents the bulk

response.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (90 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

GetPortletsLifetimeResponse

 [O] PortletLifetime portletLifetimes[]

 [O] FailedPortlets failedPortlets[]

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● portletLifetimes: An array of PortletLifetime structures where each member in the array represents a

single Portlet.

● failedPortlets: An array returning information about the Portlets where the operation failed.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.1.15 SetPortletsLifetimeResponse Type

The SetPortletsLifetimeResponse structure contains the fields that setPortletsLifetime can return. The

setPortletsLifetime operation can update many Portlets in a single invocation and this structure represents the bulk

response.

SetPortletsLifetimeResponse

 [O] PortletLifetime updatedPortlets[]

 [O] FailedPortlets failedPortlets[]

 [O] ResourceList resourceList

 [O] Extension extensions[]

Members:

● updatedPortlets: An array of SetPortletsLifetime structures where each member in the array

represents a single updated Portlet.

● failedPortlets: An array returning information about the Portlets where the update failed.

● resourceList: This is an array of Resource structures, each of which carries the values for a localized

resource in various locales.

● extensions: The extensions field MAY be used to extend this structure. Extension elements MUST be

from namespaces other than WSRP.

7.2 getPortletDescription Operation

This operation allows a Producer to provide information about the Portlets it offers in a context-sensitive manner.

PortletDescriptionResponse = getPortletDescription (registrationContext, portletContext,

userContext, desiredLocales);

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (91 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Faults:

AccessDenied, InconsistentParameters, InvalidHandle, InvalidRegistration,

InvalidUserCategory, MissingParameters, ModifyRegistrationRequired, OperationFailed,

OperationNotSupported, ResourceSuspended

Producers may choose to restrict access to the information returned in PortletDescriptionResponse based on the

supplied registration and user contexts. Consumers may choose to alter how they interact with a Portlet based on

the metadata contained in the returned PortletDescriptionResponse. For security reasons related to exposing the

existence of something the caller is not allowed to access, it is RECOMMENDED that a AccessDenied fault be

generated both for the case of the supplied portletHandle not being a valid reference in the scope of the supplied

registrationHandle and for the case of the user not having access to a valid reference (i.e. by definition access is

denied when the Portlet reference is invalid).

When generating the PortletDescriptionResponse the Producer SHOULD use the desiredLocales to control

what locales are supplied for localized strings.

7.3 clonePortlet Operation

This operation allows the Consumer to request the creation of a new Portlet from an existing Portlet.

PortletContext = clonePortlet (registrationContext, portletContext, userContext, lifetime);

Faults:

AccessDenied, InconsistentParameters, InvalidHandle, InvalidRegistration,

InvalidUserCategory, MissingParameters, ModifyRegistrationRequired, OperationFailed,

OperationNotSupported, ResourceSuspended

The supplied PortletContext MUST refer to either a Producer Offered Portlet or a previously cloned Consumer

Configured Portlet. The initial state of the new Portlet MUST be equivalent to the state of the Portlet referenced by

the supplied handle. The PortletDescription for the supplied portletHandle will apply to the newly cloned

Portlet as well. In the case of a Consumer Configured Portlet that returns the Portlet's enduring state to the

Consumer, the portletState field of the returned PortletContext structure will supply that state. The new

portletHandle MUST be scoped by the registrationHandle in the supplied RegistrationContext and be

unique within this registration.

If a Lifetime parameter is supplied, the Consumer is indicating a preference for the Portlet to be "leased" with the

supplied value providing what the Consumer would otherwise provide on a subsequent setPortletsLifetime

invocation. If a Lifetime parameter is not supplied, the Consumer is indicating a preference for the Portlet to not use

scheduled destruction.

If a Producer chooses to return the enduring state of its Portlets to the Consumer, it is RECOMMENDED that the

portletHandle encode the supplied registrationHandle. In this case, it is also RECOMMENDED that the

portletState encode the portletHandle so that the Producer can do reasonable cross checks that it is receiving

a consistent set of handles and state.

The returned PortletContext contains both the portletHandle and portletState fields for use in subsequent

invocations on the configured Portlet. No relationship between the supplied Portlet and the new Portlet is defined by

this specification. The Consumer attempts to release the new portletHandle by invoking destroyPortlets when it

is no longer needed.

If the Consumer has not registered, then the Consumer MUST invoke destroyPortlets when it would have

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (92 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

deregistered, passing each portletHandle that would have been scoped by a registration and were not using

scheduled destruction.

7.4 destroyPortlets Operation

The Consumer MUST inform the Producer that a Consumer Configured Portlet which does not use leasing will no

longer be used by invoking either the destroyPortlets or the deregister operation and MUST NOT consider such a

Portlet to have been destroyed until one of these operations has been successfully invoked for that Portlet.

DestroyPortletsResponse = destroyPortlets (registrationContext, portletHandles[],

userContext);

Faults:
InconsistentParameters, InvalidRegistration, MissingParameters,

ModifyRegistrationRequired, OperationFailed, OperationNotSupported, ResourceSuspended

The supplied portletHandles is an array of type portletHandle, each of which the Consumer is informing the

Producer it will no longer use. The Producer returns failures to destroy supplied portletHandles in the

DestroyPortletsResponse structure. It is a choice of the Producer's implementation whether the items related to

the portletHandles are immediately reclaimed or whether transient items are allowed to timeout first. A Consumer

MUST NOT reference any of the supplied portletHandles after successfully invoking destroyPortlets and MAY

reclaim items related to the supplied portletHandles (e.g. portletState).

The primary purpose the nillable userContext is provided to this operation is Producer logging.

7.5 getPortletsLifetime Operation

This operation allows a Consumer to refresh its understanding of the scheduled destruction for a set of Portlet.

GetPortletsLifetimeResponse = getPortletsLifetime (registrationContext, portletContexts[],

userContext);

Faults:
AccessDenied, InconsistentParameters, InvalidHandle, InvalidRegistration,

ModifyRegistrationRequired, OperationFailed, OperationNotSupported, ResourceSuspended

If the optional Lifetime field from getPortletsLifetime is not returned for a particular Portlet, then scheduled

destruction is not in use for this Portlet and the Consumer MUST use the destroyPortlets operation to destroy the

Portlet.

7.6 setPortletsLifetime Operation

This operation allows a Consumer to request a change to the scheduled destruction of a set of Portlets. The

Producer returns the actual changes that were made.

SetPortletsLifetimeResponse = setPortletsLifetime (registrationContext, portletContext[],

userContext, lifetime);

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (93 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Faults:
AccessDenied, InconsistentParameters, InvalidHandle, InvalidRegistration,

ModifyRegistrationRequired, OperationFailed, OperationNotSupported, ResourceSuspended

If the nillable Lifetime parameter is nil, then this is a request to not use scheduled destruction as Consumer will

use the destroyPortlets operation to destroy the Portlets. A nil response indicates that the Producer is not using

scheduled destruction for this Portlet.

7.7 copyPortlets Operation

This operation provides the means for the Consumer to make new copies of a set of Portlets, potentially specifying a

different registration scope for the new Portlets.

Since Consumers will commonly invoke this operation as part of a migration effort, this operation is a bulk operation.

The Consumer supplies a list of Portlets it wants to copy. The Producer's response contains exactly one element for

each entry in the supplied list.

CopyPortletsResponse = copyPortlets (toRegistrationContext, toUserContext,

fromRegistrationContext, fromUserContext, fromPortletContexts[], lifetime);

Faults:

AccessDenied, InconsistentParameters, InvalidHandle, InvalidRegistration,

InvalidUserCategory, MissingParameters, ModifyRegistrationRequired, OperationFailed,

OperationNotSupported, ResourceSuspended

The supplied toRegistrationContext parameter provides the RegistrationContext that scopes the set of new

Portlets being requested. If the toRegistrationContext parameter is not supplied, the new Portlets are to be

scoped by the same RegistrationContext as the existing Portlets (i.e. the fromRegistrationContext). The

supplied toUserContext provides information concerning the End-User requesting creation of the new Portlets in

the toRegistrationContext. A null value means the Consumer is not indicating which End-User is making the

request. The supplied fromRegistration parameter provides the RegistrationContext which scopes the set of

Portlets supplied as the source for generating the new Portlets. The supplied fromUserContext provides information

concerning the End-User requesting the new copy in the fromRegistrationContext. A null value means the

Consumer is not indicating which End-User on whose behalf the request is being made. The fromPortletContexts

parameter specifies the set of Portlets which are to serve as the basis for generating new Portlets. The returned

CopyPortletsResponse contains information on both the set of new Portlets generated and a reason for each

Portlet where the copy failed to generate a new Portlet.

If a Lifetime parameter is supplied, the Consumer is indicating a preference for the Portlets to be "leased" with the

supplied value providing what the Consumer would otherwise provide on subsequent setPortletsLifetime

invocations. If a Lifetime parameter is not supplied, the Consumer is indicating a preference for the Portlets to not

use scheduled destruction.

The returned CopyPortletsResponse contains arrays for both the set of successfully copied Portlets and reasons

for each Portlet where the attempt failed. When not returning a fault, the Producer MUST return exactly one entry in

its response for each entry in the request to copyPortlets.

Consumers should be aware that processing invocations of copyPortlets may take significant time and should

therefore break large bulk requests into chunks. However, even when the Consumer limits the request in this

manner, the Producer is free to evaluate the cost of any given request and adjust the number of Portlets it copies in

the response.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (94 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

7.8 exportPortlets Operation

This operation allows the Consumer to get an opaque representation of a Portlet which can be supplied to the

corresponding import operation to reconstitute the Portlet.

Since Consumers will commonly invoke this operation when taking a snapshot of all or a portion of itself (e.g. to

package itself for deployment or migration), this operation is a bulk operation. The Consumer passes a list of

Portlets for which it wants to obtain a representation. The Producer's response contains exactly one element for

each entry in the supplied array of Portlets.

ExportPortletsResponse = exportPortlets (registrationContext, portletContext[], userContext,

lifetime, exportByValueRequired);

Faults:

AccessDenied, ExportByValueNotSupported, InconsistentParameters, InvalidHandle,

InvalidRegistration, InvalidUserCategory, MissingParameters,

ModifyRegistrationRequired, OperationFailed, OperationNotSupported, ResourceSuspended

The supplied RegistrationContext sets the scope for the set of Portlets requested to be exported. The array of

PortletContext elements specifies the set of Portlets where exported data is being requested. The UserContext

parameter provides information about the End-User making the request. The exportByValueRequired parameter is

a boolean indicating whether or not the usage intended by the Consumer requires that the export not contain

references to data stored at the Producer. If the Consumer requires the Producer to export the Portlets by value and

the Producer does not support such exports, the ExportByValueNotSupported fault MUST be returned.

If a Lifetime parameter is supplied, the Consumer is indicating a preference for any items referenced by the export to

be "leased" with the supplied value providing what the Consumer would otherwise provide on subsequent

setExportLifetime invocations. If a Lifetime parameter is not supplied, the Consumer is indicating a preference for

any items referenced by the export to not use scheduled destruction. This parameter only applies when the

Producer's export is not by value and is otherwise ignored.

The returned ExportPortletsResponse contains arrays for both the set of successfully exported Portlets and

reasons for each Portlet where the export attempt failed. When not returning a fault, the Producer MUST return

exactly one entry in its response for each entry in the request to exportPortlets.

Consumers should be aware that processing invocations of exportPortlets may take significant time and should

therefore break large bulk requests into chunks. The Producer indicates its preferred request size in the

recommendedExportSize field of its ServiceDescription. Consumers SHOULD limit their export requests to

chunks no larger then this size. However, even when the Consumer limits the request to this size, the Producer is

free to evaluate the cost of any given request and adjust the number of Portlets it exports in the response.

Note that the Producer is responsible for identifying the correct offered Portlet to clone from during an import.

Producers should be aware that the importing Producer may be in a different place, time, and version from the

exporting Producer. The mechanism for identifying the correct offered Portlet should be sufficiently tolerant to work

in such situations. For the same reasons, the importing Producer should be capable of dealing with version

differences between the representation of the Portlet in the exported data and the imported Portlet. Both of these

imply a need to carry extra information in the exportData that allows the importing Producer to resolve such details.

7.9 importPortlets Operation

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (95 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

The importPortlets operation reconstitutes a set of previously exported Portlets.

Since Consumers will commonly invoke this operation when reconstituting a particular configuration, this operation is

a bulk operation. The Consumer passes a list of Portlets which it wants to be reconstituted. The Producer response

MUST contain exactly one element for each entry in the list supplied to importPortlets.

ImportPortletsResponse = importPortlets (registrationContext, importContext, importPortlet[],

userContext, lifetime);

Faults:

AccessDenied, ExportNoLongerValid, InconsistentParameters, InvalidRegistration,

InvalidUserCategory, MissingParameters, ModifyRegistrationRequired, OperationFailed,

OperationNotSupported, ResourceSuspended

The importContext carries the data from the exportContext field associated with the Portlet representations by a

response to a single invocation of the exportPortlets operation. The importPortlet array identifies the Portlets to

be reconstituted. The userContext parameter provides information about the End-User making the request. The

reconstituted Portlets or failure messages are returned in a corresponding array in the response. The relationship

between the Portlet requested to be imported and the resulting reconstituted Portlet passed back in the response is

maintained by a Consumer supplied identifier (importID).

If a Lifetime parameter is supplied, the Consumer is indicating a preference for the Portlets to be "leased" with the

supplied value providing what the Consumer would otherwise provide on subsequent setPortletsLifetime

invocations. If a Lifetime parameter is not supplied, the Consumer is indicating a preference for the Portlets to not

use scheduled destruction.

7.10 releaseExport Operation

The releaseExport operation provides the means for the Consumer to indicate to the Producer that it no longer

needs to maintain any stored artifacts relative to a particular export.

ReturnAny = releaseExport (exportContext,

userContext);

All that is needed to release an export is the exportContext from the original exportPortlets invocation. As

defined, the releaseExport operation returns nothing to the Consumer and throws no fault. As a result, the Producer

has full responsibility to recover from any failures associated with the attempt to release artifacts.

The primary purpose the nillable userContext is provided to this operation is Producer logging.

7.11 setExportLifetime Operation

The setExportLifetime operation provides the means for the Consumer to request that the Lifetime of a particular

export be changed.

Lifetime = setExportLifetime (registrationContext, exportContext, userContext, lifetime);

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (96 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Faults:
AccessDenied, InvalidHandle, InvalidRegistration, ModifyRegistrationRequired,

OperationFailed, OperationNotSupported, ResourceSuspended

This operation is only valid when the Producer has indicated that it has stored artifacts relative to an export by

having returned a Lifetime structure. The Consumer indicates the particular export it is requesting the lifetime

change for using the exportContext parameter and the desired new lifetime using the lifetime parameter.

7.12 setPortletProperties Operation

The Portlet state in the previous operations was opaque to the Consumer (e.g. as portletState). In addition,

means are defined by which a Producer may publish information about state in a Portlet-specific manner. This is

enabled through Properties that are declared in the metadata specific to a Portlet. This operation enables the

Consumer to interact with this published portion of a Portlet's state.

PortletContext = setPortletProperties (registrationContext, portletContext, userContext,

propertyList);

Faults:

AccessDenied, InconsistentParameters, InvalidHandle, InvalidRegistration,

InvalidUserCategory, MissingParameters, ModifyRegistrationRequired, OperationFailed,

OperationNotSupported, ResourceSuspended

Since setPortletProperties is interacting only with the published portion of the Portlet's state, it is always safe for

the Portlet to modify its state (i.e. equivalent to portletStateChange set to "readWrite" for a

performBlockingInteraction invocation). The supplied set of property changes MUST be processed together. In

particular, validation SHOULD only be done considering the entire set, as partial updates could easily create an

internally inconsistent set of properties. The storage of the update caused by applying the set of property updates

SHOULD only occur after the Producer/Portlet executes this validation. The Producer SHOULD serialize invocations

of setPortletProperties for any one portletHandle. Note that changing a property's value could impact the value

of any of the Portlet's properties.

7.13 getPortletProperties Operation

This operation provides the means for the Consumer to fetch the current values of the published Portlet's properties.

The intention is to allow a Consumer-generated user interface to display these for administrative purposes.

PropertyList = getPortletProperties (registrationContext, portletContext, userContext, names);

Faults:

AccessDenied, InconsistentParameters, InvalidHandle, InvalidRegistration,

InvalidUserCategory, MissingParameters, ModifyRegistrationRequired, OperationFailed,

OperationNotSupported, ResourceSuspended

The supplied names parameter is an array of strings each of which declares a property for which the Consumer is

requesting its value. The returned PropertyList declares the current values for these properties. If the Consumer

does not pass a names parameter, the Producer/Portlet MUST treat this as a request to enumerate the properties of

the Portlet.

7.14 getPortletPropertyDescription Operation

This operation allows the Consumer to discover the published properties of a Portlet and information (e.g. type and

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (97 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

description) that could be useful in generating a user interface for editing the Portlet's configuration.

PortletPropertiesDescriptionResponse = getPortletPropertyDescription (registrationContext,

portletContext, userContext, desiredLocales);

Faults:

AccessDenied, InconsistentParameters, InvalidHandle, InvalidRegistration,

InvalidUserCategory, MissingParameters, ModifyRegistrationRequired, OperationFailed,

OperationNotSupported, ResourceSuspended

The modelDescription returned in the PortletPropertyDescriptionResponse structure is a typed Property

view onto the portion of the Portlet's enduring state that the user (referenced through the userContext) is allowed to

modify. While it is possible the set of properties can change with time (e.g. the Portlet dynamically creates or

destroys properties), Producers and Portlets SHOULD make the returned modelDescription as complete as

possible.

When generating the PortletPropertyDescriptionResponse the Producer SHOULD use the desiredLocales to

control which locales are supplied for localized strings.

8 Security

Systems compliant with this specification will be exposed to the same security issues as other web service systems

[A613]. For a representative summary of security concerns, refer to the Security and Privacy Considerations

document produced by the XML-Based Security Services Oasis TC . One area to particularly note is that security

information, including fields within the WSRP protocol that relate to a need for secure communication, is only as

trustworthy as the means used to transmit the information.

It is a goal within this specification to leverage standards efforts that address web services security and to avoid

defining mechanisms that will be redundant with those standards efforts. In particular, the Technical Committee is

producing a [Security Tech Note] which will call out the security concerns of the WSRP use case and provide

pointers at relevant security-oriented work. The standards in the security area generally fall into two main categories:

document-level mechanisms and transport-level mechanisms.

Producers and Consumers wishing to apply document-level security techniques are encouraged to adhere to the

mechanisms defined by WS-Security, SAML, XML-Signature, XML-Encryption, and related specifications. It is

anticipated that as the web services security roadmap becomes more fully specified by standards, and support for

those standards becomes widely available from infrastructure components, that these will play an increasingly

important role in the use of this specification [R414]. At the writing of this specification, there does not exist a

standard for expressing policy issues, though several have been proposed. Consumers and Producers will need to

work out how to exchange policy information outside of this protocol.

Use of transport-level security standards (e.g. SSL/TLS) to address the security issues involved in Consumers

invoking Producers on behalf of End-Users only require that a Producer's WSDL declare ports for an HTTPS service

entry point. Consumer's can only determine that secure transport is supported by parsing the URL for the service

entry point [R413].

8.1 Authentication of Consumer

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (98 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Producer authentication of a Consumer may be achieved at the transport level through the use of client certificates

in conjunction with SSL/TLS. Certificate provisioning by a Producer to a Consumer happens outside the scope of

this protocol, typically as part of establishing a business relationship between the Producer and Consumer [R402].

The WS-Security standard also specifies the means by which tokens, including those asserting the identity of the

Consumer, may be included in a SOAP message. A number of profiles for suppling tokens that can be used for this

purpose have already been defined. Since additional profiles continue to be defined, implementors are encouraged

to consult the WS-Security TC's web site for the latest information [R402].

8.2 Confidentiality & Message Integrity

The WS-Security standard also specifies the means by which security features can be used to ensure SOAP

message confidentiality and integrity. When employing message level security, implementors are encouraged to

leverage these means in order to achieve message confidentiality or integrity, as needed [A604].

SSL/TLS may be used to ensure the contents of messages are neither tampered with nor decipherable by an

unauthorized third party [A604]. Consideration needs to be given to both the communication between Producer and

Consumer and communication between the End-User client and the Consumer.

For Producer - Consumer communication, the Producer declares the use of SSL/TLS in the service's WSDL by

declaring an HTTPS service endpoint.

For Consumer - End-User client communication, the Consumer indicates in the MarkupParams structure whether or

not communication with the End-User is happening in a secure manner. The Portlet can choose to change behavior

based on this value, for example it may generate markup that redirects the End-User to the equivalent secure page

or throw a fault indicating secure client communication are required.

8.3 Access control

A Consumer can implement access control mechanisms that restrict which End-Users may access which Portlets

and operations on those Portlets. Additionally, a Producer can implement access control programmatically through

the use of facilities such as an authenticated user identity [A605].

It should be noted that the security concept of access control is generally controlled by subsystems/protocols

operating at a lower layer than the WSRP implementation/protocol and that this should not be confused with the

application level concept of user categories, even when applications use the user categories to determine whether

or not to show particular portions of the overall user interface.

9 Markup

This section covers the issues related to Portlets generating markup that Consumers could safely aggregate into a

page and then properly process End-User interactions with the resulting aggregated page [A301].

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (99 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

9.1 Encoding

The Consumer indicates to the Portlet the preferred character encoding, using the markupCharacterSets field of

the MarkupParams structure. It is up to the Portlet to generate markup that complies with this encoding. The Portlet is

allowed to generate its markup in either the UTF-8 or UTF-16 character set encoding if it is unable to generate the

requested character set. If it is unable to generate markup in any of these character sets, the Portlet MUST return a

fault message to the Consumer. When the SOAP binding is in use, the nature of XML requires that the markup use

the same character set as the XML response message.

9.2 URL Considerations

As part of its markup, a Portlet will often need to create URLs that reference the Portlet itself. When an End-User

activates such an URL, by clicking a link or submitting a form, the result should be a new invocation targeted to the

Portlet. This section describes the different possibilities for how the Portlet can encode these "portlet URLs" in its

markup.

The portlet URLs embedded in a markup fragment often can not (or should not) be direct links to the Producer for a

number of reasons:

● URLs the Portlet writes in its markup will be invoked or accessed by the End-User operating on the client. In

the general case however it is only guaranteed that the client has direct access to the Consumer; the

Producer may be shielded from the client via a firewall. So the Consumer needs to intercept URLs and route

them to the Producer [A103].

● The Consumer may want to intercept URLs to perform additional operations, enrich the request with context

information or do some book keeping.

● The client might not be able to directly invoke the Producer, e.g. if the client is a user-agent that cannot issue

SOAP requests to the Producer but can only talk HTTP to the Consumer. In this case the Consumer must

translate the request into the correct protocol.

This implies that portlet URLs must be encoded so that the Consumer intercepts them and re-routes them to the

correct Portlet at the Producer [A305], including the proper context. Because the same Portlet can be instantiated

more than once in a single aggregated page, portlet URLs will have to allow the Consumer to track the Portlet to

which the request is targeted. The problem is that the Producer requires Consumer-dependent information to write

such a link. In principle there exist two options to make a portlet URL point back to the Consumer and consist of all

information necessary for the Consumer to properly process an activation of the URL:

1. The Consumer can pass information on its context to the Portlet. The Portlet exploits this information during

URL encoding so the resulting URL can be passed without further modification to the client. The advantages

of this technique are efficiency and exploitation of these settings, even in client-side scripting. The

disadvantages include that the Portlet will not be able to serve static content as the content depends on

Consumer runtime settings and that the resulting markup might be less cacheable by the Consumer.

2. The Portlet can use a special syntax to encode portlet URLs. It is then the task of the Consumer to detect

portlet URLs in the markup and modify them according to its requirements. The markup generated by the

Portlet is now Consumer-independent, allowing the Portlet to exploit caching mechanisms or even to serve

static content. However, the Consumer will be more complex, as it needs to parse the markup to locate and

rewrite portlet URLs, and require additional processing time. Consumers can minimize this impact on

performance by using efficient encoding and parsing mechanisms (for example, the Boyer-Moore algorithm
[17]

).

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (100 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

As there is no clear advantage to either technique, both styles of portlet URL encoding are supported (see [Section

9.2.1] and [Section 9.2.2]). This facilitates the capabilities both of the Producer and the Consumer with regards to

the ability to adapt the generated markup and requires that the following semantics be followed:

● If a Portlet's metadata declares it is willing to process URL templates, then the Consumer supplies templates

for the Portlet to use

● As the Portlet writes URLs into the markup it MUST encode them based on the mime type. For example,

XML based markup requires that all &' characters have to be encoded as "&".

● If a Portlet is unable to completely write the portlet URLs for its markup, it MUST set the requiresRewriting

flag in the returned MarkupContext structure to "true".

● If the requiresRewriting flag in the MarkupContext structure is "true", then the Consumer parses the

returned markup and rewrites URLs conforming to the definitions in [Section 9.2.1] of this specification.

Note: In principle it would not be necessary to mark portlet URLs in a special way. The Consumer could always

analyze the markup semantically and syntactically, detect portlet URLs and rewrite them. This approach however

would be very difficult and time consuming to implement for the Consumer, for reasons including that such a

rewriting algorithm would be dependent on the markup type and version. Therefore both the Consumer and the

Producer URL writing scenarios are introduced for convenience.

Portlets MUST adopt the following convention for including non-ASCII characters within portlet URLs in order to

comply with W3C recommendations.

● Represent each character in UTF-8 (see [RFC2279]) as one or more bytes.

● Escape these characters with the URI escaping mechanism (i.e., by converting each byte to %HH, where HH

is the hexadecimal notation of the character value).

This procedure results in a syntactically legal URI (as defined in RFC1738, section 2.2 or RFC2141, section 2) that

is independent of the character encoding
[18]

 to which the document carrying the URI may have been transcoded.

Since the values a Portlet provides will appear as either an URL parameter value or as part of the path of an URL,

these values it MUST be strictly encoded (i.e. "&", "=", "/", and "?" need to be url-escaped) so that special URL

characters do not invalidate the processing of the enclosing URL.

When URL activation occurs, the Consumer MUST process all mode and window state change requests and either

honor and reject them prior to invoking the operation indicated by the URL. If the requested mode or window state is

for a value that is either invalid or unavailable, the Consumer SHOULD leave the current value unchanged.

9.2.1 Consumer URL Rewriting

All portlet URLs (i.e. those the Consumer needs to rewrite) are demarcated in the markup by a token (wsrp_rewrite)

both at the start (with a "?" appended to clearly delimit the start of the name/value pairs) and end (proceeded by a "/"

to form the end token) of the URL declaration. The Consumer will have to locate the start and end token in the

markup stream and use the information between the tokens to rewrite the portlet URL correctly. Details on this URL

writing process are Consumer-specific and out of scope for this specification. The content between this pair of

tokens follows the pattern of a query string (name/value pairs separated by "&" characters) with several well-known

"portlet URL parameter" names specifying the information the Consumer needs in order to both correctly rewrite the

URL and then process it when an End-User activates it. This results in an portlet URL declaration of the form:

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (101 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

wsrp_rewrite?wsrp-urlType=value&name1=value1&name2=value2 ... /

wsrp_rewrite

Consumers MUST accept both the "&" character and the corresponding entity reference (i.e. "&") as separators

between the name/value pairs as this allows Portlets to produce markup fragments valid for a larger range of mime

types. We encourage Portlets to use the entity reference form ("&") in static markup as this is likely to result in

the ability to include that markup in a larger set of enclosing mime types. The Consumer is NOT REQUIRED to

process URLs not conforming to this format and MAY choose to pass them unchanged, replace them with error text,

do a best effort processing or invalidate the entire markup fragment. The Consumer is NOT REQUIRED to process

escaped characters in parameter names or values, but rather MAY pass them unchanged to either the user-agent

(during URL rewriting) or the Producer (during processing of an activated URL).

The following well-known portlet URL parameter names (e.g. replacing "wsrp-urlType=value", "name1" and "name2"

above) are defined:

9.2.1.1 wsrp-urlType

This parameter MUST be specified first when using the Consumer URL rewriting template and the value selected

from the following definitions. Well-known portlet URL parameter names that are valid for only one wsrp-urlType

are described relative to that wsrp-urlType while the remainder are described later. The following values are

defined for wsrp-urlType:

9.2.1.1.1 wsrp-urlType = blockingAction

Activation of the URL will result in an invocation of performBlockingInteraction on the Portlet that generated the

markup. All form parameters, submitted as query string parameters using the HTTP GET method, that are not used

to encode parameters defined by this specification MUST be passed to performBlockingInteraction as

formParameters.

9.2.1.1.2 wsrp-urlType = render

Activation of the URL will result in an invocation of getMarkup. This mechanism permits a Portlet's markup to

contain URLs, which do not involve changes to local state, to avoid the overhead of two-step processing by directly

invoking getMarkup. The URL MAY specify the wsrp-navigationalState and/or wsrp-navigationalValues

portlet URL parameters, whose values the Consumer MUST supply in the opaqueValue and publicValues fields of

the NavigationalContext structure, respectively.

9.2.1.1.3 wsrp-urlType = resource

Activation of the URL will result in the Consumer acting as a gateway to the underlying resource, possibly in a

cached manner, and returning it to the user-agent. The URL for the resource (including any query string parameters)

is encoded as the value of the wsrp-url parameter. When a portlet URL specifies "resource" for the wsrp-urlType

portlet URL parameter, either the wsrp-resourceID portlet URL parameter or a combination of the wsrp-

requiresRewrite and the wsrp-url portlet URL parameters MUST also be specified. Since the Portlet is allowed to

specify either both or just one of the means of getting a resource, Consumers will need to support both the transport

proxy and SOAP operation mechanisms in a manner which applies the same policy regarding the proxying of

information between the client communications and Producer communications. This flexibility allows the Portlet's

markup to control which resource serving mechanism is in use whenever it needs to and allows for the Portlet to

provide additional guidance when both mechanisms are supported, since the fidelity of what is presented to the End-

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (102 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

User might depend on which mechanism is selected by the Consumer.

9.2.1.1.3.1 wsrp-url

This parameter provides the actual URL to the resource. Note that this needs to be an absolute URL as the resource

fetch will have no base for use in fetching a relative URL. Also note that since this resource URL will appear as a

parameter value, it has to be strictly encoded (i.e. "&", "=", "/", and "?" need to be url-escaped) so that special URL

characters do not invalidate the processing of the enclosing URL. Consumers are strongly encouraged to use the

same communication style (e.g. HTTP Get or Post) for retrieving the resource as was used in requesting the

resource by the user-agent. Producers can set cookies with any needed data which the Consumer will then process,

using the cookie rules established by RFC2109
[19]

 , relative to forwarding these when retrieving the resource using

HTTP transport.

9.2.1.1.3.2 wsrp-resourceID

This parameter provides the resourceID parameter which the Consumer MUST supply when invoking the

getResource operation. The presence of this parameter informs the Consumer that the getResource operation is a

viable means of fetching the resource requested by the Portlet's markup.

9.2.1.1.3.3 wsrp-preferOperation

When this optional parameter (default value is "false") has a value of "true", the Portlet is indicating a preference

for the Consumer to use the getResource operation to fetch the resource. If the resource URL specifies both the

wsrp-url and the wsrp-resourceID parameters, the Consumer can use either the http proxy technique introduced

in WSRP v1.0 or the getResource operation, but is encouraged to follow the guidance provided by this url

parameter.

9.2.1.1.3.4 wsrp-resourceState

The value of this portlet URL parameter defines the state which the Consumer MUST send in the resourceState

field of the ResourceParams structure when the URL is activated. If this parameter is missing, the Consumer MUST

NOT supply a value in the resourceState field of the ResourceParams structure.

9.2.1.1.3.5 wsrp-requiresRewrite

This boolean informs the Consumer that the resource needs to be parsed for URL rewriting. Normally this means

that there are names that will be cross-referenced between the markup and this resource (e.g. JavaScript

references). Note that this means the Consumer needs to deal with rewriting unique "namespaced" names in a set

of documents, rather than treating each document individually. Processing such resources in a manner that allows

caching of the resulting resource by the End-User's user-agent can improve the performance of the aggregated

page for the End-User. In particular, Consumers can process namespace rewriting by using a prefix that is unique to

the user/Portlet pair provided any such prefix is held constant for the duration of use within the user's session with

the Consumer of any one Portlet.

9.2.1.1.3.6 wsrp-resourceCacheability

Since resources can contain URIs which the Consumer is required to rewrite, including those with a wsrp-urlType

of render or blockingAction, the Consumer will typically place the state information needed to do such rewriting

on the resource URI. This decreases the likelihood of the resulting URI being fetched from a browser or web cache

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (103 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

simply due to a small change in some portion of this state. This portlet url parameter provides an indication to the

Consumer that it can limit the amount of state it places on the URI for the resource such that the likelihood of a

subsequent browser access being served from a browser/web cache is increased. This parameter has three defined

values:

1. full: Resource URIs specifying a value of "full" are telling the Consumer that it does not need to place any

portlet state on the URI. As a result, the resource generation SHOULD NOT depend on the

NavigationalContext, mode or windowState and the generated resource MUST NOT include URIs with a

wsrp-urlType of render or blockingAction. While the Consumer is required by the protocol to supply

values relative to mode and windowState, those supplied values are not required to be the respective current

values for the Portlet. However, if the Consumer's implementation style permits it to supply the current value

for any of the excluded items, it is encouraged to supply those current values. The resource can still require

Consumer rewriting, but the Consumer will only be able to do namespace rewriting and resource URI

rewriting. These restrictions apply not only to the resource directly referenced, but also to any secondary

resources the resource references, either directly or indirectly.

2. portlet: Resource URIs specifying a value of "portlet" are telling the Consumer that the resource needs

access to the portlet state (e.g. NavigationalContext), but will not require Consumer processing which

needs the state of any other portlet. This restriction increases the cacheability of the resource over specifying

a value of "page" (e.g. for the duration of a user interacting with some other portlet), but the generated

resource MUST NOT include URIs with a wsrp-urlType of render or blockingAction. The resource can

still require Consumer rewriting, but the Consumer will only be able to do namespace rewriting and resource

URI rewriting. These restrictions apply not only to the resource directly referenced, but also to any secondary

resources the resource references, either directly or indirectly, unless such a secondary resource sets a

value of "full" for the wsrp-resourceCacheability portlet url parameter, at which point the tighter

restrictions associated with "full" will apply to that resource and any others it references.

3. page: Resource URIs specifying a value of "page" are telling the Consumer that this resource is no more

cacheable than the Consumer's page. Normally this occurs if either the referenced resource or a secondary

resource which this resource MAY contain URIs with a wsrp-urlType of render or blockingAction. This

value for the wsrp-resourceCacheability portlet url parameter informs the Consumer that it will need the

state required to provide proper rewriting of such URIs when the user agent requests the resource which the

URI references. This is the default value for all resource URIs which do not specify this portlet url parameter.

Note that this portlet url parameter only impacts Consumer URL rewriting as the templates related to resource URIs

provide other means to achieve the equivalent functionality (see [Section 5.1.3] and [Section 9.2.2.9]).

9.2.1.1.4 Other wsrp-urlType values

WSRP extensions can define additional values for the wsrp-urlType portlet URL parameter. Extensions doing so

are encouraged to define extensions to the Templates structure to add templates for both normal and secure URI

access using the semantics defined by the extension. Consumers supporting an extension MUST supply defined

extensions to the Templates structure to those Producers indicating support for the same extension in their

ServiceDescription.

9.2.1.2 wsrp-navigationalState

The value of this portlet URL parameter defines the opaqueValue portion of the Portlet's navigational state the

Consumer MUST send to the Producer when the URL is activated. If this parameter is missing, the Consumer

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (104 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

MUST NOT supply the opaqueValue portion of the Portlet's navigational state.

9.2.1.3 wsrp-navigationalValues

The value of this portlet URL parameter defines updates to the publicValues portion of the Portlet's navigational

state which the Portlet defined in its PortletDescription. As updates, a Portlet-defined navigationalParameter

which does not appear on a particular URL maintains the current value the Consumer has for it while a

navigationalParameter which appears on a particular URL without a value defines the clearing of that parameter.

Since multiple updates can be specified on a single URL, the following sequence of steps MUST be used when

encoding the value for the wsrp-navigationalValues portlet url parameter:

1. A querystring-like
[20]

 value is built from the parameter identifiers and values to be set. Parameters that are

an array of strings can be specified by repeating the parameter. For example, if a Portlet has defined three

parameters and is setting two of these parameters, one an array of strings (parameter name is "{http://www.

example.com}param1" with an identifier of "p1"), and clearing another (parameter name is "{http://www.

example.com}param2" with an identifier of "p2") while leaving the third parameter (parameter name is "{http://

www.example.com}param3" with an identifier of "p3") unchanged, results in;

p1=value1&p1=value2&p2

2. The string built in step #2 is url-encoded so that it can appear as the value of the portlet url parameter. The

example becomes;

p1%3Dvalue1%26p1%3Dvalue2%26p2

3. The url-encoded string is then used as the value of the wsrp-navigationalValues portlet url parameter.

If values are supplied for the wsrp-navigationalValues portlet URL parameter, the Consumer MUST supply those

values in the publicValues field along with the values the Consumer has for the Portlet's

navigationalParameters which were not referenced by the wsrp-navigationalValues portlet URL parameter.

9.2.1.4 wsrp-interactionState

The value of this portlet URL parameter defines the interaction state the Consumer MUST send to the Producer

when the URL is activated. If this parameter is missing, the Consumer MUST NOT supply the interactionState

field of the InteractionParams structure.

9.2.1.5 wsrp-mode

Activating this URL includes a request to change the mode parameter in MarkupParams into the mode specified as

the value for this portlet URL parameter. The value for wsrp-mode MUST be one of the modes detailed in [Section

5.9] or a custom mode the Consumer specified as supported during registration. The wsrp-mode portlet URL

parameter MAY be used whenever the wsrp-urlType portlet URL parameter has a value of "blockingAction" or

"render".

9.2.1.6 wsrp-windowState

Activating this URL includes a request to change the windowState parameter in MarkupParams into the window

state specified as the value for this portlet URL parameter. The value for wsrp-windowState MUST be one of the

values detailed in [Section 5.10] or a custom window state the Consumer specified as supported during registration.

The wsrp-windowState portlet URL parameter MAY be used whenever the wsrp-urlType portlet URL parameter

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (105 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

has a value of "blockingAction" or "render".

9.2.1.7 wsrp-fragmentID

This portlet URL parameter specifies the portion of an URL that navigates to a place within a document.

9.2.1.8 wsrp-secureURL

The value for the wsrp-secureURL is a boolean indicating whether the resulting URL MUST involve secure

communication between the client and Consumer, as well as between the Consumer and Producer. The default

value of this boolean is "false". Note that the Consumer's aggregated page MUST be secure if any of the Portlets

whose content is being displayed on the page have indicated the need for secure communication for their current

markup [A612] [R415],

9.2.1.9 wsrp-extensions

Extensions to the data supplied on the URL which this protocol defines MUST use the following sequence to encode

the additional information into the wsrp-extensions portlet URL parameter:

1. A querystring-like
[20]

 value is built from the parameter identifiers and values to be set. Parameters that are

an array of strings can be specified by repeating the parameter. For example, if a Portlet has two additional

parameters, one is an array of strings (parameter name is "param1") and and the other a simple string

(parameter name is "param2"), results in;

"param1=value1¶m1=value2¶m2=value3

2. The string built in step #1 is url-encoded so that it can appear as a querystring value or part of the path

portion of the URL. The example becomes;

param1%3Dvalue1%26param1%3Dvalue2%26param2%3Dvalue3

3. The url-encoded string is then used as the value of the wsrp-extensions portlet url parameter or to replace

it within a template.

9.2.1.10 URL examples

Here are some examples of portlet URLs following this format:

● Load a resource: http://resource.example.com/images/test.gif:

wsrp_rewrite?wsrp-urlType=resource&wsrp-url=http%3A%2F%2Fresource.example.com%

2Fimages %2Ftest.gif&wsrp-requiresRewrite=true&wsrp-resourceID=images%2Ftest.gif/

wsrp_rewrite

● Declare a secure interaction back to the Portlet:

wsrp_rewrite?wsrp-urlType=blockingAction&wsrp-secureURL=true& wsrp-

navigationalState=a8h4K5JD9&wsrp-interactionState=fg4h923mdk/wsrp_rewrite

● Request the Consumer render the Portlet in a different mode and window state:

wsrp_rewrite?wsrp-urlType=render&wsrp-mode=help&wsrp-windowState=maximized/

wsrp_rewrite

9.2.2 Producer URL Writing

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (106 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

To enable Producer URL writing, several templates are defined by which the Consumer indicates how it needs

portlet URLs formatted in order to process them properly. These all take the form of a simple template, for example:

http://Consumer.example.com/path/{wsrp-urlType}?mode={wsrp-mode}

&...

The definition of the content of this template is completely up to the Consumer. It may consist of zero or more

replacement tokens. These tokens are enclosed in curly braces (i.e. "{" and "}") and contain the name of the portlet

URL parameter which the Producer MUST replace (using "" for those parameters where the Producer has no value).

This replacement includes the curly braces, namely; "{wsrp-urlType}" becomes "render" when that is the desired

URL type. All content outside the {} pairs and all {} pairs containing tokens the Producer/Portlet does not recognize

MUST be treated by the Producer/Portlet as constants the Consumer needs to receive when the portlet URL is

activated. The list of defined portlet URL parameter names matches those in [Section 9.2.1] with the addition of

those specified in [Section 9.2.2.9].

Portlets dynamically computing portlet URLs in the user-agent environment (e.g. in JavaScript) need to take into

account the distributed nature of preparing and processing portlet URLs. The Consumer's template might not directly

produce a valid URL, but may be such that the Consumer further processes the portlet URL for its own purposes (e.

g. adds data it needs when the portlet URL is activated which has not been supplied to the Producer). As a result,

the only safe means to accommodate this computation of dynamic URLs is to store the template(s) whole in the

markup and then use this template directly when computing the dynamic portlet URL.

This specification defines a Templates structure that supplies values for the set of defined templates. The Consumer

supplies these templates for Portlets specifying doesUrlTemplateProcessing as "true". Portlets also specifying

templatesStoredInSession as "true" enable the Consumer to only send these until the Producer returns a

sessionID. The following describe in more detail the usage of the fields from the Templates structure.

9.2.2.1 blockingActionTemplate

Activation of the URL will result in an invocation of performBlockingInteraction. The Consumer MUST integrate

placeholders for at least the portlet URL parameters wsrp-navigationalState, wsrp-navigationalValues,

wsrp-interactionState, wsrp-mode and wsrp-windowState in its template and SHOULD integrate placeholders

for the other portlet URL parameters defined in this specification.

9.2.2.2 secureBlockingActionTemplate

secureBlockingActionTemplate is equivalent to blockingActionTemplate, but using secure communication.

9.2.2.3 renderTemplate

Activation of the URL will result in an invocation of getMarkup. The Consumer MUST integrate placeholders for at

least the portlet URL parameters wsrp-navigationalState, wsrp-navigationalValues, wsrp-mode and wsrp-

windowState in its template.

9.2.2.4 secureRenderTemplate

secureRenderTemplate is equivalent to renderTemplate, but using secure communication.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (107 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

9.2.2.5 resourceTemplate

Activation of the URL will result in the Consumer fetching the underlying resource, possibly in a cached manner, and

returning it to the End-User. The Consumer MUST integrate placeholders for at least the portlet URL parameters

wsrp-url, wsrp-resourceID, wsrp-preferOperation, wsrp-requiresRewrite and wsrp-resourceState to

allow the Portlet to place all the pieces of information it could use for accessing a resource. If the Portlet needs to

share data with a resource when the wsrp-preferOperation has a value of "false", it can either supply the data

on the URL to the resource or exploit the cookie support when the transport layer is http.

9.2.2.6 secureResourceTemplate

ResourceTemplate is equivalent to ResourceTemplate, but using secure communication.

9.2.2.7 defaultTemplate

This is the template whose value is to be used as the default value for any non-secure template whose value is not

supplied. Consumers not supplying all the other non-secure templates MUST set a value for this template. Since this

may become the value for action and resource oriented templates, the Consumer SHOULD integrate placeholders

for at least the portlet URL parameters wsrp-navigationalState, wsrp-navigationalValues, wsrp-

interactionState, wsrp-resourceID, wsrp-resourceState, wsrp-mode and wsrp-windowState in this

template.

9.2.2.8 secureDefaultTemplate

This is the template whose value is to be used as the default value for any secure template (i.e. those with names

beginning with "secure") whose value is not supplied. Consumers not supplying all the other secure templates

MUST set a value for this template. Since this may become the value for action and resource oriented templates, the

Consumer SHOULD integrate placeholders for at least the portlet URL parameters wsrp-navigationalState,

wsrp-navigationalValues, wsrp-interactionState, wsrp-resourceID, wsrp-resourceState, and wsrp-

windowState in this template.

9.2.2.9 Portlet URL parameters

The following portlet URL parameters are defined for the purpose of enabling a Consumer's templates to be generic

to a Producer. If the Consumer includes wsrp-portletHandle, wsrp-userContextKey, wsrp-

portletInstanceKey, wsrp-sessionID, wsrp-portletStates, or wsrp-pageState in a template, Producer written

URLs based on that template MUST replace the specified portlet URL parameter with the value the Consumer

separately supplied in a data field.

Portlet URL parameter Structure name Field name

wsrp-portletHandle PortletContext portletHandle

wsrp-userContextKey UserContext userContextKey

wsrp-portletInstanceKey RuntimeContext portletInstanceKey

wsrp-sessionID SessionParams sessionID

wsrp-pageState RuntimeContext pageState

wsrp-portletStates RuntimeContext portletStates

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (108 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

9.2.3 Extended BNF Description of URL formats

These definitions utilize the syntax defined in ISO/IEC 14977
[21]

ConsumerURL = BeginToken (RenderURL | ActionURL | ResourceURL | ExtensionURL) EndToken

BeginToken = "wsrp_rewrite?"

EndToken = "/wsrp_rewrite"

RenderURL = "wsrp-urlType=render" {("&" | "&") (CommonPair | RenderPair)}

ActionURL = "wsrp-urlType=blockingAction" {("&" | "&") (CommonPair | ActionPair)}

ResourceURL = "wsrp-urlType=resource" {("&" | "&") (CommonPair | ResourcePair)}

WSRPURLTypes = "render" | "blockingAction" | "resource"

ExtensionURL = "wsrp-urlType=" (Text - WSRPURLTypes) {("&" | "&") (ExtensionPair)}

CommonPair = CommonTextPair | CommonBooleanPair

CommonTextPair = CommonTextName "=" Text

CommonTextName = "wsrp-fragmentID" | "wsrp-extensions"

CommonBooleanPair = CommonBooleanName "=" BooleanValue

CommonBooleanName = "wsrp-secureURL"

RenderPair = RenderTextName "=" Text

RenderTextName = "wsrp-mode" | "wsrp-windowState" | "wsrp-navigationalState" | "wsrp-navigationalValues"

ActionPair = ActionTextName "=" Text

ActionTextName = "wsrp-interactionState" | RenderTextName

ResourcePair = (ResourceTextName "=" Text) | (ResourceBooleanName "=" BooleanValue)

ResourceTextName = "wsrp-url" | "wsrp-resourceID" | "wsrp-resourceState" | "wsrp-resourceCacheability"

ResourceBooleanName = "wsrp-requiresRewrite" | "wsrp-preferOperation"

ExtensionPair = Text "=" Text

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (109 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Text = { "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x"
| "y" | "z" | "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" |
"V" | "W" | "X" | "Y" | "Z" | "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")" |
"%" }

BooleanValue = (("true" | "1") | ("false" | "0"))

ProducerURLTemplate = {{Text} {ReplacementToken}}

ReplacementToken = "{" CommonTextName | RenderTextName | ActionTextName | ResourceTextName |

CommonBooleanName | ResourceBooleanName | ParameterName "}"

ParameterName = "wsrp-urlType" | "wsrp-portletHandle" | "wsrp-userContextKey" | "wsrp-portletInstanceKey" |

"wsrp-sessionID" | "wsrp-pageState" | "wsrp-portletStates"

9.2.4 Method=get in HTML forms

User-Agents often throw away any query string from the URL indicated with the form's action attribute when

generating the URL they will activate when the form's method is "get". This is the simplest means for them to

generate a valid query string. The difficulty this causes is that Consumer's often prefer to store the information they

will use when a portlet URL is activated as query string parameters. As a result, Portlets that include HTML forms

with method=get in their markup MUST specify usesMethodGet as "true" in their PortletDescription. Consumers

choosing to use such Portlets need to format their portlet URLs such that portlet URL activations are processed

correctly, regardless of whether Consumer or Producer URL writing is in use. The discussion in [Section 11.2] will

apply to some uses of method=get in HTML forms.

9.3 Namespace Encoding

Aggregating multiple Portlets from different sources can potentially result in naming conflicts for various types of

elements: named attributes, JavaScript functions and variables [A303], etc. Tokens needing uniqueness on the

aggregated page MUST be encoded to a Portlet-instance specific namespace [A301]. The Portlet MAY do this by

prefixing the name of the item with the namespacePrefix from the RuntimeContext structure. We note that the

JavaScript examples exclude the possibility of starting such prefixes with a numerical character.

In order for the semantics of namespace encoding, whether by Consumer rewriting or Producer writing, to serve the

purposes of making the encoded items unique on the aggregated page and processable by the Producer/Portlet,

should they become part of a user interaction, the namespacePrefix from the RuntimeContext structure MUST be

the value used for both Consumer rewriting and Producer writing and MUST be constant for the duration of the

portletHandle. Portlets choosing to apply namespace encoding to items that become part of a user interaction

MUST process these items with their namespace prefix attached as Consumers MUST NOT remove such prefixes,

regardless of whether Consumer rewriting or Producer writing was used to attach the prefix. The Portlet does not

need to store the value of the namespace prefix as the required semantics result in the namespacePrefix from the

RuntimeContext structure supplying it to the Portlet again. Note that many things Producers and Portlets could

namespace, such as CSS style names, are not required to be unique and therefore are preferably not namespaced

as this adds processing burden to generate the namespacing. This likely also has an impact on client side code that

may use such items to locate items on the page.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (110 of 144)04/03/08 8:56:27 AM

WSRP v2.0 Specification

Similar to the case of URL rewriting, two options exist to obtain a namespace prefix.

9.3.1 Consumer Rewriting

The Portlet can prefix the token with "wsrp_rewrite_". The Consumer will locate such markers and MUST replace

them with the same value that was supplied to the Portlet in the namespacePrefix field of the RuntimeContext

structure. This prefix has been chosen such that the Consumer is able to do a single parse of the markup to both

locate such markers and the URL rewrite expressions described in [Section 9.2.1]. In addition, this prefix is legal for

at least the JavaScript and VBScript scripting languages and CSS class names. This permits the independent

testing of most generated markup fragments.

9.3.2 Producer Writing

The Portlet uses the namespacePrefix provided by the Consumer in the RuntimeContext structure to prefix these

tokens in its markup.

9.4 Markup Fragment Rules

Because the Consumer aggregates the markup fragments produced by Portlets into a single page, some rules and

limitations are needed to ensure the coherence of the resulting page to be displayed to the End-User. For efficiency

reasons, Consumers are not required to validate the markup fragments returned by the Portlet. So in order to be

aggregated, the Portlet's markup needs to conforms to the following general guidelines [A300] [A302].

The disallowed tags listed below are those tags that impact other Portlets or may even break the entire aggregated

page. Inclusion of such a tag invalidates the whole markup fragment, which the Consumer MAY replace with an

error message.

9.4.1 HTML

9.4.1.1 Disallowed Tags

Since the Consumer may implement its aggregation in many ways, including using frames, some Consumers may

actually support these disallowed tags. However, in order to be a conforming Portlet, a Portlet MUST NOT use the

tags <body>, <frame>, <frameset>, <head>, <html>, and <title>.

9.4.1.2 Other Tags

There are some tags that are specifically prohibited by the HTML specification from occurring outside the <head> of

the document. However, user-agent implementations offer varying levels of support. For example, current versions

of Internet Explorer and Firefox both support the style tag anywhere within the document. It is up to the Portlet

developer to decide when using such tags is appropriate. Tags fitting this description include <base>, <link>,

<meta>, and <style>.

Since HTML excludes the nesting for <form> tags and Consumers could be embedding a Portlet's markup with a

form, special care needs to be taken by both the Portlet and Consumer.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (111 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

9.4.2 XHTML

9.4.2.1 Disallowed Tags

Since the Consumer may implement its aggregation in many ways, including using frames, some Consumers may

actually support these disallowed tags. However, in order to be a conforming Portlet, a Portlet MUST NOT use the

tags <body>, <head>, <html>, and <title>.

9.4.2.2 Other Tags

There are some tags that are specifically prohibited by the XHTML specification from occurring outside the <head>

of the document. However, user-agent implementations offer varying levels of support. For example, current

versions of Internet Explorer and Firefox both support the style tag anywhere within the document. It is up to the

Portlet developer to decide when using such tags is appropriate. Tags fitting this description include <base>, <link>,

<meta>, and <style>.

Since XHTML excludes the nesting for <form> tags and Consumers could be embedding a Portlet's markup with a

form, special care needs to be taken by both the Portlet and Consumer.

9.4.3 XHTML Basic

9.4.3.1 Disallowed Tags

Since the Consumer may implement its aggregation in many ways, including using frames, some Consumers may

actually support these disallowed tags. However, in order to be a conforming Portlet, a Portlet MUST NOT use the

tags <body>, <head>, <html>, and <title>.

9.4.3.2 Other Tags

There are some tags that are specifically prohibited by the XHTML Basic specification from occurring outside the

<head> of the document. However, user-agent implementations offer varying levels of support. For example, current

versions of Internet Explorer and Firefox both support the style tag anywhere within the document. It is up to the

Portlet developer to decide when using such tags is appropriate. Tags fitting this description include <base>, <link>,

<meta>, and <style>.

Since XHTML Basic excludes the nesting for <form> tags and Consumers could be embedding a Portlet's markup

with a form, special care needs to be taken by both the Portlet and Consumer.

9.5 CSS Style Definitions

One of the goals of an aggregated page is a common look-and-feel across the Portlets contained on that page

[A500]. This not only affects the decorations around the Portlets, but also their content. Using a common CSS style

sheet for all Portlets, and defining a set of standard styles, provides this common look-and-feel without requiring the

Portlets to generate Consumer-specific markup. Portlets SHOULD use the CSS style definitions from this

specification in order to participate in a uniform display of their content by various Consumers. For markup types that

support CSS stylesheets, Consumers MUST supply a CSS stylesheet to the End-User's agent with definitions for the

classes defined in [Section 9.5] of this specification.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (112 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

This section defines styles for a variety of logical units in the markup.

9.5.1 Links (Anchor)

A custom CSS class is not defined for the <a> tag. The Portlet should use the default classes when embedding

anchor tags.

9.5.2 Fonts

The font style definitions affect the font attributes only (i.e. font face, size, color, style, etc.).

Style Description Example

portlet-font
Font attributes for the "normal" fragment font. Used for the display of non-

accentuated information.
Normal Text

portlet-font-dim Font attributes similar to the portlet-font but the color is lighter. Dim Text

If a Portlet author wants a certain font type to be larger or smaller, they should indicate this using a relative size.

Example1: <div class="portlet-font" style="font-size:larger">Important information</div>

Example2: <div class="portlet-font-dim" style="font-size:80%">Small and dim</div>

9.5.3 Messages

Message style definitions affect the rendering of a paragraph (i.e. alignment, borders, background color, etc.) as well

as text attributes.

Style Description Example

portlet-msg-status Status of the current operation. Progress: 80%

portlet-msg-info Help messages, general additional information, etc. Info about ...

portlet-msg-error Error messages. Portlet not available

portlet-msg-alert Warning messages. Timeout occurred, try again later

portlet-msg-success Verification of the successful completion of a task. Operation completed successfully

9.5.4 Sections

Section style definitions affect the rendering of markup sections such as div and span (i.e. alignment, borders,

background color, etc.) as well as their text attributes.

Style Description

portlet-section-header Section header

portlet-section-body Normal text

portlet-section-alternate Text in every other row in the section

portlet-section-selected Text in a selected range

portlet-section-subheader Text of a subheading

portlet-section-footer Section footer

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (113 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

portlet-section-text
Text that belongs to the section but does not fall in one of the other categories (e.g.

explanatory or help text that is associated with the section).

9.5.5 Tables

Table style definitions affect the rendering (i.e. alignment, borders, background color, etc.) as well as their text

attributes.

Style Description

portlet-table-header Table header

portlet-table-body Normal text in a table cell

portlet-table-alternate Text in every other row in the table

portlet-table-selected Text in a selected cell range

portlet-table-subheader Text of a subheading

portlet-table-footer Table footer

portlet-table-text
Text that belongs to the table but does not fall in one of the other categories (e.g.

explanatory or help text that is associated with the table).

9.5.6 Forms

Form styles define the look-and-feel of the elements in an HTML form.

Style Description

portlet-form-label Text used for the descriptive label of the whole form (not the labels for fields

portlet-form-input-field Text of the user-input in an input field

portlet-form-button Text on a button

portlet-icon-label Text that appears beside a context dependent action icon

portlet-dlg-icon-label Text that appears beside a "standard" icon (e.g. Ok, or Cancel)

portlet-form-field-label Text that appears beside a form field (e.g. input fields, checkboxes, etc.)

portlet-form-field Text for a field which is not input field (e.g. checkboxes, etc)

9.5.7 Menus

Menu styles define the look-and-feel of the text and background of a menu structure. This structure may be

embedded in the aggregated page or may appear as a context sensitive popup menu.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (114 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

Style Description

portlet-menu General menu settings such as background color, margins, etc

portlet-menu-item Normal, unselected menu item

portlet-menu-item-selected Selected menu item

portlet-menu-item-hover
Normal, unselected menu item when the user's pointer (typically

a mouse) hovers over it

portlet-menu-item-hover-selected Selected menu item when the user's pointer hovers over it

portlet-menu-cascade
General sub-menu settings such as background color, margins,

etc

portlet-menu-cascade-item A normal, unselected sub-menu item

portlet-menu-cascade-item-selected Selected sub-menu item

portlet-menu-cascade-item-hover
Normal, unselected sub-menu item when the user's pointer

hovers over it

portlet-menu-cascade-item-hover-selected Selected sub-menu item when the user's pointer hovers over it

portlet-menu-separator Separator between menu items

portlet-menu-cascade-separator Separator between sub-menu items

portlet-menu-content Content for a normal, unselected menu or sub-menu item

portlet-menu-content-selected Content for an selected menu or sub-menu item

portlet-menu-content-hover
Content for an unselected menu or sub-menu item when the

user's pointer hovers over it

portlet-menu-content-hover-selected
Content for a selected menu or sub-menu item when the user's

pointer hovers over it

portlet-menu-indicator Indicator that a menu item has an associated sub-menu

portlet-menu-indicator-selected Indicator when the associated menu item is selected

portlet-menu-indicator-hover
Indicator when the associated menu item has the user's pointer

hover over it

portlet-menu-indicator-hover-selected
Indicator when the associated menu item is selected and has the

user's pointer hover over it

portlet-menu-description
Descriptive text for the menu (e.g. in a help context below the

menu)

portlet-menu-caption Menu caption

10 User Information

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (115 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

This specification provides a mechanism for Portlets to use End-User information as a means for personalizing

behavior to the current user [A600] [A606]. A standard set of user attributes has been derived from P3P User Data.

Extensibility is supported in both directions; the Consumer indicates to the Producer during registration what set of

user profile extensions it supports, and a Portlet's metadata declares what user profile items it uses (including any

extended user profile items). The following table maps the nested profile structures to userProfileItems:

Profile Name Structure 1 Structure 2 Structure 3 Field Name

name/prefix PersonName prefix

name/given PersonName given

name/family PersonName family

name/middle PersonName middle

name/suffix PersonName suffix

name/nickname PersonName nickname

bdate bdate

gender gender

employerInfo/employer EmployerInfo employer

employerInfo/department EmployerInfo employerInfo/jobtitle

EmployerInfo jobtitle jobtitle

homeInfo/postal/name Contact Postal name

homeInfo/postal/street Contact Postal street

homeInfo/postal/city Contact Postal city

homeInfo/postal/stateprov Contact Postal stateprov

homeInfo/postal/postalcode Contact Postal postalcode

homeInfo/postal/country Contact Postal country

homeInfo/postal/organization Contact Postal organization

homeInfo/telecom/telephone/intcode Contact Telecom TelephoneNum intcode

homeInfo/telecom/telephone/loccode Contact Telecom TelephoneNum loccode

homeInfo/telecom/telephone/number Contact Telecom TelephoneNum number

homeInfo/telecom/telephone/ext Contact Telecom TelephoneNum ext

homeInfo/telecom/telephone/comment Contact Telecom TelephoneNum comment

homeInfo/telecom/fax/intcode Contact Telecom TelephoneNum intcode

homeInfo/telecom/fax/loccode Contact Telecom TelephoneNum loccode

homeInfo/telecom/fax/number Contact Telecom TelephoneNum number

homeInfo/telecom/fax/ext Contact Telecom TelephoneNum ext

homeInfo/telecom/fax/comment Contact Telecom TelephoneNum comment

homeInfo/telecom/mobile/intcode Contact Telecom TelephoneNum intcode

homeInfo/telecom/mobile/loccode Contact Telecom TelephoneNum loccode

homeInfo/telecom/mobile/number Contact Telecom TelephoneNum number

homeInfo/telecom/mobile/ext Contact Telecom TelephoneNum ext

homeInfo/telecom/mobile/comment Contact Telecom TelephoneNum comment

homeInfo/telecom/pager/intcode Contact Telecom TelephoneNum intcode

homeInfo/telecom/pager/loccode Contact Telecom TelephoneNum loccode

homeInfo/telecom/pager/number Contact Telecom TelephoneNum number

homeInfo/telecom/pager/ext Contact Telecom TelephoneNum ext

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (116 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

homeInfo/telecom/pager/comment Contact Telecom TelephoneNum comment

homeInfo/online/email Contact Online email

homeInfo/online/uri Contact Online uri

businessInfo/postal/name Contact Postal name

businessInfo/postal/street Contact Postal street

businessInfo/postal/city Contact Postal city

businessInfo/postal/stateprov Contact Postal stateprov

businessInfo/postal/postalcode Contact Postal postalcode

businessInfo/postal/country Contact Postal country

businessInfo/postal/organization Contact Postal organization

businessInfo/telecom/telephone/intcode Contact Telecom TelephoneNum intcode

businessInfo/telecom/telephone/loccode Contact Telecom TelephoneNum loccode

businessInfo/telecom/telephone/number Contact Telecom TelephoneNum number

businessInfo/telecom/telephone/ext Contact Telecom TelephoneNum ext

businessInfo/telecom/telephone/comment Contact Telecom TelephoneNum comment

businessInfo/telecom/fax/intcode Contact Telecom TelephoneNum intcode

businessInfo/telecom/fax/loccode Contact Telecom TelephoneNum loccode

businessInfo/telecom/fax/number Contact Telecom TelephoneNum number

businessInfo/telecom/fax/ext Contact Telecom TelephoneNum ext

businessInfo/telecom/fax/comment Contact Telecom TelephoneNum comment

businessInfo/telecom/mobile/intcode Contact Telecom TelephoneNum intcode

businessInfo/telecom/mobile/loccode Contact Telecom TelephoneNum loccode

businessInfo/telecom/mobile/number Contact Telecom TelephoneNum number

businessInfo/telecom/mobile/ext Contact Telecom TelephoneNum ext

businessInfo/telecom/mobile/comment Contact Telecom TelephoneNum comment

businessInfo/telecom/pager/intcode Contact Telecom TelephoneNum intcode

businessInfo/telecom/pager/loccode Contact Telecom TelephoneNum loccode

businessInfo/telecom/pager/number Contact Telecom TelephoneNum number

businessInfo/telecom/pager/ext Contact Telecom TelephoneNum ext

businessInfo/telecom/pager/comment Contact Telecom TelephoneNum comment

businessInfo/online/email Contact Online email

businessInfo/online/uri Contact Online uri

Portlets that need access to user information declares in its metadata the specific user profile fields it needs using

the names specified above.

Consumers supplying additional custom profile fields are encouraged to publish a similar mapping between

userProfileItems and the custom fields.

10.1 Passing User Information

User information can be supplied to the Producer when a Consumer invokes certain operations. A Consumer

SHOULD provide the specific fields the Portlet declared it needs, unless the information is not available or is

restricted by policy (e.g. privacy policy).

10.2 User Identity

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (117 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

Mechanisms that support federation of user identity between web service systems are defined in other

specifications, such as WS-Security and SAML. If a Consumer and Producer need to share a common identity for an

End-User, it is recommended that compliance with these standards be the means to passing the required

information [A602].

It is anticipated that some Portlets will interact with one or more back-end applications that require a user identity for

the End-User. If the user identity required by the back-end application is not the same as that authenticated or

otherwise supplied by the Consumer, the Portlet can request the End-User to provide the necessary information

(preferably using secure transport) for use with the back-end application via markup interactions (e.g. display a form

that prompts for a user identity and any security tokens (such as a password) for the back-end system) [A603].

11 Well Known Extensions

For the purpose of interoperability, the following extension items are defined. Each definition includes the types it is

allowed to extend.

11.1 wsrp-extra:doctype

This extension is of type QNamedString from the urn:oasis:names:tc:wsrp:extra namespace with a name of

"wsrp-extra:doctype" with the value carrying the doctype URI. The URIs to use as doctypes have been defined

elsewhere (e.g. http://www.w3.org/TR/html4/struct/global.html#h-7.2). This extension can apply to both the

MarkupParams (specifying an allowed doctype to the Portlet) and the MarkupContext (specifying the actual doctype

of the markup being returned) types.

11.2 wsrp-extra:extendedURLParameters

This extension applies to MarkupParams, InteractionParams and ResourceParams and provides a standardized

means for carrying name/value pairs from an activated URI which were not either consumed by the Consumer's

processing or reflected elsewhere within the protocol. The type of this extension is wsrp:NamedStringArray.

Consumers should take care with regard to how user-agents encode this data. In particular, common user-agents (e.

g. web browsers) encode the data in the character set of the page submitting the URI. As the Producer is ignorant of

this encoding and the Consumer is required to consistently encode parameters passed to the Producer in the SOAP

message, Consumers MUST ensure the data is properly decoded before it is passed to the Producer.

Consumers MUST send the value received for the wsrp-urlType portlet URL parameter using the name "wsrp-

urlType" as the first element in the array of name/value pairs. When processing a WSRP defined value for the

wsrp-urlType portlet url parameters, Consumers MUST NOT resend a particular set of wsrp-extra:

extendedURLParameters on later invocations of WSRP defined operations. Portlets needing any of the supplied

data in order to properly rerender their markup are responsible for storing that data between requests.

Examples of intended use for this extension include:

● Extensions which define new values for the portlet URL parameter wsrp-urlType are likely to also define

extended data value to be carried in the wsrp-extensions portlet URL parameter. These values would be

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (118 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

forwarded to the Portlet using this definition if the extension is using the operations defined by this

specification.

● For those Consumers indicating support for forms with method=GET, this extension is used if the wsrp-

urlType on the submission URL is "render".

11.3 wsrp-extra:sharedResource

This extension describes an extended portlet url parameter with a name of "wsrp-sharedResource" where the value

for this parameter carries a unique identifier for the resource, preferably in the form of a QName. The purpose of this

extension is to allow broader caching of resources which are shared across many Portlets (e.g. script libraries such

as v0.9 of dojo.js can be more broadly shared/cached when referred to as "{http://dojotoolkit.org/v0.9}dojo.js"). The

Consumer MAY serve such a resource from any location and therefore Portlets referencing a shared resource

MUST NOT depend on being called to serve the resource. Regardless of the setting of the wsrp-

resourceCacheability portlet url parameter, Consumers supporting this extension MUST treat resource URIs

specifying the wsrp-sharedResource portlet url parameter as if the setting of the wsrp-resourceCacheability

portlet url parameter was "full". Portlets specifying the wsrp-sharedResource portlet url parameter SHOULD also

set the wsrp-resourceCacheability portlet url parameter to a value of "full" so that Consumers not supporting this

extension will still provide the maximum supported cacheability support.

12 Constants

Type Value Description

Mode wsrp:view
Portlet is expected to render markup reflecting its current

state.

Mode wsrp:edit
Portlet is expected to render markup useful for End-User

customization.

Mode wsrp:help
Portlet is expected to render markup useful for helping an

End-User understand the Portlet's operation.

Mode wsrp:preview

Portlet is expected to render markup representative of its

configuration, as this might be useful to someone testing a

page layout.

Window state wsrp:normal
The Portlet is sharing space with other Portlets and should

restrict its consumption of space accordingly.

Window state wsrp:minimized
The Portlet, though still aggregated on the page, is expected

to restrict its consumption of space to a bare minimum.

Window state wsrp:maximized

The Portlet is being offered significantly more that the normal

share of the space available to Portlets on the Consumer's

aggregated page.

Window state wsrp:solo
The Portlet is the only Portlet being rendered on the

Consumer's aggregated page.

Events wsrp:eventHandlingFailed
This event is used to signal that the Consumer has detected

that event processing encountered an error.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (119 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

Events wsrp:newNavigationalContextScope

This event is used to signal that Consumer has determined

that a new scope is starting for the Portlet's

navigationalContext. This enables those Portlets making

technology choices which require either the Producer or

Portlet to store/manage a portion of the overall state related

to navigation to manage that portion in a manner consistent

with the Consumer's management of this state for other

Portlets.

13 Fault Messages

In addition to generic fault messages that may be generated by the web service stacks of the Consumer and/or

Producer, a variety of messages specific to this protocol are defined. The following WSRP error codes are defined

within the same namespace as the rest of the types defined by this specification. The SOAP 1.1 faultcode SHOULD

be set to the WSRP error code being raised, namespace qualified to be in the "urn:oasis:names:tc:wsrp:v2:

types" namespace. In addition, the SOAP 1.1 fault's detail element MUST contain the corresponding namespaced

fault element from the WSRP v1 WSDL as its only content. When using SOAP 1.2, the Subcode element MUST be

present and carry the corresponding WSRP error code in its mandatory Value sub-element. The Subcode element

MUST be contained in a SOAP 1.2 Receiver fault code, for the fault messages defined in this specification. SOAP

1.2 faults MAY carry additional content in the Detail sub-element, but MUST carry the corresponding WSRP

namespaced fault element.

Fault Code Description

AccessDenied Policy has denied access. This may be related to the Consumer's registration

ExportByValueNotSupported
The Consumer required exportByValue, but the Producer does not support this

feature

ExportNoLongerValid The export references items which are not on the Producer

InconsistentParameters
Used when a Consumer supplies inconsistent parameters (e.g. when a

portletHandle is not scoped by the supplied registrationHandle).

InvalidRegistration

Used when a Consumer supplies a registrationHandle/registrationState

pair that is not recognized by the Producer. This includes when no

registrationHandle is supplied, but a registration is required.

InvalidCookie
Used only when the environment at the Producer has timed out AND the

Producer needs the Consumer to invoke initCookie again and resend data that

may have been stored in sessions related to a cookie.

InvalidHandle Used when the Consumer supplies an invalid Handle

InvalidSession

Used only when a Producer session has timed out and the Producer needs the

Consumer reinvoke the operation resending user profile and URL templates that

may have been stored in the Producer session. If both

userContextStoredInSession and templatesStoredInSession fields of the

PortletDescription type are "false", Producers are encouraged to reinitialize the

session in stead of returning the InvalidSession fault.

InvalidUserCategory The specified userCategory is not supported

ModifyRegistrationRequired
Used when a modification to the information supplied during registration is

required in order to continue using the registration

MissingParameters Used when required parameters are missing

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (120 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

OperationFailed
Normal execution of the operation failed. Check the detailed message for reasons

why.

OperationNotSupported The Producer does not support the optional feature enable by the operation

ResourceSuspended
The indicated resource is no longer available for normal use, but is available for

renewal

PortletStateChangeRequired
Used when a Portlet needs to modify its enduring state, but has been prevented

from doing so.

UnsupportedLocale

The Portlet does not support generating markup for the requested locale. Since

the Portlet is not required to generate markup in the requested locale, a Portlet

returning this fault message is indicating that it processes locales in a stricter

manner and has no markup for the requested locales. The Consumer can treat

this as a specialization of the OperationFailed fault message and does not have to

retry getting the markup in other locales.

UnsupportedMimeType The Portlet does not support generating markup for the requested mime type

UnsupportedMode The Portlet does not support generating markup for the requested mode

UnsupportedWindowState The Portlet does not support generating markup for the requested window state

14 WSDL Interface Definition

Normative copies of the WSDL that MUST be referenced by Producers implementing this specification can be found

at:

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-types.xsd - The type, message and fault definitions for this specification.

These definitions form the "urn:oasis:names:tc:wsrp:v2:types" namespace.

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-interfaces.wsdl - The portType definitions for this specification. These

definitions form the "urn:oasis:names:tc:wsrp:v2:intf" namespace.

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-bindings.wsdl - The standard binding definitions for this specification.

These definitions form the "urn:oasis:names:tc:wsrp:v2:bind" namespace.

While this version of the WSRP specification does not define bindings for serializing some portions of the messages

using the [MTOM] specification, it is expected these will be defined as an errata item once web stack support allows

for interoperability testing using the definitions.

In addition the TC has provided definitions in http://docs.oasis-open.org/wsrp/wsrp-extra-2.0.xsd for reuse in

extension elements.

This WSDL defines the following portTypes:

● WSRP_v2_Markup_PortType: All Producers MUST expose this portType.

● WSRP_v2_ServiceDescription_PortType: All Producers MUST expose this portType.

● WSRP_v2_Registration_PortType: Only Producers supporting in-band registration of Consumers need

expose this portType.

● WSRP_v2_PortletManagement_PortType: Producers supporting the Portlet management interface expose

this portType. If this portType is not exposed, the Portlets of the service are not configurable by Consumers.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (121 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

This WSDL defines the following SOAP bindings for these portTypes:

● WSRP_v2_Markup_Binding_SOAP: All Producers MUST expose a port with this binding for the

WSRP_v2_Markup_PortType (the Markup portType).

● WSRP_v2_ServiceDescription_Binding_SOAP: All Producers MUST expose a port with this binding for

the WSRP_v2_ServiceDescription_PortType (the ServiceDescription portType).

● WSRP_v2_Registration_Binding_SOAP: Producers supporting the Registration portType MUST expose

a port with this binding for the WSRP_v2_Registration_PortType.

● WSRP_v2_PortletManagement_Binding_SOAP: Producers supporting the PortletManagement portType

MUST expose a port with this binding for the WSRP_v2_PortletManagement_PortType.

Producers SHOULD NOT expect Consumers to use a mixture of WSRP v1 and v2 ports when interacting with it.

Producers SHOULD use a single wsdl file with distinct service elements for their v1 and v2 support if they support

artifacts, such as registrationHandle or portletState, being used with all operations regardless of the version of the

standard defining that operation and SHOULD use separate wsdl files for specifying support for different versions of

WSRP when artifacts are usable only within the operations defined by a specific version of the WSRP standard.

15 Conformance Statements

Section Statement text

CS001 2.5 The Consumer MUST respect this new session scope as described in section 5.1.1.

CS002 2.7
To supply the bookmarking and page refresh capabilities End-Users expect, the

Consumer MAY store this (navigational) state, or a reference to it, in the URL.

CS003 2.7
This specification defines two kinds of persistent state with each referred to via a

handle that MUST remain invariant once the Producer supplies it to the Consumer:

CS004 2.12

The Consumer MUST NOT invoke operations on any Portlets within the context of the

initiating request from the client of the Consumer until either the receipt of a response

or the invocation of performBlockingInteraction fails (e.g. times out).

CS178 2.12
The Consumer MUST NOT begin to gather markup until it considers all Portlets to

have finished the event distribution step.

CS005 2.13

Since the transport layer is often used to store various pieces of information (e.g. J2EE

load balancing depends on a session cookie and HTTP transport), and these pieces of

information often will pertain to a client session with the Consumer rather than the

Consumer itself, Consumers that manage transport layer issues, such as cookies,

MUST return them to the Producer only for subsequent invocations within the Markup

Interface during the same client session.

CS006 2.14

Using HTTP as an example, if the Producer requires such support of Consumers, it

MUST indicate so by setting the requiresInitCookie metadata to a value other than

"none".

CS007 2.14
If the Producer set requiresInitCookie to a value other than "none", the Consumer

MUST ensure the cookie is properly supplied in subsequent requests for the End-User.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (122 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS008 4.1.1
Consumers and Producers SHOULD NOT rely on receiving back any extensions

passed to or returned from an invocation.

CS009 4.1.1
Each such extension element carries a single child element which MUST declare its

type using the schema-defined “type” attribute.

CS010 4.1.1

It is RECOMMENDED extensions be of type xsd:string (where xsd stands for http://

www.w3c.org/2001/XMLSchema), or be of a type from the WSRP-defined "wsrp-extra"

namespace (urn:oasis:names:tc:wsrp:extra) or be of a type defined in the Producer's

WSDL as this enables Consumers to prepare an appropriate serializer/deserializer.

CS180 4.1.1
[Extension] Overlap with the fields defined in the containing structure SHOULD be

avoided

CS011 4.1.2

It is strongly RECOMMENDED these characters be chosen from the first 127

characters of the Unicode character set so that it is feasible to represent the value in

no more than 255 bytes of storage.

CS012 4.1.2 The Consumer MAY truncate longer handles to 255 characters.

CS013
4.1.6 + many

others

extensions: The extensions field MAY be used to extend this structure. Extension

elements MUST be from namespaces other than WSRP.

CS014 4.1.10

In addition to these fully specified Mime types, use of "*" (indicates all Mime types are

acceptable) and type/* (where type includes things such as "text") from the HTTP

definition MAY be specified.

CS181 4.1.11

Since an event's name can be referred to in a wildcard fashion (see [Section 4.1.16]),

Portlet developers are encouraged to organize their event's local names in a

hierarchical manner and MUST use the '.' character to delimit levels within the

hierarchy

CS179 4.1.11
If the type is not supplied, the Consumer SHOULD treat this as an opaque event

payload.

CS182 5.1.15
A Producer defined identifier for this parameter which is REQUIRED to be unique

for the portletHandle providing this ParameterDescription.

CS015 4.1.16

For the fields this specification defines, the named profile items a Portlet uses MUST

all come from the "Profile Name" column of the table found in Section 10. Any use of

additional userProfile items specified as available when the Consumer registered

SHOULD use the names the Consumer supplied. Any additional items specified

SHOULD be interpreted by the Consumer as additional items the Portlet could use if

the Consumer is able to supply the data.

CS016 4.1.16

If the Consumer uses a Portlet which specifies usesMethodGet as "true", the

Consumer MUST format its URLs in a manner that keeps user-agents from throwing

away information (see section 9.2.4 for a description of the difficulties in using forms

with method=get).

CS017 4.1.16
For Portlets setting doesUrlTemplateProcessing to "true", Consumers MUST provide

the URL writing templates and namespacePrefix field.

CS018 4.1.16
Note that the Consumer MAY send UserContext information on any invocations as a

replacement for information the Portlet MAY be storing in a session.

CS019 4.1.16
Note that the Consumer MAY send templates on any invocations as a replacement for

information the Portlet MAY be storing in a session.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (123 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS183 4.1.16
The navigationalParameterDescriptions array MUST NOT contain two

descriptions with the same identifier.

CS184 4.1.16

Consumers doing event distribution are REQUIRED to match event names ending with

a "." character to any event whose local name starts with the characters before the "."

character and also specifies the same namespace.

CS222 4.1.16
The Consumer SHOULD allow transition into any of these modes unless the Portlet

has supplied a validNewModes array which does not include them.

CS021 4.1.19 Name of the property whose value is to be reset; MUST have a non-zero length.

CS022 4.1.19

The Producer MUST return an InconsistentParameters fault message if the

Consumer supplies a property in both the properties and resetProperties array

of a PropertyList.

CS024 4.1.20

(CookieProtocolType)perUser: The Consumer MUST invoke initCookie once per user

of the Consumer, and associate any returned cookies with subsequent invocations on

behalf of that user.

CS025 4.1.20

(CookieProtocolType)perGroup: The Consumer MUST invoke initCookie once per

unique groupID from the PortletDescriptions for the Portlets it is aggregating on a

page for each user of the Consumer, and associate any returned cookies with

subsequent invocations on behalf of that user targeting Portlets with identical

groupIDs.

CS026 4.1.24
If requiresRegistration is set to "false" then it MUST be valid to not pass a

registrationContext field to all operations with this parameter.

CS027 4.1.24

If requiresRegistration is set to "true" then the Producer MUST throw a fault when

no registrationContext is supplied to an operation, other than

getServiceDescription, which takes this field.

CS029 4.1.24

customWindowStateDescriptions: An array of ItemDescription structures as defined

in Section 4.1.9. This array MUST include an entry for any custom window state the

Producer supports.

CS030 4.1.24

customModeDescriptions: An array of ItemDescription structures as defined in

Section 4.1.9. This array MUST include an entry for any custom mode the Producer

supports.

CS031 4.1.26 & 4.1.27
If the registrationState field has a value, the Consumer MUST return this value on

any subsequent calls in the context of this registration.

CS187 4.1.26

When this field [RegistrationState.scheduledDestruction] is missing from a response

message, scheduled destruction is not in use and the explicit destruction operations

MUST be used instead

CS188 4.1.27

When this field [RegistrationContext.scheduledDesctruction] is missing from a

response message, scheduled destruction is not in use and the explicit destruction

operations MUST be used instead

CS032 4.1.28

Since localized strings use an indirection through resources to carry the set of values

for different locales, the first member of this array SHOULD be used as the locale for

the values returned directly in the structure.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (124 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS033 4.2

The minimum information a Producer MUST return from getServiceDescription is

that which declares what is required for a Consumer to register (i.e. the

requiresRegistration flag and whenever additional data is required, the

registrationPropertyDescription field) with the Producer.

CS034 4.2

Producers MUST return a complete enough ServiceDescription to registered

Consumers for them to properly interact with both the Producer and Portlets it

exposes.

CS035 4.2

When generating the ServiceDescription response the Producer SHOULD use the

desiredLocales (an array of strings) to control what locales are returned for localized

strings.

CS185 4.2

When the Consumer does not supply this parameter, the Producer MUST return a

portletDescription for each of the "Producer Offered Portlets" the Consumer has

access to through the supplied registrationContext.

CS036 5.1.1

The maximum length of a sessionID is 4096 characters, though Producers SHOULD

keep it as short as possible as this can have a significant impact on Consumer

performance.

CS037 5.1.1
Producers SHOULD also keep the sessionID as stable as possible since changes in

value can also have a significant impact on Consumer performance.

CS038 5.1.1

If the Producer returns an InvalidSession fault message after returning a sessionID,

the Consumer MUST NOT resupply that sessionID on a subsequent invocation and

SHOULD reinvoke the operation that caused the fault message without any sessionID

and supply any data that may have been stored in the session.

CS039 5.1.2
portletInstanceKey: An opaque string, unique within the RegistrationContext, which

the Consumer MUST supply as a reference to its use of the Portlet.

CS040 5.1.2 Consumer SHOULD keep their portletInstanceKey values as short as possible.

CS041 5.1.2
If the PortletDescription also has templatesStoredInSession set to "true", then the

Consumer MAY elect to only send these once for a sessionID.

CS186 5.1.3
The value which the Consumer supplies in the portletInstanceKey field MUST

remain constant for any one particular use of the Portlet.

CS227 5.1.3

In order to support items that could become part of a URL activation, this token MUST

remain constant for the lifetime of the portletInstanceKey and be the value used for

both Consumer and Producer namespacing (see [Section 9.3]).

CS042 5.1.4

If the portletState field has a value, the Consumer MUST return this value on

subsequent calls using the same portletHandle. Note that such uses can span

multiple starting and stopping cycles of the Consumer and therefore this state MUST

be persisted by the Consumer until successfully invoking destroyPortlets with the

related portletHandle.

CS192 5.1.4
When this field [PortletContext.scheduledDestruction] is missing, scheduled

destruction is not in use and the explicit destruction operations MUST be used instead.

CS043 5.1.5

UserScope is an open set of values where the Producer SHOULD restrict the values

supplied to those specified in this specification or custom values the Consumer has

indicated it supports.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (125 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS044 5.1.5
"wsrp:perUser": The markup is specific to the userContext for which it was generated.

Changes to the data of the UserContext MUST invalidate the cached markup.

CS045 5.1.6
Note that any key used by the caching system to locate this markup MUST include the

MarkupParams structure that was current when the content was originally cached.

CS046 5.1.6
validateTag: A string the Consumer MAY use to attempt to revalidate markup once the

expires duration elapses.

CS047 5.1.6
If the Consumer does not know how to process the specified userScope, it MUST NOT

cache the markup.

CS223 5.1.10

When this structure is being supplied to the getResource operation, Consumers

SHOULD supply the same set of items which would have been supplied using the

HTTP proxy method of serving the resource.

CS193 5.1.12

While Consumer policy will govern when values from sources other than the Portlet

update the publicValues, Consumers MUST apply Portlet supplied values (i.e.

supplied on a portlet url parameter or on a response from

performBlockingInteraction or handleEvents) to the publicValues and SHOULD

supply the same value to Portlets which provide a

navigationalParameterDescription referencing the same QName in the names

array.

CS048 5.1.13
The Consumer MUST set the secureClientCommunication flag as the Portlet MAY

render different content when it knows the delivery channel is secure.

CS049 5.1.13

In addition to these fully specified Mime types, use of "*" (indicates all Mime types are

acceptable) and type/* (where type includes things such as "text") from the HTTP

definition[1] MAY be specified.

CS050 5.1.13 Portlets SHOULD generate markup in one of the specified Mime types.

CS051 5.1.13
The Consumer MUST specify either one of the modes from the Portlet's metadata or

"wsrp:view" (all Portlets are required to support this mode).

CS052 5.1.13
The Consumer MUST specify either one of the windowStates from the Portlet's

metadata or "wsrp:normal" (all Portlets are required to support this windowState).

CS053 5.1.13

When the SOAP binding is in use, the Producer MUST either use one of the

markupCharacterSets, UTF-8 or UTF-16 for the response message as the nature of

XML requires the character set used for the markup to be the same as the response

message.

CS054 5.1.13
validateTag: This field MAY contain a validateTag previously supplied to the

Consumer in a MarkupContext structure.

CS055 5.1.13 validNewModes: Current set of modes the Producer MAY request changing to.

CS056 5.1.13

Custom modes, windowStates, userScopes and userAuthentication values MUST be

URI's in order to reduce name clashes with any values that may be defined by future

versions of this specification.

CS194 5.1.15

As the Producer is ignorant of this encoding and the Consumer is required to

consistently encode parameters passed to the Producer in the SOAP message,

Consumers MUST ensure that form data is properly decoded before it is passed to the

Producer.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (126 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS224 5.1.16

When this field is supplied on the response from a getResource operation,

Consumers SHOULD apply the same policy which would have been used for the

HTTP proxy method of serving the resource.

CS057 5.1.16
If the value for useCachedMarkup is "true" the markupString and markupBinary fields

MUST NOT be returned.

CS058 5.1.16

If the field's (useCachedMarkup) value is "true", any supplied cacheControl field

MUST be processed as an update to the cacheControl originally supplied with the

cached markup.

CS059 5.1.16

The mimeType field MUST be specified whenever markup is returned, and if the

markupBinary field is used to return the markup, the mime type MUST include the

character set for textual mime types using the syntax specified in RFC1522 (e.g. "text/

html; charset=UTF-8"). In this particular case this character set MAY be different than

the response message.

CS060 5.1.16
The character set of the markup a Portlet returns MUST either match that requested in

MarkupParams, be UTF-8 or UTF-16.

CS062 5.1.16
The Consumer MUST parse the markup for URL rewriting if the value of

requiresUrlRewriting is "true".

CS195 5.1.22

This optional field contains the data for the event and becomes a REQUIRED field

when either the relevant EventDescription or the Event structures specify a value for

the type field. One example of when this field might not be included is when the event

is simply a signal and the event's name thereby carries all of the semantics of the

event. Its contents MUST conform to the schema referenced by the type field.

CS196 5.1.24
Consumers MUST rewrite these URLs [redirectURL] in the same manner as those

contained within markup the Portlet might return.

CS197 5.1.27
Since the Producer/Portlet is capable of appropriate retries for the processing of any

given event, the Consumer MUST NOT retry distributing failed events to the Portlet.

CS064 5.1.23

The Consumer SHOULD supply the returned values, along with any additional or

updated publicValues, as the navigational state on the subsequent invocations for

this use of the Portlet for at least the duration of the End-User's interactions with this

aggregated page.

CS067 5.1.30

As the Producer is ignorant of this encoding and the Consumer is required to

consistently encode parameters passed to the Producer in the SOAP message,

Consumers MUST ensure that form data is properly decoded before it is passed to the

Producer.

CS068 5.1.33
The userContextKey MUST remain invariant for the duration of a Consumer's

registration.

CS069 5.1.33
The Consumer MUST NOT assert a user category for which no

UserCategoryDescription was part of the Producer's ServiceDescription.

CS070 5.2.1.1
Whenever the cacheControl field of a MarkupResponse structure is filled in the

Consumer MAY cache the markup fragment.

CS071 5.2.1.1
The Consumer MUST follow the defined invalidation policies to keep the cache up-to-

date from section 5.2.1.2.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (127 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS072 5.2.1.1

If the cacheControl field is empty, the Portlet has provided no guidance and the

Consumer MAY apply whatever cache policy it chooses. For a Portlet to indicate the

markup is not cacheable, it will need to return a cacheControl structure with a value

of zero in the expires field.

CS073 5.2.1.2
Portlets indicating the cached markup can be used SHOULD also supply a new

CacheControl structure with a new expiry for the markup.

CS225 5.3

When the Portlet offers a choice to the Consumer between using the getResource

operation or the HTTP proxy method to retrieve the resource, the resource served to

the End-User SHOULD NOT depend on how the Consumer chooses to retrieve the

resource.

CS198 5.3

Resources which are inserted into the Consmer's aggregated page MUST follow the

guidelines in [Section 9.4] for the mime types described there and the relevant

fragment rules, if any, for other mime types.

CS074 5.4 The Consumer MUST always propagate these End-User interactions to the Producer.

CS228 5.4.2.2

The Consumer SHOULD NOT send multiple concurrent arrays of events to a Portlet if

any of the invocations set the portletStateChange flag to "cloneBeforeWrite", as the

Producer will not neccessarily be able to connect these invocations together in a

manner that allows a cloned Portlet which is produced/returned to be used for

processing later events.

CS229 5.4.2.2

If a cloned Portlet is produced during the processing of an array of events, the

Producer SHOULD use the cloned Portlet in place of the targeted Portlet for

processing any remaining events and treat the portletStateChange flag as having a

value of "readWrite" while processing the rest of the events in the array.

CS075 5.4.3
If the Consumer has set the portletState flag to "readWrite", the Portlet MAY modify

its persistent state regardless of whether it is persisted on the Producer or Consumer.

CS076 5.4.3

If the Consumer has set the portletState field to "cloneBeforeWrite", persistent state

changes are allowed only if the Producer first clones the Portlet. If the Producer does

not clone the Portlet, processing attempts to modify persistent state MUST proceed as

if the Consumer had specified "readOnly" for portletState.

CS077 5.4.3

If the Producer clones the Portlet, processing attempts to modify persistent state on

the new Portlet SHOULD proceed as if the Consumer had specified "readWrite" for

portletState.

CS078 5.4.3

If the Producer returns a new portletHandle without returning a new sessionID, the

Consumer MUST associate the current sessionID with the new portletHandle

rather than the previous portletHandle.

CS079 5.4.3

If the Consumer has set the portletState flag to "readOnly", the Portlet MUST NOT

modify its persistent state regardless of whether it is persisted on the Producer or

Consumer and MUST throw a fault message if processing the interaction requires

changing its persistent state.

CS080 5.4.3

If the Producer implements access control that prevents Portlets from updating

persistent state and a Portlet is unable to process the interaction without such an

update, then the fault PortletStateChangeRequired MAY be thrown indicating the

interaction processing failed.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (128 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS199 5.4.2.3

The Consumer SHOULD honor a handleEvents invocation returning requests to

change mode or windowState provided they do not conflict with other such requests.

Since the policy for handling conflicting requests is up to the Consumer

implementation, Portlet developers SHOULD be aware that the impact on the overall

layout MAY cause the Consumer to not honor a request to change windowState.

CS200 5.4.3

Only if the Portlet's enduring state is modified and it is persisted on the Consumer

should a PortletContext be returned to the Consumer and such a PortletContext

MUST reference the portletHandle which was supplied by the Consumer.

CS081 5.5

If the Producer's metadata has set the requiresInitCookie field to any value other

than “none”, then the Consumer MUST invoke initCookie and supply any returned

cookies according to the semantics of the value of requiresInitCookie as defined in

section 4.1.17.

CS082 5.5

If at any time the Producer throws a fault message (InvalidCookie) indicating the

supplied cookie has been invalidated at the Producer, then the Consumer MUST again

invoke initCookie and SHOULD reprocess the invocation that caused the fault

message to be thrown and include any data that may have been stored in a session

related to a cookie.

CS083 5.6

The Consumer MAY inform the Producer that it will no longer be using a set of

sessions by invoking releaseSessions (e.g. the Consumer is releasing resources

related to the sessionIDs):

CS084 5.6
After invoking releaseSessions the Consumer MUST NOT include any of the supplied

sessionIDs on subsequent invocations.

CS085 5.7
If a Producer indicates that it uses cookies, the Consumer MUST ensure that any

cookies the Producer sets are available on all invocations within the Markup interface.

CS086 5.7

In addition, moving cookies from an HTTPS to an HTTP connection opens security

issues that MUST be handled in the manner prescribed in RFC2109[2]. Consumers

MUST respect the security setting on each cookie.

CS066 5.9

The Consumer MUST respect requests to change the mode outside of exceptional

circumstances (e.g. access control restrictions), but the Portlet must not depend on

such a request being respected.

CS087 5.9.1 Conformant Portlets MUST support the wsrp:view mode.

CS088 5.9.5 A Portlet MUST map any mode it does not understand to the wsrp:view mode.

CS065 5.10

The Consumer SHOULD choose to respect this request to change the window state,

but since the Portlet cannot depend on that choice it MUST NOT encode this new

window state into any of its stateful settings. Rather, the Portlet MUST compute any

such impact on stateful settings after the Consumer has actually changed the window

state.

CS089 5.10.1

The wsrp:normal window state MAY also indicate that the target device has limited

display capabilities. Therefore, a Portlet SHOULD restrict the size of its rendered

output in this window state.

CS090 5.10.1 Conformant Portlets MUST support the wsrp:normal window state.

CS091 5.10.2
When the window state is wsrp:minimized, the Portlet SHOULD NOT render visible

markup, but is free to include non-visible data such as javascript or hidden forms.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (129 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS092 5.10.3 A Portlet SHOULD generate richer content when its window state is wsrp:maximized.

CS093 5.10.4 A Portlet SHOULD generate richer content when its window state is wsrp:solo.

CS094 5.10.5 A Portlet MUST map any window state it does not understand to wsrp:normal.

CS201 5.11.2

Portlets/Producers handling this event SHOULD be aware that idempotency concerns

related to the Consumer's processing of the request it received could limit how it

processes items returned from the processing of this event.

CS095 5.12 A Producer's ServiceDescription MAY declare support for user categories.

CS096 5.12
A Consumer MAY map End-Users to the user categories a Producer declares in any

manner it chooses, including ignoring them.

CS097 5.12
Producers that use user categories SHOULD implement appropriate default behavior

in the event a Consumer does not assert any user category for the End-User.

CS098 6
All Producer registration processes MUST result in a unique, opaque token that may

be used to refer to the registration.

CS099 6.1.1

The consumerAgent value MUST start with productName.majorVersion.minorVersion

where "productName" identifies the product the Consumer installed for its deployment,

and "majorVersion" and "minorVersion" are vendor-defined indications of the version of

its product.

CS100 6.1.1

registrationProperties: List of registration properties. The names of these

properties SHOULD be from the set declared in the

registrationPropertyDescription from the Producer's ServiceDescription and

are not part of this specification.

CS101 6.2
When the Consumer chooses to end the relationship, it MUST attempt an invocation of

the deregister operation so that the Producer may release related resources.

CS102 6.2

When the Producer chooses to invalidate the registration identifier, it MUST inform the

Consumer of this through a fault message on the next invocation specifying this

registrationHandle so that the Consumer may release related resources.

CS103 6.2

If the Producer's metadata declares registration is not supported (i.e.

requiresRegistration flag was set to "false"), then it MUST be valid to not supply a

registrationContext to operations with this parameter.

CS104 6.2
Whenever the registration attempt fails a fault message MUST be thrown indicating

this to the Consumer

CS105 6.2

A Producer supporting registration MUST allow a Consumer to register itself multiple

times with potentially different settings (e.g. billing settings) resulting in multiple

registrationHandles [R351].

CS106 6.4
The Consumer MUST NOT consider a relationship with a Producer ended until a

successful invocation of deregister.

CS107 6.4

The Consumer MUST NOT use an invalidated registrationHandle, where the

invalidation occurs either by passing the handle to deregister or by receiving a

InvalidRegistration fault message from the Producer on an invocation supplying the

handle.

CS108 6.4
The Producer MUST return a InvalidRegistration fault message whenever a Consumer

supplies an invalid registrationHandle.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (130 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS109 6.4
If the deregister operation fails, the Producer MUST return a fault message specifying

the reason for the failure.

CS202 6.5

If the nillable response from getRegistrationLifetime is nil, then scheduled

destruction is not in use for this registration and the Consumer MUST use the

deregister operation to destroy the registration.

CS110 7

Producers MUST expose one or more logically distinct ways of generating markup and

handling interaction with that markup [A205], which this specification refers to as

Portlets.

CS111 7

A Consumer MAY request a unique configuration of one of these Portlets, either in an

opaque manner (e.g. the "edit" button common on aggregated pages which invokes a

Portlet-generated page for setting the configuration) or by using the property

definitions found in the Portlet's metadata to configure it in an explicit manner

CS112 7
Any Producer that supports cloning portlets on performBlockingInteraction

invocations MUST support the destroyPortlets operation.

CS203 7.1.8
An array of ExportedPortlet structures where each exported Portlet MUST be

represented by a single entry in the array.

CS113 7.2

For security reasons related to exposing the existence of something the caller is not

allowed to access, it is RECOMMENDED that a AccessDenied fault be generated both

for the case of the supplied portletHandle not being a valid reference in the scope of

the supplied registrationHandle and for the case of the user not having access to a

valid reference (i.e. by definition access is denied when the Portlet reference is

invalid).

CS114 7.2
When generating the PortletDescriptionResponse the Producer SHOULD use the

desiredLocales to control what locales are supplied for localized strings.

CS115 7.3
The supplied PortletContext MUST refer to either a Producer Offered Portlet or a

previously cloned Consumer Configured Portlet.

CS116 7.3
The initial state of the new Portlet MUST be equivalent to the state of the Portlet

referenced by the supplied handle.

CS117 7.3
The new portletHandle MUST be scoped by the registrationHandle in the

supplied RegistrationContext and be unique within this registration.

CS118 7.3

If a Producer chooses to return the enduring state of its Portlets to the Consumer, it is

RECOMMENDED that the portletHandle encode the supplied

registrationHandle. In this case, it is also RECOMMENDED that the portletState

encode the portletHandle so that the Producer can do reasonable cross checks that

it is receiving a consistent set of handles and state.

CS119 7.3

If the Consumer has not registered, then the Consumer MUST invoke destroyPortlets

when it would have deregistered, passing each portletHandle that would have been

scoped by a registration.

CS120 7.4

The Consumer MUST inform the Producer that a Consumer Configured Portlet which

does not use leasing will no longer be used by invoking either the destroyPortlets or

the deregister operation and MUST NOT consider such a Portlet to have been

destroyed until one of these operations has been successfully invoked for that Portlet.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (131 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS121 7.4

A Consumer MUST NOT reference any of the supplied portletHandles after

successfully invoking destroyPortlets and MAY reclaim resources related to the

supplied portletHandles (e.g. portletState).

CS204 7.5

If the optional Lifetime field from getPortletsLifetime is not returned for a particular

Portlet, then scheduled destruction is not in use for this Portlet and the Consumer

MUST use the destroyPortlets operation to destroy the Portlet.

CS205 7.7
When not returning a fault, the Producer MUST return exactly one entry in its response

for each entry in the request to copyPortlets.

CS206 7.8

If the Consumer requires the Producer to export the Portlets by value and the

Producer does not support such exports, the ExportByValueNotSupported fault

MUST be returned.

CS207 7.8

The returned ExportPortletsResponse contains arrays for both the set of

successfully exported Portlets and reasons for each Portlet where the export attempt

failed. When not returning a fault, the Producer MUST return exactly one entry in its

response for each entry in the request to exportPortlets.

CS208 7.8

The Producer indicates its preferred request size in the recommendedExportSize field

of its ServiceDescription. Consumers SHOULD limit their export requests to chunks

no larger then this size.

CS209 7.9
The Producer response MUST contain exactly one element for each entry in the list

supplied to importPortlets.

CS122 7.12

The supplied set of property changes MUST be processed together. In particular,

validation SHOULD only be done considering the entire set as partial updates could

easily create an internally inconsistent set of properties. The storage of the update

caused by applying the set of property updates SHOULD only occur after the Producer/

Portlet executes this validation.

CS123 7.12
The Producer SHOULD serialize invocations of setPortletProperties for any one

portletHandle.

CS124 7.13
If the Consumer does not pass a names parameter, the Producer / Portlet MUST treat

this as a request to enumerate the properties of the Portlet.

CS125 7.14

While it is possible the set of properties can change with time (e.g. the Portlet

dynamically creates or destroys properties), Producers and Portlets SHOULD make

the returned modelDescription as complete as possible.

CS126 7.14
When generating the PortletPropertyDescriptionResponse the Producer SHOULD

use the desiredLocales to control which locales are supplied for localized strings.

CS127 9.1

The Consumer indicates to the Portlet the preferred character encoding, using the

markupCharacterSets field of the MarkupParams structure. It is up to the Portlet to

generate markup that complies with this encoding. The Portlet is allowed to generate

its markup in either the UTF-8 or UTF-16 character set encodings if it is unable to

generate the requested character set. If it is unable to generate markup in any of these

character sets, the Portlet MUST return a fault message to the Consumer.

CS128 9.2

As the Portlet writes URLs into the markup it MUST encode them based on the

markupType. For example, XML based markup requires that all "&" characters have to

be encoded as "&".

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (132 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS129 9.2
If a Portlet is unable to completely write the portlet URLs for its markup, it MUST set

the requiresUrlRewriting flag in the returned MarkupContext structure to “true”.

CS130 9.2

Portlets MUST adopt the following convention for including non-ASCII characters

within portlet URLs in order to comply with W3C recommendations.

1. Represent each character in UTF-8 (see [RFC2279]) as one or more bytes.

2. Escape these characters with the URI escaping mechanism (i.e., by converting

each byte to %HH, where HH is the hexadecimal notation of the character

value)

CS131 9.2

When URL activations occur, the Consumer MUST process all mode and window state

change requests and either honor and reject them prior to invoking the operation

indicated by the URL. If the requested mode or window state is for a value that is

either invalid or unavailable, the Consumer SHOULD leave the current value

unchanged.

CS138 9.2

Since the values a Portlet provides will appear as either an URL parameter value or as

part of the path of an URL, these values it MUST be strictly encoded (i.e. "&", "=", "/",

and "?" need to be url-escaped) so that special URL characters do not invalidate the

processing of the enclosing URL.

CS132 9.2.1

The Consumer is NOT REQUIRED to process URLs not conforming to this format and

MAY choose to pass them unchanged, replace them with error text, do a best effort

processing or invalidate the entire markup fragment.

CS133 9.2.1

The Consumer is NOT REQUIRED to process escaped characters in parameter

names, but rather MAY pass them unchanged to either the user-agent (during URL

rewriting) or the Producer (during processing of an activated URL).

CS176 9.2.1

Consumers MUST accept both the "&" character and the corresponding entity

reference (i.e. "&") as separators between the name/value pairs as this allows

portlets to produce markup fragments valid for a larger range of mime types.

CS134 9.2.1.1
This parameter (wsrp-urlType) MUST be specified first when using the Consumer

URL rewriting template and the value selected from the following definitions.

CS135 9.2.1.1.1

All form parameters, submitted as query string parameters using the HTTP GET

method, that are not used to encode parameters defined by this specification MUST be

passed to performBlockingInteraction as formParameters.

CS136 9.2.1.1.2

The URL MAY specify the wsrp-navigationalState and/or wsrp-

navigationalValues portlet URL parameters, whose values the Consumer MUST

supply in the opaqueValue and publicValues fields of the NavigationalContext

structure, respectively.

CS137 9.2.1.1.3

When a portlet URL specifies "resource" for the wsrp-urlType portlet URL parameter,

either the wsrp-resourceID portlet URL parameter or a combination of the wsrp-

requiresRewrite and the wsrp-url portlet URL parameters MUST also be specified.

CS210 9.2.1.1.3.2
[wsrp-resourceID]: This parameter provides the resourceID parameter which the

Consumer MUST supply when invoking the getResource operation.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (133 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS211 9.2.1.1.3.4

[wsrp-resourceState]: The value of this portlet URL parameter defines the state

which the Consumer MUST send in the resourceState field of the ResourceParams

structure when the URL is activated. If this parameter is missing, the Consumer MUST

NOT supply a value in the resourceState field of the ResourceParams structure.

CS226 9.2.1.1.3.6

As a result, the resource generation SHOULD NOT depend on the

NavigationalContext, mode or windowState and the generated resource MUST NOT

include URIs with a wsrp-urlType of render or blockingAction.

CS177 9.2.1.1.3.6
Normally this occurs if either the referenced resource or a secondary resource which

this resource MAY contain URIs with a wsrp-urlType of render or blockingAction.

CS190 9.2.1.1.3.6

This restriction increases the cacheability of the resource over specifying a value of

"page" (e.g. for the duration of a user interacting with some other portlet), but the

generated resource MUST NOT include URIs with a wsrp-urlType of render or

blockingAction.

CS212 9.2.1.1.4

Consumers supporting an extension MUST supply defined extensions to the

Templates structure to those Producers indicating support for the same extension in

their ServiceDescription.

CS140 9.2.1.2

The value of this portlet URL parameter defines the opaqueValue portion of the

Portlet's navigational state the Consumer MUST send to the Producer when the URL

is activated. If this parameter is missing, the Consumer MUST NOT supply the

opaqueValue portion of the Portlet's navigational state.

CS213 9.2.1.3

Since multiple updates can be specified on a single URL, the following sequence of

steps MUST be used when encoding the value for the wsrp-navigationalValues

portlet url parameter:

1. A querystring-like [20] value is built from the parameter identifiers and values to

be set. Parameters that are an array of strings can be specified by repeating

the parameter. For example, if a Portlet has defined three parameters and is

setting two of these parameters, one an array of strings (parameter name is

""{http://www.example.com}param1"" with an identifier of ""p1""), and clearing

another (parameter name is ""{http://www.example.com}param2"" with an

identifier of ""p2"") while leaving the third parameter (parameter name is

""{http://www.example.com}param3"" with an identifier of ""p3"") unchanged,

results in; p1=value1&p1=value2&p2=

2. The string built in step #2 is url-encoded so that it can appear as the value of

the portlet url parameter. The example becomes; p1%3Dvalue1%26p1%

3Dvalue2%26p2%3D

3. The url-encoded string is then used as the value of the wsrp-

navigationalValues portlet url parameter.

CS214 9.2.1.3

If values are supplied for the wsrp-navigationalValues portlet URL parameter, the

Consumer MUST supply those values in the publicValues field along with the values

the Consumer has for the Portlet's navigationalParameters which were not

referenced by the wsrp-navigationalValues portlet URL parameter.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (134 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS142 9.2.1.4

The value of this portlet URL parameter defines the interaction state the Consumer

MUST send to the Producer when the URL is activated. If this parameter is missing,

the Consumer MUST NOT supply the interactionState field of the InteractionParams

structure.

CS143 9.2.1.5
The value for wsrp-mode MUST be one of the modes detailed in section 5.8 or a

custom mode the Consumer specified as supported during registration.

CS144 9.2.1.5
The wsrp-mode portlet URL parameter MAY be used whenever the wsrp-urlType

portlet URL parameter has a value of "blockingAction" or "render".

CS145 9.2.1.6
The value for wsrp-windowState MUST be one of the values detailed in section 5.9 or

a custom window state the Consumer specified as supported during registration.

CS146 9.2.1.6
The wsrp-windowState portlet URL parameter MAY be used whenever the wsrp-

urlType portlet URL parameter has a value of "blockingAction" or "render".

CS147 9.2.1.8

The value for the wsrp-secureURL is a boolean indicating whether the resulting URL

MUST involve secure communication between the client and Consumer, as well as

between the Consumer and Producer.

CS148 9.2.1.8

Note that the Consumer's aggregated page MUST be secure if any of the Portlets

whose content is being displayed on the page have indicated the need for secure

communication for their current markup.

CS215 9.2.1.9

Extensions to the data supplied on the URL which this protocol defines MUST use the

following sequence to encode the additoinal information into the wsrp-extensions

portlet URL parameter:

1. A querystring-like [20] value is built from the parameter identifiers and values to

be set. Parameters that are an array of strings can be specified by repeating

the parameter. For example, if a Portlet has two additional parameters, one is

an array of strings (parameter name is ""param1"") and and the other a simple

string (parameter name is "param2"), results in;

"param1=value1¶m1=value2¶m2=value3"

2. The string built in step #1 is url-encoded so that it can appear as a querystring

value or part of the path portion of the URL. The example becomes; "param1%

3Dvalue1%26param1%3Dvalue2%26param2%3Dvalue3"

3. The url-encoded string is then used as the value of the wsrp-extensions

portlet url parameter or to replace it within a template.

CS149 9.2.2

All content outside the {} pairs and all {} pairs containing tokens the Producer/Portlet

does not recognize MUST be treated by the Producer/Portlet as constants the

Consumer needs to receive when the portlet URL is activated.

CS216 9.2.2

These tokens are enclosed in curly braces (i.e. "{" and "}") and contain the name of the

portlet URL parameter which the Producer MUST replace (using "" for those

parameters where the Producer has no value).

CS150 9.2.2.1

The Consumer MUST integrate placeholders for at least the portlet URL parameters
wsrp-navigationalState, wsrp-navigationalValues, wsrp-

interactionState, wsrp-mode and wsrp-windowState in its template and SHOULD

integrate placeholders for the other portlet URL paramaters defined in this

specification.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (135 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS151 9.2.2.3
The Consumer MUST integrate placeholders for at least the portlet URL parameters

wsrp-navigationalState, wsrp-mode and wsrp-windowState in its template.

CS152 9.2.2.5

The Consumer MUST integrate placeholders for at least the portlet URL parameters

wsrp-url, wsrp-resourceID, wsrp-preferOperation, wsrp-requiresRewrite

and wsrp-resourceState to allow the Portlet to place all the pieces of information it

could use for accessing a resource.

CS153 9.2.2.7
Consumers not supplying all the other non-secure templates MUST set a value for this

template.

CS154 9.2.2.7

Since this may become the value for an action oriented template, the Consumer

SHOULD integrate placeholders for at least the portlet URL parameters wsrp-

navigationalState, wsrp-interactionState, wsrp-mode and wsrp-windowState

in this template.

CS155 9.2.2.8
Consumers not supplying all the other secure templates MUST set a value for this

template.

CS156 9.2.2.8

Since this may become the value for an action oriented template, the Consumer

SHOULD integrate placeholders for at least the portlet URL parameters wsrp-

navigationalState, wsrp-interactionState, wsrp-mode and wsrp-windowState

in this template.

CS157 9.2.2.9

If the Consumer includes wsrp-portletHandle, wsrp-userContextKey, wsrp-

portletInstanceKey, wsrp-sessionID, wsrp-portletStates, or wsrp-

pageState in a template, Producer written URLs based on that template MUST

replace the specified portlet URL parameter with the value the Consumer separately

supplied in a data field.

CS158 9.2.4
As a result, Portlets that include HTML forms with method=get in their markup MUST

specify usesMethodGet as "true" in their PortletDescription.

CS159 9.3

Tokens needing uniqueness on the aggregated page MUST be encoded to a Portlet-

instance specific namespace [A301]. The Portlet MAY do this by prefixing the name of

the resource with the namespacePrefix from the RuntimeContext structure.

CS217 9.3

In order for the semantics of namespace encoding, whether by Consumer rewriting or

Producer writing, to serve the purposes of making the encoded items unique on the

aggregated page and processable by the Producer/Portlet, should they become part of

a user interaction, the namespacePrefix from the RuntimeContext structure MUST

be the value used for both Consumer rewriting and Producer writing and MUST be

constant for the duration of the portletHandle.

CS160 9.3

Portlets choosing to apply namespace encoding to items that become part of a user

interaction MUST process these items with their namespace prefix attached as

Consumers MUST NOT remove such prefixes, regardless of whether Consumer

rewriting or Producer writing was used to attach the prefix.

CS161 9.3.1

The Consumer will locate such markers and MUST replace them with the same value

that was supplied to the Portlet in the namespacePrefix field of the RuntimeContext

structure.

CS162 9.4

The disallowed tags listed below are those tags that impact other Portlets or may even

break the entire aggregated page. Inclusion of such a tag invalidates the whole

markup fragment, which the Consumer MAY replace with an error message.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (136 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS163 9.4.1.1
However, in order to be a conforming Portlet, a Portlet MUST NOT use the tags

<body>, <frame>, <frameset>, <head>, <html>, and <title>.

CS164 9.4.2.1 & 10.4.3.1
However, in order to be a conforming Portlet, a Portlet MUST NOT use the tags

<body>, <frame>, <frameset>, <head>, <html>, and <title>.

CS165 9.5
Portlets SHOULD use the CSS style definitions from this specification in order to

participate in a uniform display of their content by various Consumers.

CS166 9.5
For markup types that support CSS stylesheets, Consumers MUST supply a CSS

stylesheet with definitions for the classes defined in section 9.5 of this specification.

CS167 10.1
A Consumer SHOULD provide the specific fields the Portlet declared it needs, unless

the information is not available or is restricted by policy (e.g. privacy policy).

CS218 11.2

As the Producer is ignorant of this encoding and the Consumer is required to

consistently encode parameters passed to the Producer in the SOAP message,

Consumers MUST ensure the data is properly decoded before it is passed to the

Producer.

CS219 11.2

Consumers MUST send the value received for the wsrp-urlType portlet URL

parameter using the name "wsrp-urlType" as the first element in the array of name/

value pairs

CS220 11.2

When processing a WSRP defined value for the wsrp-urlType portlet url parameters,

Consumers MUST NOT resend a particular set of wsrp-extra:extendedURLParameters

on later invocations of WSRP defined operations.

CS230 11.3

The Consumer MAY serve such a resource from any location and therefore Portlets

referencing a shared resource MUST NOT depend on being called to serve the

resource.

CS231 11.3

Regardless of the setting of the wsrp-resourceCacheability portlet url parameter,

Consumers supporting this extension MUST treat resource URIs specifying the wsrp-

sharedResource portlet url parameter as if the setting of the wsrp-

resourceCacheability portlet url parameter was "full".

CS232 11.3

Portlets specifying the wsrp-sharedResource portlet url parameter SHOULD also set

the wsrp-resourceCacheability portlet url parameter to a value of "full" so that

Consumers not supporting this extension will still provide the maximum supported

cacheability support.

CS173 13
The SOAP 1.1 faultcode SHOULD be set to the WSRP error code being raised,

namespace qualified to be in the "urn:oasis:names:tc:wsrp:v2:types" namespace.

CS174 13
In addition, the SOAP 1.1 fault's detail element MUST contain the corresponding

namespaced fault element from the WSRP v2 WSDL as its only content.

CS175 13

When using SOAP 1.2, the Subcode element MUST be present and carry the

corresponding WSRP error code in its mandatory Value sub-element. The Subcode

element MUST be contained in a SOAP 1.2 Receiver fault code, for the fault

messages defined in this specification. SOAP 1.2 faults MAY carry additional content

in the Detail sub-element, but MUST carry the corresponding WSRP namespaced fault

element.

CS169 14
WSRP_v2_Markup_PortType: All Producers MUST expose this portType.

WSRP_v2_ServiceDescription_PortType: All Producers MUST expose this portType.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (137 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

CS170 14

WSRP_v2_Markup_Binding_SOAP: All Producers MUST expose a port with this

binding for the WSRP_v2_Markup_PortType (the Markup portType).

WSRP_v2_ServiceDescription_Binding_SOAP: All Producers MUST expose a port

with this binding for the WSRP_v2_ServiceDescription_PortType (the

ServiceDescription portType).

CS171 14

WSRP_v2_Registration_Binding_SOAP: Producers supporting the Registration

portType MUST expose a port with this binding to the

WSRP_v2_Registration_PortType.

CS172 14

WSRP_v2_PortletManagement_Binding_SOAP: Producers supporting the

PortletManagement portType MUST expose a port with this binding to the

WSRP_v2_PortletManagement_PortType.

CS168 14

Normative copies of the WSDL that MUST be referenced by Producers implementing

this specification can be found at:

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-types.xsd - The type, message and fault

definitions for this specification

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-interfaces.wsdl - The portType definitions

for this specification

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-bindings.wsdl - The standard binding

definitions for this specification

CS221 14

Producers SHOULD NOT expect Consumers to use a mixture of WSRP v1 and v2

ports when interacting with it. Producers SHOULD use a single wsdl file with distinct

service elements for their v1 and v2 support if they support artifacts, such as

registrationHandle or portletState, being used with all operations regardless of

the version of the standard defining that operation and SHOULD use separate wsdl

files for specifying support for different versions of WSRP when artifacts are usable

only within the operations defined by a specific version of the WSRP standard.

Appendix A. Glossary (Non-Normative)

Action A term often used elsewhere for what this specification calls "Interaction".

Attribute

A distinct characteristic of an object. An object's attributes are said to

describe the object. Objects' attributes are often specified in terms of their

physical traits, such as size, shape, weight, and color, etc., for real-world

objects. Objects in cyberspace might have attributes describing size, type of

encoding, network address, etc. Salient attributes of an object is decided by

the beholder.

Authentication
To confirm a system entity's asserted principal identity with a specified, or

understood, level of confidence.

Client A system entity that accesses a web service.

Consumer

A system entity invoking Producers in a manner conforming to this

specification. For example a portal aggregating content from Portlets

accessed using the WSRP protocol.

End-User A person who uses a device specific User-Agent to access a Web site.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (138 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

Fragment

A piece of markup that is not part of a full document

● part of aggregate

● generally a markup language

● can aggregate a set of fragments

Portlet
Producer hosted component that generates content design for aggregating

and processes interactions generated from that content.

Producer A web service conforming to this specification.

Session

A finite duration interaction between system entities, often involving a user,

typified by the maintenance of some state of the interaction for the duration of

the interaction.

System Entity

An active element of a computer/network system. For example, an automated

process or set of processes, a subsystem, a person or group of persons that

incorporates a distinct set of functionality.

Time-Out

A period of time after which some condition becomes true if some event has

not occurred. For example, a session that is terminated because its state has

been inactive for a specified period of time is said to "time out".

Uniform Resource Locator (URL)
Defined as "a compact string representation for a resource available via the

Internet." URLs are a subset of URI.

User-Agent

A system entity that is used by an End-User to access a Web site. A user-

agent provides a run-time environment for distributed application components

on the client device.

Web Service

A Web Service is a software component that is described via WSDL and is

capable of being accessed via standard network protocols such as but not

limited to SOAP over HTTP.

Web Site
A hosted application that can be accessed by an End user using a user-

agent.

WSRP Service

Presentation oriented, interactive web services that can be aggregated by

consuming applications

● WSRP services can be published, found, and bound in a standard

manner, describing themselves with standardized metadata

- WSRP services can be published, found, and bound in a standard manner,

describing themselves with standardized metadata

XML (Extensible Markup Language)

Extensible Markup Language, abbreviated XML, describes a class of data

objects called XML documents and partially describes the behavior of

computer programs which process them. XML is an application profile or

restricted form of SGML, the Standard Generalized Markup Language [ISO

8879] See http://www.w3.org/TR/REC-xml.

XML Namespace

A name, identified by a URI reference, which are used in XML documents as

element types and attribute names. An XML namespace is often associated

with an XML schema. See http://www.w3.org/TR/REC-xml-names/ .

Appendix B. Common Values (Non-Normative)

There is significant value to defining values for various fields that Consumers and Producers share without having to

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (139 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

map to different values with the same semantic meaning. The following sections define such common values.

B.1 Standard User Categories

To ease the mapping of End-Users to user categories and to facilitate plug-and-play, the following standard category

names are provided along with an abstract definition of semantics associated with each. The specific semantics of

these categories are left to each Portlet's implementation.

● wsrp:full: The content for this user category will typically encompass the full functionality of the Portlet.

● wsrp:standard: This user category is typically associated with End-Users who may customize some set of

properties for a Portlet.

● wsrp:minimal: This user category is typically associated with End-Users who may view a Portlet on a page

but not modify any of its properties.

Appendix C. Types of state (Non-Normative)

This specification defines a number of types of state and state-passing mechanisms. The following table is an

attempt to elucidate the differences between these in one place:

Type of state Comments

interactionState
This type of state is encoded by Portlets in interaction URLs generated by the Portlet, and is

supplied to the Portlet by the Consumer when the End-User activates the URL.

uploadData Data the End-User is uploading to the Portlet.

formParameters Name/value pairs the End-User is supplying to the Portlet, usually via a form submission.

Navigational state

This type of state is intended to support page reloads (including from bookmarks) without the

view generated by the Portlet changing in a manner unexpected by the End-User. The

Consumer resupplies a portlet's most recent navigational state on relevant operations. The

Portlet may return the values it wants to be supplied in the future on the response from

relevant operations or encode such values in URLs such that they get applied when the URL

is activated. The two aspects of this type of state are:

1. opaque: This aspect of navigational state is reflected in the protocol in a single field (i.

e. it is the Portlet/Producer's task to encode all items which are not being exposed to

the Consumer into a single field).

2. publicly exposed: This aspect of navigational state requires the Portlet to provide a

description of each exposed item which then permits the Consumer to impact the

value for that item such that state-based coordination can be accomplished.

Both aspects of navigational state can be set anywhere either of them can be set and the

Consumer is required to manage both aspects in an equivalent manner.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (140 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

Session state

This type of state provides for communication between the Producer and Consumer

regarding transient state that is instantiated and managed on the Producer. Either can

invalidate this state as part of their normal processing (The Producer by destroying the

session and the Consumer by not supplying the session information on future operations).

This session state defined by this protocol is opaque to the Consumer and reflected in the

protocol in the sessionID fields. The Producer returns a value for the sessionID whenever

a new session is created and the Consumer returns it for future operations to enable use of

the session for processing a request.

portletState

This state reflects customizations relative to a particular use of a Portlet. This tends to have a

long span and therefore be stored in a manner that is unaffected by the Producer application

being stopped and restarted. Note that this type of state only appears in the protocol when

the Consumer is tasked with managing it for the Producer, but conceptually applies even

when the Producer manages the storage of the state.

registrationState

This state reflects the business and technical relationship between the Producer and

Consumer. Note that this type of state only appears in the protocol when the Consumer is

tasked with managing it for the Producer, but conceptually applies even when the Producer

manages the storage of the state.

exportContext This contains shared state for a set of exported Portlets.

exportState This contains state specific to a particular exported Portlet.

Appendix D. Coordination mechanisms (Non-Normative)

This specification defines a number of coordination mechanisms. The following table is an attempt to elucidate the

differences between these in one place:

Coordination Mechanism Comments

Events
Events provide a notification mechanism that something has occurred. This

notification may, but is not required to, carry data related to the notification.

publicValues

This portion of a Portlet's navigational state is intended to support Consumer-

mediated sharing of values across multiple Portlets. The value for any particular

publicValue may be supplied by a Portlet to the Consumer at any of the times

where the opaque portion of navigational state can be supplied. Consumer policy

controls when values derived from sources other than the Portlet impact one of

these items.

Note that navigational state is stored and managed on the Consumer and

therefore all components of this state (including publicValues are included on

operations where any of it is included.

Producer-mediated coordination

While not strictly defined by this specification, the groupID parameter is intended

as an enabling means for Producer-mediated coordination between a set of

Portlets deployed just on that Producer.

Appendix E. Data Structures List (Non-Normative)

Alphabetical listing of the defined data structures along with section numbers.

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (141 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

BlockingInteractionResponse

(5.1.24)
ImportPortletsFailed (7.1.11) RegistrationState (4.1.26)

CacheControl (5.1.6) ImportPortletsResponse (7.1.12) ResetProperty (4.1.18)

CCPPHeaders (5.1.9) InteractionParams (5.1.30) Resource (4.1.7)

CCPPProfileDiff (5.1.8) ItemDescription (4.1.9) ResourceContext (5.1.17)

ClientData (5.1.10) Key (4.1.3) ResourceList (4.1.8)

CookieProtocol (4.1.20) LifeTime (4.1.25) ResourceParams (5.1.15)

CopiedPortlet (7.1.5) LocalizedString (4.1.5) ResourceResponse (5.1.18)

CopyPortletsResponse (7.1.6) MarkupContext (5.1.19) ResourceValue (4.1.6)

DestroyPortletsResponse (7.1.2) MarkupParams (5.1.14) RuntimeContext (5.1.3)

ErrorCodes (5.1.25) MarkupResponse (5.1.20) ServiceDescription (4.1.24)

Event (5.1.22) MarkupType (4.1.10) SessionContext (5.1.1)

EventDescription (4.1.11) MimeRequest (5.1.13) SessionParams (5.1.2)

EventParams (5.1.31) MimeResponse (5.1.16)
SetPortletsLifetimeResponse

(7.1.15)

EventPayload (5.1.21) ModelDescription (4.1.14) StateChange (5.1.28)

ExportDescription (4.1.23) ModelTypes (4.1.13) Templates (5.1.7)

ExportedPortlet (7.1.7) NamedString (5.1.11) UpdateResponse (5.1.23)

ExportPortletsResponse (7.1.8) NavigationalContext (5.1.12) UploadContext (5.1.29)

Extension (4.1.1) ParameterDescription (4.1.15) UserContext (5.1.33)

ExtensionDescription (4.1.22) PortletContext (5.1.4)

UserProfile (5.1.32)

● Contact Type (5.1.32.7)

● EmployerInfo (5.1.32.2)

● Online (5.1.32.5)

● PersonName (5.1.32.1)

● Postal (5.1.32.6)

● Telecom (5.1.32.4)

● TelephoneNum (5.1.32.3)

ExtensionPart (4.1.21) PortletDescription (4.1.16)

FailedPortlets (7.1.1) PortletDescriptionResponse (7.1.3)

GetPortletsLifetimeResponse

(7.1.14)
PortletLifetime (7.1.13)

Handle (4.1.2)
PortletPropertyDescriptionResponse

(7.1.4)

HandleEventsFailed (5.1.26) Property (4.1.17)

HandleEventResponse (5.1.27) PropertyDescription (4.1.12)

ID (4.1.4) PropertyList (4.1.19) UserScopes (5.1.5)

ImportedPortlet (7.1.10) RegistrationContext (4.1.27)

ImportPortlet (7.1.9) RegistrationData (6.1.1)

Appendix F. Acknowledgments (Non-Normative)

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (142 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

F.1 WSRP Technical Committee members

The following individuals were voting members of the WSRP technical committee during the development of this

specification:

Polina Alber, Novell

Subbu Allamaraju, BEA Systems Inc.

Olin Atkinson, Novell

Atul Batra, Sun Microsystems

Wesley Budziwojski, Sun Microsystems

Rex Brooks, Individual

Mike Caffyn, NetUnity Software

Andrew Datars, Microsoft Corporation

Michael Freedman, Oracle Corporation

Kevin Frender, BEA Systems Inc.

Stefan Hepper, IBM Corporation

Richard Jacob, IBM Corporation

Andre Kramer, Citrix Systems, Inc

Dan Machak, Tibco Software, Inc.

Satish Ramaswamy, Vignette Corporation

Rich Thompson, IBM Corporation

Footnotes

[1] http://www.oasis-open.org/committees/wsia/use_cases/index.shtml

[2] http://www.w3.org/TR/xforms/

[3] http://www.w3.org/TR/xmlschema-1/#xsi_type

[4] http://www.ietf.org/rfc/rfc2109.txt

[5] http://www.w3.org/TR/xmlschema-1/#xsi_type

[6] http://www.ietf.org/rfc/rfc2616.txt

[7] http://lcweb.loc.gov/standards/iso639-2/langcodes.html

[8] http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (143 of 144)04/03/08 8:56:28 AM

WSRP v2.0 Specification

[9] http://lcweb.loc.gov/standards/iso639-2/langcodes.html

[10] http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

[11] http://www.iana.org/assignments/media-types/

[12] http://www.ietf.org/rfc/rfc2616.txt

[13] http://www.iana.org/assignments/character-sets

[14] http://www.ietf.org/rfc/rfc1522.txt

[15] http://www.ietf.org/rfc/rfc1522.txt

[16] http://www.ietf.org/rfc/rfc2109.txt

[17] http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/

[18] http://www.w3.org/TR/html40/charset.html - doc-char-set

[19] http://www.ietf.org/rfc/rfc2109.txt

[20] http://www.ietf.org/rfc/rfc3986.txt

[21] http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

file:///C|/Projects/WSRP/V2_Documents/wsrp-2.0-spec-os-01.html (144 of 144)04/03/08 8:56:28 AM

