
White PaPer SOLiD™ System

A Theoretical Understanding of 2 Base Color

Codes and Its Application to Annotation,

Error Detection, and Error Correction
Methods for Annotating 2 Base Color Encoded Reads in the SOLiD™ System
Heinz Breu

introduction

The SOLiD™ System enables massively parallel sequencing of

clonally ampliied DNA fragments linked to beads. This unique

sequencing methodology is based on sequential ligation

of dye-labeled oligonucleotide probes whereby each probe

assays two base positions at a time. The system uses four

luorescent dyes to encode for the sixteen possible two-base

combinations. This unique approach employs a scheme that

represents a fragment of DNA as an initial base followed by

a sequence of overlapping dimers (adjacent pairs of bases).

The system encodes each dimer with one of four colors using

a degenerate coding scheme that satisies a number of rules.

A single color in the read can represent any of four dimers,

but the overlapping properties of the dimers and the nature

of the color code allow for error-correcting properties. In this

document, we discuss the theory that explains these error-

correcting properties, show how to correct the misapplications

of these properties, and describe software algorithms to utilize

and verify the 2 base encoding scheme. For example, we can

identify and annotate isolated erroneous color calls, as well

as color-reads that correspond to isolated blocks of adjacent

nucleotide variants from a reference, most realistically one,

two, or three, but as many as the application might require.

Constructing the 2 Base Color Code

The SOLiD System’s 2 base color coding scheme is shown

in Figure 1.

Use the following steps to encode a DNA sequence

ATCAAGCCTC*:

1. start at the 5' end,

2. replace the di-base AT at this position with its corresponding

code 3 from the table,

3. advance by one base, which exposes the TC di-base, and

4. continue, as shown below.

Base Sequence: A T C A A G C C T C
Color String: 3 2 1 0 2 3 0 2 2

This process encodes a k-mer of bases as a (k-1)-mer of colors.

Although this color string codes for four different k-mers,

knowledge of the type and position of any of its k bases helps

to encode the sequence. For SOLiD sequencing applications,

prepend the leading base to result in a k-mer A321023022

(from the example above) from which the base sequence can

be reconstructed.

Figure 1: SOLiD™ System’s 2 base Coding Scheme. The column under code i

lists the corresponding dye and the di-bases (adjacent nucleotides) encoded by

color i. For example, GT is labeled with Cy3 and coded as “1”.

code 0 1 2 3

dye FAM Cy3 TXR Cy5

AA AC AG AT

CC CA GA TA

GG GT CT CG

TT TG TC GC

* The example depicted here uses an A as the irst base. In practice, the

current chemistry on the SOLiD™ System uses a T as the irst base.

Ligation Cycle

P
ri
m
e
r
R
o
u
n
d

1 2 3 4 5 6 7

A C G T

1
s
t

B
a
s
e

2nd Base

A

C

G

T

3’ 5’TA n n n z z z

3’ 5’TC n n n z z z

3’ 5’TG n n n z z z

3’ 5’TT n n n z z z

Cleavage Site

Di-base Probes
SOLiD™ Substrate

3’
TA

AT

Universal seq primer (n)

3’

P1 Adapter Template Sequence

POH

Universal seq primer (n-1)

Ligase

Phosphatase

+

1. Prime and Ligate

2. Image

4. Cleave off Fluor

5. Repeat steps 1-4 to Extend Sequence

3’

Universal seq primer (n-1)
1. Melt off extended

sequence
2. Primer reset3’

AA AC G

G GG

C C

C

T AA

A GG

CC

T TTT

6. Primer Reset

7. Repeat steps 1-5 with new primer

8. Repeat Reset with , n-2, n-3, n-4 primers

TA

AT

AT
3’

TA

AT
3’

Excite Fluorescence

Cleavage Agent

P

HO

TA
AA AG AC AAAT
TT TC TG TT AC

TG
CG
GC

3’

3. Cap Unextended Strands

3’

PO
4

 1 2 3 4 5 6 7 ... (n cycles)Ligation cycle

3’

3’
1 μm
bead

1 μm
bead

1 μm
bead

-1

Universal seq primer (n-1)

Universal seq primer (n)

Universal seq primer (n-2)

Universal seq primer (n-3)

Universal seq primer (n-4)

3’

3’

3’

3’

3’

1

2

3

4

5

 PRIMER ROUND 1

TEMPLATE

PRIMER ROUND 2

1 base shift

Glass Slide

3’
5’

Template Sequence

1 μm
bead

P1 Adapter

Bridge Probe

Bridge Probe

Bridge Probe

Read Position

Indicates positions of interogation

35343332313029282726252423222120191817161514131211109876543210

Figure 2. Ligation based sequencing with di-base probes using the SOLiD System. This schematic shows bases interrogated by the di-base probes at

positions 1 and 2.

4. Monodibases get the same color:

color (bb) = color (dd).

That is, color (AA) = color (CC) = color (GG) = color (TT). The

following are not requirements, but interesting properties that

follow from these four. Property 5 follows from requirements 2

and 3, and will make our construction easier.

5. Two different di-bases that nevertheless have the same

second base get different colors:

color (bd) ≠ color (ed), if b ≠ e.

For example, color (AC) ≠ color (TC). Property 6 also follows

from requirements 1-4, but it is most easily veriied against the

completed code (Figure 3, Panel E).

6. A di-base and its complement get the same color:

color (bcd c) = color (dcbc).

For example, color (AC) = color (TG).

Satisfying the requirements for a 2 Base Coding System

The remainder of this document uses a notation different

from Figure 1. Figure 3 lists the colors for each di-base. For

example, the value in row C and column T will be the color

(2) for di-base CT (Figure 3, Panel A). Requirements 1 and 2

require that all colors are present in the irst row. Because the

system can use any one-to-one mapping between the actual

dyes and the labels 0, 1, 2, and 3 (provided that requirements

1 and 2 remain satisied) then the irst row (row A) can be

The SOLiD™ System generates its reads in precisely this

encoded form. One way of accomplishing this is shown

in Figure 2.

requirements/Properties for a 2 Base Color Code Scheme

The 2 base color coding scheme possesses certain properties

that will be discussed later in the document. Interestingly,

this scheme is essentially the only code that satisies these

properties. This can be observed by treating the properties as

requirements and constructing the color code from them. This

document deals only with bases, not other IUB (International

Union of Biochemistry) codes. So let B = {A, C, G, T}. The color

code should satisfy the following requirements:

For all bases b, d, e in B:

1. The available colors are 0, 1, 2, and 3:

color (bd) ∈ {0, 1, 2, 3}.

2 Two different di-bases that have the same irst base get

different colors: color (bd) ≠ color (be) if d ≠ e.

For example, color (AC) ≠ color (AG).

3. A di-base and its reverse get the same color:

color (bd) = color (db).

For example, color (AC) = color (CA).

Second Base

A C G T

F
irst B

ase

A

C 2

G

T

Panel a

Second Base

A C G T

F
irst B

ase

A 0 1 2 3

C

G

T

Panel B

Second Base

A C G T

F
irst B

ase

A 0 1 2 3

C 1

G 2

T 3

Panel C

Second Base

A C G T

F
irst B

ase

A 0 1 2 3

C 1 0

G 2 0

T 3 0

Panel D

Second Base

A C G T

F
irst B

ase

A 0 1 2 3

C 1 0 3 2

G 2 3 0 1

T 3 2 1 0

Panel e

Figure 3. requirements that assign the Color for a 2 Base Code.

color 3 transforms base C to base G, which can be written in

different ways: “f3(C) = G”, “C3 = G”, “C3G”, or even “C3G”.

Swapping rules

The following rules can be applied to verify the observations

from Figure 3:

1. Color 0 is the identity function.

That is f0(b) = b for every base b.

2. Color 1 swaps A with C, and it swaps G with T.

For example, f1(A) = C.

3. Color 2 swaps A with G, and C with T.

4. Color 3 swaps A with T, and C with G.

Function Composition on Colors

Strings of colors can also be treated as transformations

by simply applying one color transformation after another.

This is how to decode a color read. For example, to decode

A321023022 apply color 3 to A to get f3(A) = T. Then apply the

next color, 2, to this result, to get f2(T) = C. Continuing in this

way, decode all bases, including the last:

a T C A A G C C T C
 3 2 1 0 2 3 0 2 2

That is, A321023022 decodes to ATCAAGCCTC.

To compose all color functions in an entire string, the next

step is to ignore intermediate bases. Just as a single color

transforms one base into another, so does a string of colors.

The example above transforms the irst base ‘A’ into the last

base ‘C’ of the sequence. This is true of the whole string and

also of substrings. In the example above, we can think of the

substring 102 as transforming C into G:

A A C A A G C C T C
 0 1 1 0 2 3 0 2 2

 C1 → A0 → A2 → G

labeled as shown (Figure 3, Panel B.) Requirement 3, that color

(bd) = color (db), gives a unique labeling for column A (Figure

3, Panel C). Requirement 4, that color (bb) = color (AA), gives

a unique labeling for the diagonal (Figure 3, Panel D). Finally,

requirements 1, 2, and 5, state that every color must appear

in every row and every column exactly once (Figure 3, Panel

E). The table (Figure 3, Panel E) is easy to memorize and work

with because, by virtue of Property 3, one can think of di-bases

as two-element sets for assigning colors. The di-bases starting

with ‘A’ get colors 0, 1, 2, and 3 respectively. Therefore:

0. AA, CC, GG, TT all get color 0,

1. AC and CA get color 1, and so must GT and TG,

2. AG and GA get color 2, and so must CT and TC,

3. AT and TA get color 3, and so must CG and GC.

Determining the Color String of the Sequence

Without the leading base, it is not possible to determine if a

particular DNA sequence is GC-rich from its color string alone.

Here, we will show that for any GC-rich sequence S, there

exists another sequence S', with exactly the same color string.

Make the new sequence S' from S by replacing A with G, C

with T, G with A, and T with C (i.e., replace the base with the

other purine or pyrimidine). The result is an AT-rich sequence

that has the same color string.

Example: S = G C G C A G G G T C C T C C T
 3 3 3 1 2 0 0 1 2 0 2 2 0 2

 S' = A T A T G A A A C T T C T T C

This is because, if a di-base bd has a color k, then so does its

replacement b'd '. For example: 0: GG → AA, 3: GC → AT,

2: AG → CT, 1: AC → GT. If the di-base in S has color 0, then its

bases are equal and remain so in S'. If it has color 3, its bases

are complementary and remain so in S'. If it has color 2 and its

bases are both purines, they will both be pyrimidines in S', and

vice versa. Finally, if it has color 1 then it is AC, CA, GT, or TG,

and so replaced by GT, TG, AC, or CA respectively, all of which

again have color 1.

Colors as transformations of Bases

Up until this point, colors are assigned as a result of an

encoding process, either a speciic chemical one, like the

SOLiD sequencing process, or a purely mathematical one.

Here, there is just one function, color: B × B → {0, 1, 2, 3},

that maps di-bases to colors, e.g., color (CG) = 3.

For transformation of bases, color can be represented in

a different way. Each color d is a function fd : B → B that

“transforms” base u to base v. There can be any number of

colors, but in this case there are four. The transformations

are also speciied in Figure 3, Panel E. To transform base u

with color d, look up color d in row u and report the unique

column (by Requirement 2) in which it resides. For example,

Figure 4. addition table to Obtain the Code for Strings of Colors

as transformations of Bases. (A) The original Klein four-group addition

table. This addition table has been obtained by the Klein four-group http://

en.wikipedia.org/wiki/Klein_four-group, which is the symmetry group

of a rectangle. (B) The corresponding addition table for strings of colors.

⊕ i v h r

i i v h r

v v i r h

h h r i v

r r h v i

Panel a

⊕ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Panel B

For input C color string 102 acts just like color 3, and this also

transforms C to G. Also, 102 acts just like color 3, for all inputs

A, C, G, and T.

To understand this concept, begin by composing just two

adjacent colors as follows:

C10 = f0 o f1(C) = f0 (f1 (C)) = f0 (A) = A = f1(C)

In this example, color string 10 behaves just like the single

color 1, which also maps C to A. Using the swapping rules,

color string 10 behaves like color 1 for all input bases. Color 1

swaps A with C, and G with T. Color 0 does not swap any of

the bases. The rules for all pairwise combinations of colors,

showing that each two-color string behaves like a particular

single color, have already been determined in the Klein

four-group. The Klein four-group (http://en.wikipedia.org/

wiki/Klein_four-group) is the symmetry group of a rectangle,

which has four elements, the identity, the vertical relection,

the horizontal relection, and a 180 degree rotation, as

shown in Figure 4. The rectangle symmetry group has the

addition table shown in Figure 4, Panel A.

The symbol ⊕ means “followed by”. For example,

v ⊕ h = r means that a vertical relection followed by a

horizontal relection is the same, as if it had rotated the

rectangle by 180 degrees.

The set of color operations with functional composition

that were discussed above is isomorphic to the Klein four-

group. This can be observed by labeling the corners of a

rectangle with the bases and witnessing their rearrangements

(transformations), as shown in Figure 5. The identity leaves

the bases unchanged, exactly like color 0. The vertical

relection swaps A with C, and G with T, exactly like color 1.

The horizontal relection swaps A with G, and C with T, exactly

like color 2; and the 180 degree rotation swaps A with T, and C

with G, exactly like color 3. An addition table can be created for

colors from the addition table for rectangle symmetries simply

by substituting i, v, h, and r with 0, 1, 2, and 3 respectively,

as in Figure 4, Panel B. The symbol ⊕ means “followed

by” in this context too, but it is usually more convenient to

leave it out in the written expressions. For example, instead

of 3⊕2⊕1⊕0⊕2⊕3⊕0⊕2⊕2, just write 321023022, and

A321023022 = C means the same as f2(f2(f0(f3(f2(f0(f1(f2(f3

(A))))))))) = C, the former being somewhat easier to read, write,

and parse.

Properties of Groups

A group (http://en.wikipedia.org/wiki/Group_theory) is a

set of elements (colors, in our case) with an operator ⊕ that

satisies the following four properties:

1) Closure: If a and b are elements, then a ⊕ b is also an

element.

2) Associative: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

3) Identity: There is an element i such that i ⊕ a = a ⊕ i = a.

4) Inverse: For every element a, there is an element a-1, such

that a ⊕ a-1 = a-1 ⊕ a = i.

In addition, the Klein four-group is also Abelian, which is to say

that it is

5) Commutative: a ⊕ b = b ⊕ a.

In this group of color calls, ‘0’ is the identity element and every

element is its own inverse (the diagonal of Figure 4, Panel

B are all 0’s). It should be noted that except for the identity

color ‘0’, any color composed with any other color is the third

color. These properties can be used when designing protocols,

writing programs, and proving correctness.

applications to SOLiD Sequencing events

Using the theoretical methods discussed above, here are a

few examples on how to analyze typical SOLiD resequencing

events. Each of the next few sections analyzes common

resequencing events by using an example of a nucleotide

sequence read, the corresponding reference, and their color-

string representations. In general, a color string that does NOT

satisfy these requirements is said to be “invalid”.

A C

G T

i
A C

G T

A C

G T

v
C A

T G

A C

G T

h
G T

A C

A C

G T

r
T G

C A

Figure 5: Using the Klein four-group to Obtain the Code for Strings of

Colors as transformations of Bases. Rectangle symmetries i, v, h, and r

transform bases exactly like color operators 0, 1, 2, and 3 respectively.

Mismatched Leading Base

In this application, a given color read and its alignment with a

reference is shown below. If all colors match, but the leading

base does not, then ALL decoded bases will be mismatches.

This is observed in the example below.

 A C G T A C G T C C G T A C
A 1 3 1 3 1 3 1 2 0 3 1 3 1
C 1 3 1 3 1 3 1 2 0 3 1 3 1
 C A T G C A T G A A T G C A

The color code group properties can be used to prove this

will always be the case. Begin with just the alignment of

color reads:

A 1 3 1 3 1 3 1 2 0 3 1 3 1
C 1 3 1 3 1 3 1 2 0 3 1 3 1

For all positions i, the reference base at i is not equal to the

read base at i. In considering an arbitrary position i, it has

already been shown that the base in reference position i is

Ab, where b is the sum of the reference colors in positions 1

through i, using the addition table in Figure 4, Panel B. Similarly

the base in read position i is Cd, where d is the sum of read

colors in positions 1 through i. However, b must be equal to d

because the read colors are the same as the reference colors.

Therefore, by considering color code requirement 2, Ab ≠ Cb,

which shows all bases must be mismatches.

an isolated Single-Base Variant

A single-base variant is a read base that differs from its aligned

reference base. The variant is said to be isolated if it is not

adjacent to a variant on either side. For example, the dot marks

the isolated single base variant in the alignment below.

 1 3 1 3 1 3 1 3 1 3 1 3 1
Reference: A C G T A C G T A C G T A C
 | | | | | | | • | | | | | |

Read: A C G T A C G A A C G T A C
 1 3 1 3 1 3 2 0 1 3 1 3 1

To analyze this case, let’s focus on the variant and introduce

variables, as shown in the alignment below.

 u v
Reference: B D F
 | • |

Read: B E F
 w x

Here D ≠ E are mismatched bases, and they are isolated

because they are lanked by matched bases B and F. In order

for colors u, v, w, and x to be consistent with this variant, they

must satisfy the following properties:

1. u ≠ w because color (BD) ≠ color (BE) by Code

Requirement 2.

2. uv = wx because both colors uv and wx transform base

B to base F, so that uv = color (BF) = wx.

3. v ≠ x follows from the irst two requirements. This does

not need to be tested since the irst two are true.

two adjacent Variants

In the previous application, both relevant color positions were

mismatches. The two examples in this section show that

some colors in other kinds of resequencing events, although

otherwise constrained, may result in matches or mismatches.

Therefore, when annotating color reads, it is not suficient to

annotate only colors that are mismatches. Here is an example

where all relevant positions are color mismatches:

 1 3 1 3 1 3 1 3 1 3 1 3 1
Reference: A C G T A C G T A C G T A C
 | | | | | | • • | | | | | |

Read: A C G T A C A A A C G T A C
 1 3 1 3 1 1 0 0 1 3 1 3 1

Analysis:

 u v w
Reference: B D E F
 | • • |

Read: B G H F
 x y z

Properties:

1. u ≠ x by Code Requirement 2.

2. uv ≠ xy because they must transform B to different bases

E and H.

3. uvw = xyz because both uvw and xyz must transform B to F.

4. v and y could be equal or they could be different.

There are two additional interesting properties that follow from

the properties above, therefore, there is no reason to test for

them when identifying two-base variants above.

5. vw ≠ yz because they must transform different bases D and

G to F.

6. w ≠ z because they must transform different bases E and H

 to F.

Here is another example of two adjacent variants resulting

in three color positions in which only the outer two are

mismatches.

 1 3 1 3 1 3 1 3 1 3 1 3 1
Reference: A C G T A C G T A C G T A C
 | | | | | | • • | | | | | |

Read: A C G T A C C A A C G T A C
 1 3 1 3 1 0 1 0 1 3 1 3 1

Even though the center two color positions, both with color 1,

are not mismatches, the analysis above still applies, and this

new example satisies all of the above properties.

three adjacent Variants

Here is an example of three adjacent variants.

 1 3 1 3 1 3 1 3 1 3 1 3 1
Reference: A C G T A C G T A C G T A C
 | | | | | • • • | | | | | |

Read: A C G T A G C A A C G T A C
 1 3 1 3 2 3 1 0 1 3 1 3 1

This example has two single-color mismatches isolated by two

color matches. In the analysis below, the Bi are bases and the

ci are colors:

 c1 c2 c3 c4

Reference: B1 B2 B3 B4 B5

 | • • • |
Read: B1 B6 B7 B8 B5

 c5 c6 c7 c8

Properties:

1. c1 ≠ c5

2. c1c2 ≠ c5c6

3. c1c2c3 ≠ c5c6c7

4. c1c2c3c4 = c5c6c7c8

insertion and Deletions (indels)

In these examples, a base deleted from the read is depicted

as a ‘—’ in the read. Similarly, a base inserted into the read is

depicted as a ‘—’ in the reference. It should be noted that the

reference would never be stored with a ‘—’ in those places,

nor does the SOLiD™ System ever call a ‘—’ for any of its

colors. The ‘—’ would be generated only by aligning the read

with the reference. For example, here is a single-base deletion:

 1 3 1 3 1 3 1 3 1 3 1 3 1

Reference: A C G T A C G T A C G T A C
 | | | | | | • | | | | | | |

Read: A C G T A C — T A C G T A C
 1 3 1 3 1 2 — 3 1 3 1 3 1

The analysis must explain two situations, which it does:

 u v u v
Reference: B D E B D E
 | • | and | • |

Read: B - E B -
 - w w -

Properties:

1. uv = w because both colors uv and w must transform base

 B to base E. A single base deletion causes two elementary

 colors, u and v, to be replaced by one, w. In the above

 deletion, for example, 31 = 2, as is easily conirmed by the

 addition table.

2. Property 1 is a suficient test, but it may be of interest

that the addition table implies that either u, v, and w are

all different, or one is 0 and the other two are identical.

Property 1 applies also for multiple bases.

For example, here is a three base insertion:

 1 3 1 3 1 - 3 - - 1 3 1 3 1 3 1
Reference: A C G T A C - - - G T A C G T A C
 | | | | | | • • • | | | | | | | |

Read: A C G T A C T A G G T A C G T A C
 1 3 1 3 1 2 3 2 0 1 3 1 3 1 3 1

This alignment shows the 3 in the insertion aligning with a 3

in the reference, even though these two have nothing to do

with one another; the 3 in the reference encodes CG, whose

bases bracket the insertion, and the insertion has a TA, which

is coincidently also encoded with color 3.

Analysis:

 u
Reference: B - - - H
 | • • • |
Read: B D E F H
 v w x y

The alignment above shows the reference color u aligned

with read color v, but in fact might align with color w, x, or y

instead. The following property holds in all cases: u = vwxy.

One elementary color, u, in the reference is replaced by four,

c1, c2, c3, and c4, in the read.

Correcting two Common Misunderstandings

A cursory overview of the SOLiD 2 base color coding system

may lead to some common misunderstandings. The irst is that

an isolated color mismatch must always correspond to a

sequencing error. The second is that certain (3/4 of the total)

isolated two-color changes always correspond to errors.

These misunderstandings do not actually appear in print, but

there is public information that can be easily misread that way

if taken out of context.

In this section, two examples are presented that

discuss these common misunderstandings. The irst involves

an isolated pair of adjacent base variants and addresses only

the isolated color change problem. The second example

involves an isolated cluster of three adjacent base changes.

The second example has both an isolated color change and

an “impossible” two color change.

Counter example to “an isolated color change always

corresponds to a sequencing error.”

 2 0 1 3 1 2 0
Reference: G A A C G T C C
 | | | • • | | |

Read: G A A G C T C C
 2 0 2 3 2 2 0

This counter example shows two single-color mismatches,

both 1 → 2, isolated from one another by a color match. It is

easy to verify that this counter example does indeed satisfy

the requirements for a two-base variant: 1 ≠ 2, 13 = 2 ≠ 1 =

23, and 131 = 3 = 232.

Counter example for “impossible two position changes

always correspond to measurement errors.”

 0 1 2 0 3 0
Reference: A A C t t A A
 | | • • • | |

Read: A A t G G A A
 0 3 1 0 2 0

The example shows a “forbidden” (i.e., impossible adjacent

mismatches when only a single base change is present) two-

color change, 12 → 31, isolated by a color match (0 → 0) from

a single-color change (3 → 2). Both “impossible” color changes

are nevertheless perfectly consistent with a three-base variant,

in particular, the one shown above.

Again, it is easy to verify that the colors satisfy the

requirements for a three-base variant: 1≠3, 12≠31, 120≠310,

and 1203 = 3102.

A clariication of the misunderstanding follows easily by

understanding that they are equivalent to assuming that the

only base variants permitted in sequences are isolated single-

base substitutions.

annotating alignment Mismatches in the SOLiD™ System

From the previous discussion, it is clear that when a SOLiD

read is aligned to a reference sequence, only a subset

of possible mismatches represent underlying sequence

variations. It is therefore important to identify mismatches that

are candidate sequence variations and to distinguish them

from other patterns that are the result of sequencing error. This

information can then be used to correct errors from aligned

reads, resulting in a signiicant improvement in the accuracy

of the system, and to pass putative sequence variation to

downstream algorithms for the assessment of genotype

calls and identiication of new alleles in the sample. These

annotations are typically conveyed in iles that describe the

attributes of sequence reads, such as the SOLiD GFF ile.

The SOLiD GFF is an important ile format for the SOLiD

System. In essence, a ile of this type is a list of reads, each

with several attributes. One of those attributes is the ‘s’, or

annotations attribute. Here is the deinition of the annotations

attribute of the SOLiD GFF v 0.2 ile:

This is a comma-separated string representing annotations

on the sequence. The format is ‘{char}{position}’ where

{char} is a character representing the type of annotation

(typically a formatting request to visualization software)

and {position} is the position of this annotation in the read.

The position is 1-based on the string recorded in the ‘g’

attribute. That is, the prepended base has position 1, and

the irst color has position 2. For example, “a5, g7, g8”

means “format the color call at position 5 gray, format call 7

green, and format call 8 green”. The SOLiD System follows

this convention:

a (Gray) is an isolated mismatch; it is a mismatch and

neither the color-call on its left nor the color-call on its

right is a mismatch,

g (Green) is a valid adjacent mismatch; it is a mismatch and

this mismatch, together with the adjacent mismatch on its

left or right, could correspond to an isolated SNP,

y (Yellow) is a color call that is consistent with an isolated

two-base change. In general, these will be mismatches,

but a conserved color between two mismatches is

also a possibility.

r (Red) is a color call that is consistent with an isolated

three-base change.

b (Blue) is an invalid adjacent mismatch;

it is any other mismatch.

An eficient algorithm for calculating these annotations,

given an alignment of the color reads with a corresponding

color reference, can be derived from the theory described

previously. To begin, the following theorem correlates the

applications in this section to SOLiD sequencing events.

theorem 1:

Let c = c1c2c3 … ck be a k-color substring of a read aligned

with the corresponding color reference r = r1r2r3 … rk. Then

c encodes an isolated (k-1)-base change if and only if the base

position preceding c is not a variant, and the following two

equations hold under the Color Addition Table (Figure 4,

Panel B):

equation 1:

equation 2:

For all i from 1 to k-1

Proof: For the forward direction, suppose that c encodes an

isolated k-1 base change.

 r1 r2 • • • rk-1 rk
Reference: B0 B1 B2 • • • Bk-1 Bk

 | • • • • • • |

Read: B0 D1 D2 • • • Dk-1 Bk

 c1 c2 • • • ck-1 ck

Then the base B0 preceding c is not a variant because it must

serve to isolate the k-1 base change. Similarly, the base Bk

following c is also not a variant because it too must serve to

isolate the base change. Equation 1 and 2 are derived by using

the color addition properties.

 and

Equation 2 stays the same, because all bases between B0 to

Bk are variants.

1

k

j

jc =∑
- 1

k

j

jr∑
-

i i

1

i

j

jc ≠∑
- 1

i

j

jr∑
-

)(0

1

k

k

j

j BBcolorc =∑
-

)(0

1

k

k

j

j BBcolorr =∑
-

To prove the reverse direction, suppose that the base B0

preceding color c is not a variant, as shown below, and that

Equations 1 and 2 hold.

 r1 r2 • • • rk-1 rk
Reference: B0 B1 B2 • • • Bk-1 Bk
 | • • • • • • |

Read: B0 D1 D2 • • • Dk-1 Dk

 c1 c2 • • • ck-1 ck

Then Equation 1 implies that Dk = Bk, as follows:

Bases D1 through Dk-1 are therefore isolated by matched

bases B0 and Bk. Furthermore, all isolated bases are variants

that are Di ≠ Bi for all i between 1 and k-1, which follows with

the help of Equation 2:

The equation above completes this proof. If a substring

of colors is consistent with a k-base change, assume the

leading base is not a variant and apply Theorem 1. To annotate

color calls, note that a color call is consistent with a k-base

change if it is part of a color string that is consistent with a

k-base change.

Theorem 2: A color call that is consistent with a k-base change

is not also consistent with an m-base change for m ≠ k.

Proof: Assume the opposite, so that there is a color call ci

that is part of a color string c that is consistent with a k-base

change, and also part of a color string d that is consistent

with an m-base change. There are two substrings of bases,

of differing lengths k+2 and m+2, where the outer two bases

are matches and the inner k and m form the isolated variants.

Assume without loss of generality that the k-base sequence

overlaps the m-base sequence, at color ci, “on the left”. The

extreme case is sketched below, in which a matched base is

a ‘1’ and a mismatched base is an ‘x’. Recall that color calls

appear only between bases.

1xxx1 k-base mismatches on the left

1xxxx1 m-base mismatches

The irst base of the m-base sequence, a match, coincides

with a mismatch in the k-base sequence, which contradicts the

fact that a base cannot simultaneously match and mismatch

the reference. This contradiction proves the theorem.

the algorithm

The pseudo-code function getCompatibility, shown here,

returns m if the color call at position j is compatible with an

isolated group of m mismatched bases (variants), where m

is between 0 and a preset maximum acceptable number M.

For readability, this pseudo-code ignores read “edge effects”.

By Theorem 1, position j is compatible with m isolated variants

at line break. By Theorem 2, there is no need to continue

searching, because j will not be compatible with any other

number. Note the eficiency of this algorithm: if j is compatible

with m variants, the algorithm makes the least number of

tests possible before breaking from the loop. On the other

hand, all the tests that it does make are required by Theorem

1 because if it skips any test, an “adversary” could devise an

input on which the algorithm would give the wrong answer.

See Appendix 2 for an implementation in Java. Figure 6 shows

a small portion of a visualization of a GFF ile annotated with

this method.

algorithm: getCompatability

Input: Read colors C, Reference colors R, Query position j, Maximum

acceptable variants M

Output: Number of compatible isolated base variants m.

Method:

 //sumCjm is the group theoretic sum of m read colors ci starting at i=j.

 //sumRjm is the group theoretic sum of m read colors ri starting at i=j.

Initialize: m = sumCjm = sumDjm = 0; n = size(c)

 while m ≤ M, do

 {

 sumCjm = additionTable[sumCjm][cj];

 sumRjm = additionTable[sumRjm][dj];

 if (sumCjm == sumRjm)

 break; // Substring s = cj…cj+m is compatible with an isolated group of m

 adjacent variants.

 m = m + 1

 } // for m

 // If the loop terminates with m = M+1, then j is not compatible with M or less

 isolated variants.

 if (m > M) return “Incompatible”

 else return m

k

k

j

j

k

j

jk BrBcBD === ∑∑
-- 1

0

1

0

i

i

j

j

i

j

ji BrcD =≠= ∑∑
-- 11

appendix 1: alternative 2 Base Color Coding Schemes

This appendix explores alternative color coding schemes that

exist, and their effects on subsequent group properties.

Maintaining the requirements

There is essentially only one coding scheme that satisies all

the requirements. Once the irst row has been decided, the

requirements determine the rest of the table, as shown in

Figure 3. Each of the 4! = 24 ways to lay down the irst row

(given requirements 1 and 2) corresponds to a “different”

table. But these are all isomorphic to one another. Even though

there can only be one table, the colors can be permuted to

obtain 23 other tables. For example, the permutation:

0 ⇒ 2

1 ⇒ 3

2 ⇒ 0

3 ⇒ 1

generates the table in Figure 7.

Conclusion

The existing 2 base color code for SOLiD sequencing follows

from a small set of requirements. This color code is essentially

the only one that satisies these requirements. If colors are

treated as transformers of bases, these requirements lead to

a formulation of color combinations as the well-known Klein

four-group. The group theoretic properties lead to eficient

and systematic methods for annotating color reads from the

SOLiD™ System. In particular, they allow for a simple Java

implementation that annotates color-calls with any given

number of DNA variants.

references

1. Costa, Gina, et al. Applications of Next Generation

Sequencing Using Stepwise Cycled-Ligation,

http://marketing.appliedbiosystems.com/images/

Product/Solid_Knowledge/PDF/ASHG_2007_2791.pdf

2. Peckham, Heather E. et al. SOLiD Sequencing and 2 Base

Encoding,

http://marketing.appliedbiosystems.com/images/

Product/Solid_Knowledge/PDF/ASHG_2007_2624.pdf

3. Rhodes M. SOLiD System Data 2 Base Encoding, Webinar,

http://appliedbiosystems.cnpg.com/lsca/webinar/rhodes/

2be/20070618/

Figure 7. a permuted color addition table.

Second Base

A C G T

F
irst B

ase

A 2 3 0 1

C 3 2 1 0

G 0 1 2 3

T 1 0 3 2

Figure 6. Visualization of an annotated GFF ile Using the

getCompatibility algorithm.

relaxing the Constraints

Different coding schemes can be generated by relaxing the

constraints. Unfortunately, these alternative schemes are not

guaranteed to satisfy the group theoretic properties that are

needed for annotation, error detection, and correction. Here

are four of the requirements:

For all bases b, d, e in B:

1. The available colors are 0, 1, 2, and 3:

color (bd) ∈{0,1,2,3}.

2. Two different di-bases that nevertheless have the same irst

base get different colors:

color (bd) ≠ color (be) if d ≠ e.

For example, color (AC) ≠ color (AG).

3. A di-base and its reverse get the same color:

color (bd) = color (db)

For example, color(AC) = color(CA).

4. Monodibases get the same color:

color (bb) = color (dd)

That is, color (AA) = color (CC) = color (GG) = color (TT).

Can requirement 4 be dropped? One such table is shown

in Figure 8, Panel A, but it no longer satisies the group

properties. For example 01 does not behave like a single color

anymore: A01 = C and A1 = C, but C01 = T and C2 = T. So color

0⊕1 behaves like color 1 for A, but it behaves like color 2 for C.

Can we drop just requirement 3? Such a table is shown

in Figure 8, Panel B, but it no longer satisies the group

properties. For example 23 does not behave like a single color

anymore: A23 = C and A1 = C, but C23 = C and C0 = C. So

color 2⊕3 behaves like color 1 for A, but it behaves like color 0

for C.

appendix 2: a Java implementation of getCompatibility

The Java function below, getCompatibility, implements the

pseudo-code in the Section The Algorithm.

Figure 8. Dropping Color Code requirements Will Not Satisfy all Group

Properties. (a) A color code that satisies only requirements 1, 2, and 3, now

does not allow 01 to behave like a single color. (B) A color code that satisies

only requirements 1, 2, and 4, now does not allow 23 to behave like a single

color.

Second Base

A C G T

F
irst B

ase

A 0 1 2 3

C 1 3 0 2

G 2 0 3 1

T 3 2 1 0

Panel a

Second Base

A C G T

F
irst B

ase

A 0 1 2 3

C 1 0 3 2

G 3 2 0 1

T 2 3 1 0

Panel B

private int getCompatability(String readColors, String refColors, int j)

 {

 //sumCjm is the group theoretic sum of ref color ci from i=j to j+m.

 int m = 0; // Number of color ‘mismatches’.

 int sumCjm = 0;

 int sumDjm = 0;

 int n = Math.min(readColors.length(), refColors.length());

 int numRemaining = n - j - 1; // The number of positions past j.

 // maxM is the largest block size m to check.

 int maxM = (MAX_ADJACENT_VARIANTS < numRemaining)

 ? MAX_ADJACENT_VARIANTS : numRemaining;

 for (m=0; m<=maxM; m++)

 {

 int cj = Character.getNumericValue(refColors.charAt(j+m));

 int dj = Character.getNumericValue(readColors.charAt(j+m));

 // Add in the new colors.

 // Assume missing data if either is out of range.

 if (0 <= cj && cj <=3 && 0 <= dj && dj <= 3) // in range.

 {

 sumCjm = addColors[sumCjm][cj];

 sumDjm = addColors[sumDjm][dj];

 if (sumCjm == sumDjm)

 break; // Compatible with isolated group of m adjacent variants.

 }

 else // out of range. Terminate this test as if we ran over maxN.

 {

 m = maxM + 1;

 }

 } // for m

 // Return m if it is in range. Otherwise, 0 means incompatible and isolated,

 // and -1 means incompatible but not isolated.

 if (m < 1 || m > maxM) { m = isIsolated(j, readColors, refColors) ? 0 : -1; }

 return m;

 } // getCompatability()

For research Use Only. Not for use in diagnostic procedures.

Notice to Purchaser: License Disclaimer

© 2010. Applied Biosystems. All rights reserved. All other trademarks are the property of their respective owners. Applera, Applied Biosystems, and AB (Design) are registered trademarks and

SOLiD is a trademark of Applera Corporation or its subsidiaries in the U.S. and/or certain other countries.

Printed in the USA. 07/2010 Publication 139WP01-02 CO13982

headquarters

850 Lincoln Centre Drive | Foster City, CA 94404 USA

Phone 650.638.5800 | Toll Free 800.345.5224

www.appliedbiosystems.com

international Sales

For our ofice locations please call the division

headquarters or refer to our Web site at

www.appliedbiosystems.com/about/ofices.cfm

