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introduction

The SOLiD™ System enables massively parallel sequencing of 

clonally ampliied DNA fragments linked to beads. This unique 

sequencing methodology is based on sequential ligation 

of dye-labeled oligonucleotide probes whereby each probe 

assays two base positions at a time. The system uses four 

luorescent dyes to encode for the sixteen possible two-base 

combinations. This unique approach employs a scheme that 

represents a fragment of DNA as an initial base followed by 

a sequence of overlapping dimers (adjacent pairs of bases). 

The system encodes each dimer with one of four colors using 

a degenerate coding scheme that satisies a number of rules. 

A single color in the read can represent any of four dimers, 

but the overlapping properties of the dimers and the nature 

of the color code allow for error-correcting properties. In this 

document, we discuss the theory that explains these error-

correcting properties, show how to correct the misapplications 

of these properties, and describe software algorithms to utilize 

and verify the 2 base encoding scheme. For example, we can 

identify and annotate isolated erroneous color calls, as well 

as color-reads that correspond to isolated blocks of adjacent 

nucleotide variants from a reference, most realistically one, 

two, or three, but as many as the application might require.

Constructing the 2 Base Color Code

The SOLiD System’s 2 base color coding scheme is shown  

in Figure 1.

Use the following steps to encode a DNA sequence 

ATCAAGCCTC*:

1. start at the 5' end,

2.  replace the di-base AT at this position with its corresponding 

code 3 from the table,

3. advance by one base, which exposes the TC di-base, and

4. continue, as shown below.

Base Sequence: A   T   C   A    A   G   C   C   T   C
Color String: 3 2 1 0 2 3 0 2 2

This process encodes a k-mer of bases as a (k-1)-mer of colors. 

Although this color string codes for four different k-mers, 

knowledge of the type and position of any of its k bases helps 

to encode the sequence. For SOLiD sequencing applications, 

prepend the leading base to result in a k-mer A321023022 

(from the example above) from which the base sequence can 

be reconstructed.

Figure 1: SOLiD™ System’s 2 base Coding Scheme. The column under code i 

lists the corresponding dye and the di-bases (adjacent nucleotides) encoded by 

color i. For example, GT is labeled with Cy3 and coded as “1”.

code 0 1 2 3

dye FAM Cy3 TXR Cy5

AA AC AG AT

CC CA GA TA

GG GT CT CG

TT TG TC GC

* The example depicted here uses an A as the irst base. In practice, the 

current chemistry on the SOLiD™ System uses a T as the irst base.
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positions 1 and 2.



4.   Monodibases get the same color: 

color (bb) = color (dd). 

That is, color (AA) = color (CC) = color (GG) = color (TT). The 

following are not requirements, but interesting properties that 

follow from these four. Property 5 follows from requirements 2 

and 3, and will make our construction easier.

5.  Two different di-bases that nevertheless have the same 

second base get different colors: 

color (bd) ≠ color (ed), if b ≠ e. 

For example, color (AC) ≠ color (TC). Property 6 also follows 

from requirements 1-4, but it is most easily veriied against the 

completed code (Figure 3, Panel E).

6.  A di-base and its complement get the same color: 

color (bcd c ) = color (dcbc ). 

For example, color (AC) = color (TG).

Satisfying the requirements for a 2 Base Coding System

The remainder of this document uses a notation different 

from Figure 1. Figure 3 lists the colors for each di-base. For 

example, the value in row C and column T will be the color 

(2) for di-base CT (Figure 3, Panel A). Requirements 1 and 2 

require that all colors are present in the irst row. Because the 

system can use any one-to-one mapping between the actual 

dyes and the labels 0, 1, 2, and 3 (provided that requirements 

1 and 2 remain satisied) then the irst row (row A) can be 

The SOLiD™ System generates its reads in precisely this 

encoded form. One way of accomplishing this is shown  

in Figure 2.

requirements/Properties for a 2 Base Color Code Scheme

The 2 base color coding scheme possesses certain properties 

that will be discussed later in the document. Interestingly, 

this scheme is essentially the only code that satisies these 

properties. This can be observed by treating the properties as 

requirements and constructing the color code from them. This 

document deals only with bases, not other IUB (International 

Union of Biochemistry) codes. So let B = {A, C, G, T}. The color 

code should satisfy the following requirements:

For all bases b, d, e in B:

1.  The available colors are 0, 1, 2, and 3: 

color (bd) ∈ {0, 1, 2, 3}.

2  Two different di-bases that have the same irst base get 

different colors: color (bd) ≠ color (be) if d ≠ e. 

For example, color (AC) ≠ color (AG).

3.  A di-base and its reverse get the same color: 

color  (bd) = color (db). 

For example, color (AC) = color (CA).
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Figure 3. requirements that assign the Color for a 2 Base Code.



color 3 transforms base C to base G, which can be written in 

different ways: “f3(C) = G”, “C3 = G”, “C3G”, or even “C3G”.

Swapping rules

The following rules can be applied to verify the observations 

from Figure 3:

1.  Color 0 is the identity function.  

That is f0(b) = b for every base b.

2.  Color 1 swaps A with C, and it swaps G with T. 

For example, f1(A) = C.

3. Color 2 swaps A with G, and C with T.

4. Color 3 swaps A with T, and C with G.

Function Composition on Colors

Strings of colors can also be treated as transformations 

by simply applying one color transformation after another. 

This is how to decode a color read. For example, to decode 

A321023022 apply color 3 to A to get f3(A) = T.  Then apply the 

next color, 2, to this result, to get f2(T) = C. Continuing in this 

way, decode all bases, including the last:

a   T   C   A   A   G   C   C   T   C
 3 2 1  0 2 3 0 2 2

That is, A321023022 decodes to ATCAAGCCTC.

To compose all color functions in an entire string, the next 

step is to ignore intermediate bases. Just as a single color 

transforms one base into another, so does a string of colors. 

The example above transforms the irst base ‘A’ into the last 

base ‘C’ of the sequence. This is true of the whole string and 

also of substrings. In the example above, we can think of the 

substring 102 as transforming C into G:

A   A   C   A   A   G   C   C   T   C
 0 1 1 0 2 3 0 2 2

          C1 → A0 → A2 → G

labeled as shown (Figure 3, Panel B.) Requirement 3, that color 

(bd) = color (db), gives a unique labeling for column A (Figure 

3, Panel C). Requirement 4, that color (bb) = color (AA), gives 

a unique labeling for the diagonal (Figure 3, Panel D). Finally, 

requirements 1, 2, and 5, state that every color must appear 

in every row and every column exactly once (Figure 3, Panel 

E). The table (Figure 3, Panel E) is easy to memorize and work 

with because, by virtue of Property 3, one can think of di-bases 

as two-element sets for assigning colors. The di-bases starting 

with ‘A’ get colors 0, 1, 2, and 3 respectively. Therefore:

0. AA, CC, GG, TT all get color 0,

1. AC and CA get color 1, and so must GT and TG,

2. AG and GA get color 2, and so must CT and TC,

3. AT and TA get color 3, and so must CG and GC.

Determining the Color String of the Sequence

Without the leading base, it is not possible to determine if a 

particular DNA sequence is GC-rich from its color string alone. 

Here, we will show that for any GC-rich sequence S, there 

exists another sequence S', with exactly the same color string. 

Make the new sequence S' from S by replacing A with G, C 

with T, G with A, and T with C (i.e., replace the base with the 

other purine or pyrimidine). The result is an AT-rich sequence 

that has the same color string.

Example:  S = G   C   G   C   A   G   G   G   T   C   C   T   C   C   T 
 3 3 3 1 2 0 0 1 2 0 2 2 0 2

 S' = A T A T G A A A C T T C  T T C

This is because, if a di-base bd has a color k, then so does its 

replacement b'd '. For example: 0: GG → AA, 3: GC → AT, 

2: AG → CT, 1: AC → GT. If the di-base in S has color 0, then its 

bases are equal and remain so in S'. If it has color 3, its bases 

are complementary and remain so in S'. If it has color 2 and its 

bases are both purines, they will both be pyrimidines in S', and 

vice versa. Finally, if it has color 1 then it is AC, CA, GT, or TG, 

and so replaced by GT, TG, AC, or CA respectively, all of which 

again have color 1.

Colors as transformations of Bases

Up until this point, colors are assigned as a result of an 

encoding process, either a speciic chemical one, like the 

SOLiD sequencing process, or a purely mathematical one. 

Here, there is just one function, color: B × B → {0, 1, 2, 3}, 

that maps di-bases to colors, e.g., color (CG) = 3.

For transformation of bases, color can be represented in  

a different way. Each color d is a function fd : B → B that 

“transforms” base u to base v. There can be any number of 

colors, but in this case there are four. The transformations  

are also speciied in Figure 3, Panel E. To transform base u 

with color d, look up color d in row u and report the unique 

column (by Requirement 2) in which it resides. For example, 

Figure 4. addition table to Obtain the Code for Strings of Colors 

as transformations of Bases. (A) The original Klein four-group addition 

table. This addition table has been obtained by the Klein four-group http://

en.wikipedia.org/wiki/Klein_four-group, which is the symmetry group 

of a rectangle. (B) The corresponding addition table for strings of colors.
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For input C color string 102 acts just like color 3, and this also 

transforms C to G. Also, 102 acts just like color 3, for all inputs 

A, C, G, and T.

To understand this concept, begin by composing just two 

adjacent colors as follows:

C10 = f0 o f1(C) = f0 (f1 (C)) = f0 (A) = A = f1(C)

In this example, color string 10 behaves just like the single 

color 1, which also maps C to A. Using the swapping rules, 

color string 10 behaves like color 1 for all input bases. Color 1 

swaps A with C, and G with T. Color 0 does not swap any of 

the bases. The rules for all pairwise combinations of colors, 

showing that each two-color string behaves like a particular 

single color, have already been determined in the Klein 

four-group. The Klein four-group (http://en.wikipedia.org/

wiki/Klein_four-group) is the symmetry group of a rectangle, 

which has four elements, the identity, the vertical relection, 

the horizontal relection, and a 180 degree rotation, as 

shown in Figure 4. The rectangle symmetry group has the 

addition table shown in Figure 4, Panel A.

The symbol ⊕ means “followed by”. For example, 

v ⊕ h = r means that a vertical relection followed by a 

horizontal relection is the same, as if it had rotated the 

rectangle by 180 degrees.

The set of color operations with functional composition 

that were discussed above is isomorphic to the Klein four-

group. This can be observed by labeling the corners of a 

rectangle with the bases and witnessing their rearrangements 

(transformations), as shown in Figure 5. The identity leaves 

the bases unchanged, exactly like color 0. The vertical 

relection swaps A with C, and G with T, exactly like color 1. 

The horizontal relection swaps A with G, and C with T, exactly 

like color 2; and the 180 degree rotation swaps A with T, and C 

with G, exactly like color 3. An addition table can be created for 

colors from the addition table for rectangle symmetries simply 

by substituting i, v, h, and r with 0, 1, 2, and 3 respectively, 

as in Figure 4, Panel B. The symbol ⊕ means “followed 

by” in this context too, but it is usually more convenient to 

leave it out in the written expressions. For example, instead 

of 3⊕2⊕1⊕0⊕2⊕3⊕0⊕2⊕2, just write 321023022, and 

A321023022 = C means the same as f2(f2(f0(f3(f2(f0(f1(f2(f3

(A))))))))) = C, the former being somewhat easier to read, write, 

and parse.

Properties of Groups

A group (http://en.wikipedia.org/wiki/Group_theory) is a 

set of elements (colors, in our case) with an operator ⊕ that 

satisies the following four properties:

1)  Closure: If a and b are elements, then a ⊕ b is also an 

element.

2) Associative: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

3) Identity: There is an element i such that i ⊕ a = a ⊕ i = a.

4)  Inverse: For every element a, there is an element a-1, such 

that a ⊕ a-1 = a-1 ⊕ a = i.

In addition, the Klein four-group is also Abelian, which is to say 

that it is

5) Commutative: a ⊕ b = b ⊕ a.

In this group of color calls, ‘0’ is the identity element and every 

element is its own inverse (the diagonal of Figure 4, Panel 

B are all 0’s). It should be noted that except for the identity 

color ‘0’, any color composed with any other color is the third 

color. These properties can be used when designing protocols, 

writing programs, and proving correctness.

applications to SOLiD Sequencing events

Using the theoretical methods discussed above, here are a 

few examples on how to analyze typical SOLiD resequencing 

events. Each of the next few sections analyzes common 

resequencing events by using an example of a nucleotide 

sequence read, the corresponding reference, and their color-

string representations. In general, a color string that does NOT 

satisfy these requirements is said to be “invalid”. 
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Mismatched Leading Base

In this application, a given color read and its alignment with a 

reference is shown below. If all colors match, but the leading 

base does not, then ALL decoded bases will be mismatches. 

This is observed in the example below. 

   A   C   G   T   A   C   G   T   C   C   G   T   A   C
A 1 3 1 3 1 3 1 2 0 3 1 3 1
C 1 3 1 3 1 3 1 2 0 3 1 3 1 
 C A T G C A T G A A T G C A

The color code group properties can be used to prove this  

will always be the case. Begin with just the alignment of  

color reads:

A 1 3 1 3 1 3 1 2 0 3 1 3 1 
C 1 3 1 3 1 3 1 2 0 3 1 3 1 

For all positions i, the reference base at i is not equal to the 

read base at i. In considering an arbitrary position i, it has 

already been shown that the base in reference position i is 

Ab, where b is the sum of the reference colors in positions 1 

through i, using the addition table in Figure 4, Panel B. Similarly 

the base in read position i is Cd, where d is the sum of read 

colors in positions 1 through i. However, b must be equal to d 

because the read colors are the same as the reference colors. 

Therefore, by considering color code requirement 2, Ab ≠ Cb, 

which shows all bases must be mismatches.

an isolated Single-Base Variant

A single-base variant is a read base that differs from its aligned 

reference base. The variant is said to be isolated if it is not 

adjacent to a variant on either side. For example, the dot marks 

the isolated single base variant in the alignment below. 

 1 3 1 3 1 3 1 3 1 3 1 3 1 
Reference: A   C   G   T   A   C   G   T   A   C   G   T   A   C
 | | | | | | | • | | | | | |

Read: A C G T A C G A A C G T A C
 1 3 1 3 1 3 2 0 1 3 1 3 1

To analyze this case, let’s focus on the variant and introduce 

variables, as shown in the alignment below. 

 u v
Reference: B   D   F
 | • |

Read: B E F
 w x

Here D ≠ E are mismatched bases, and they are isolated 

because they are lanked by matched bases B and F. In order 

for colors u, v, w, and x to be consistent with this variant, they 

must satisfy the following properties:

1.  u ≠ w because color (BD) ≠ color (BE) by Code  

Requirement 2.

2.  uv = wx because both colors uv and wx transform base  

B to base F, so that uv = color (BF) = wx.

3.  v ≠ x follows from the irst two requirements. This does  

not need to be tested since the irst two are true.

two adjacent Variants

In the previous application, both relevant color positions were 

mismatches. The two examples in this section show that 

some colors in other kinds of resequencing events, although 

otherwise constrained, may result in matches or mismatches. 

Therefore, when annotating color reads, it is not suficient to 

annotate only colors that are mismatches. Here is an example 

where all relevant positions are color mismatches: 

 1 3 1 3 1 3 1 3 1 3 1 3 1 
Reference: A   C   G   T   A   C   G   T   A   C   G   T   A   C
 | | | | | | • • | | | | | |

Read: A C G T A C A A A C G T A C
 1 3 1 3 1 1 0 0 1 3 1 3 1

Analysis: 

 u v w
Reference: B   D   E   F
 | • • |

Read: B   G   H   F
 x y z

Properties:

1. u ≠ x by Code Requirement 2.

2.  uv ≠ xy because they must transform B to different bases 

E and H.

3. uvw = xyz because both uvw and xyz must transform B to F.

4. v and y could be equal or they could be different.

There are two additional interesting properties that follow from 

the properties above, therefore, there is no reason to test for 

them when identifying two-base variants above. 

5.  vw ≠ yz because they must transform different bases D and 

G to F.

6. w ≠ z because they must transform different bases E and H  

 to F.

Here is another example of two adjacent variants resulting 

in three color positions in which only the outer two are 

mismatches. 

 1 3 1 3 1 3 1 3 1 3 1 3 1 
Reference: A   C   G   T   A   C   G   T   A   C   G   T   A   C
 | | | | | | • • | | | | | |

Read: A C G T A C C A A C G T A C
 1 3 1 3 1 0 1 0 1 3 1 3 1

Even though the center two color positions, both with color 1, 

are not mismatches, the analysis above still applies, and this 

new example satisies all of the above properties.



three adjacent Variants

Here is an example of three adjacent variants.

 1 3 1 3 1 3 1 3 1 3 1 3 1 
Reference: A   C   G   T   A   C   G   T   A   C   G   T   A   C
 | | | | | • • • | | | | | |

Read: A C G T A G C A A C G T A C
 1 3 1 3 2 3 1 0 1 3 1 3 1

This example has two single-color mismatches isolated by two 

color matches. In the analysis below, the Bi are bases and the 

ci are colors: 

 c1 c2 c3 c4

Reference: B1   B2   B3   B4   B5

 | • • • |
Read: B1   B6   B7   B8   B5

 c5 c6 c7 c8

Properties:

1. c1 ≠ c5

2. c1c2 ≠ c5c6

3. c1c2c3 ≠ c5c6c7

4. c1c2c3c4 = c5c6c7c8

insertion and Deletions (indels)

In these examples, a base deleted from the read is depicted 

as a ‘—’ in the read. Similarly, a base inserted into the read is 

depicted as a ‘—’ in the reference. It should be noted that the 

reference would never be stored with a ‘—’ in those places, 

nor does the SOLiD™ System ever call a ‘—’ for any of its 

colors. The ‘—’ would be generated only by aligning the read 

with the reference. For example, here is a single-base deletion: 

 1 3 1 3 1 3 1 3 1 3 1 3 1 

Reference: A   C   G   T   A   C   G   T   A   C   G   T   A   C
 | | | | | | • | | | | | | |

Read: A C G T A C — T A C G T A C
 1 3 1 3 1 2 — 3 1 3 1 3 1

The analysis must explain two situations, which it does:

 u v u v
Reference: B   D   E B   D   E
 | • | and | • |

Read:  B - E B - 
 - w w -

Properties: 

1. uv = w because both colors uv and w must transform base      

 B to base E. A single base deletion causes two elementary  

 colors, u and v, to be replaced by one, w. In the above  

 deletion, for example, 31 = 2, as is easily conirmed by the  

 addition table. 

2.  Property 1 is a suficient test, but it may be of interest 

that the addition table implies that either u, v, and w are 

all different, or one is 0 and the other two are identical. 

Property 1 applies also for multiple bases. 

For example, here is a three base insertion: 

 1 3 1 3 1 - 3 - - 1 3 1 3 1 3 1 
Reference: A   C   G   T   A   C   -   -   -   G   T   A   C   G   T   A   C
 | | | | | | • • • | | | | | | | |

Read: A C G T A C T A G G T A C G T A C
 1 3 1 3 1 2 3 2 0 1 3 1 3 1 3 1

This alignment shows the 3 in the insertion aligning with a 3 

in the reference, even though these two have nothing to do 

with one another; the 3 in the reference encodes CG, whose 

bases bracket the insertion, and the insertion has a TA, which 

is coincidently also encoded with color 3.

Analysis: 

 u
Reference: B - - - H
 | • • • |
Read: B   D   E   F   H
 v w x y

The alignment above shows the reference color u aligned 

with read color v, but in fact might align with color w, x, or y 

instead. The following property holds in all cases: u = vwxy. 

One elementary color, u, in the reference is replaced by four, 

c1, c2, c3, and c4, in the read.

Correcting two Common Misunderstandings

A cursory overview of the SOLiD 2 base color coding system 

may lead to some common misunderstandings. The irst is that 

an isolated color mismatch must always correspond to a 

sequencing error. The second is that certain (3/4 of the total) 

isolated two-color changes always correspond to errors. 

These misunderstandings do not actually appear in print, but 

there is public information that can be easily misread that way 

if taken out of context.

In this section, two examples are presented that  

discuss these common misunderstandings. The irst involves 

an isolated pair of adjacent base variants and addresses only  

the isolated color change problem. The second example  

involves an isolated cluster of three adjacent base changes.  

The second example has both an isolated color change and  

an “impossible” two color change.

Counter example to “an isolated color change always 

corresponds to a sequencing error.” 

 2 0 1 3 1 2 0
Reference: G   A   A   C   G   T   C   C
 | | | • • | | |

Read: G A A G C T C C
 2 0 2 3 2 2 0

This counter example shows two single-color mismatches, 

both 1 → 2, isolated from one another by a color match. It is 

easy to verify that this counter example does indeed satisfy 

the requirements for a two-base variant: 1 ≠ 2, 13 = 2 ≠ 1 = 

23, and 131 = 3 = 232.



Counter example for “impossible two position changes 

always correspond to measurement errors.” 

 0 1 2 0 3 0
Reference: A   A   C   t   t   A   A
 | | • • • | |

Read: A A t G G A A
 0 3 1 0 2 0

The example shows a “forbidden” (i.e., impossible adjacent 

mismatches when only a single base change is present) two-

color change, 12 → 31, isolated by a color match (0 → 0) from 

a single-color change (3 → 2). Both “impossible” color changes 

are nevertheless perfectly consistent with a three-base variant, 

in particular, the one shown above.

Again, it is easy to verify that the colors satisfy the 

requirements for a three-base variant: 1≠3, 12≠31, 120≠310, 

and 1203 = 3102.

A clariication of the misunderstanding follows easily by 

understanding that they are equivalent to assuming that the 

only base variants permitted in sequences are isolated single-

base substitutions.

annotating alignment Mismatches in the SOLiD™ System

From the previous discussion, it is clear that when a SOLiD 

read is aligned to a reference sequence, only a subset 

of possible mismatches represent underlying sequence 

variations. It is therefore important to identify mismatches that 

are candidate sequence variations and to distinguish them 

from other patterns that are the result of sequencing error. This 

information can then be used to correct errors from aligned 

reads, resulting in a signiicant improvement in the accuracy 

of the system, and to pass putative sequence variation to 

downstream algorithms for the assessment of genotype 

calls and identiication of new alleles in the sample. These 

annotations are typically conveyed in iles that describe the 

attributes of sequence reads, such as the SOLiD GFF ile.

The SOLiD GFF is an important ile format for the SOLiD 

System. In essence, a ile of this type is a list of reads, each 

with several attributes. One of those attributes is the ‘s’, or 

annotations attribute. Here is the deinition of the annotations 

attribute of the SOLiD GFF v 0.2 ile: 

This is a comma-separated string representing annotations 

on the sequence. The format is ‘{char}{position}’ where 

{char} is a character representing the type of annotation 

(typically a formatting request to visualization software) 

and {position} is the position of this annotation in the read. 

The position is 1-based on the string recorded in the ‘g’ 

attribute. That is, the prepended base has position 1, and 

the irst color has position 2. For example, “a5, g7, g8” 

means “format the color call at position 5 gray, format call 7 

green, and format call 8 green”. The SOLiD System follows 

this convention:

a  (Gray) is an isolated mismatch; it is a mismatch and 

neither the color-call on its left nor the color-call on its  

right is a mismatch,

g  (Green) is a valid adjacent mismatch; it is a mismatch and 

this mismatch, together with the adjacent mismatch on its 

left or right, could correspond to an isolated SNP,

y  (Yellow) is a color call that is consistent with an isolated 

two-base change. In general, these will be mismatches, 

but a conserved color between two mismatches is  

also a possibility.

r  (Red) is a color call that is consistent with an isolated  

three-base change.

b  (Blue) is an invalid adjacent mismatch; 

it is any other mismatch.

An eficient algorithm for calculating these annotations, 

given an alignment of the color reads with a corresponding 

color reference, can be derived from the theory described 

previously. To begin, the following theorem correlates the 

applications in this section to SOLiD sequencing events.

theorem 1: 

Let c = c1c2c3 … ck be a k-color substring of a read aligned 

with the corresponding color reference r = r1r2r3 … rk. Then 

c encodes an isolated (k-1)-base change if and only if the base 

position preceding c is not a variant, and the following two 

equations hold under the Color Addition Table (Figure 4,  

Panel B):

equation 1:  

equation 2: 

For all i from 1 to k-1

 

Proof: For the forward direction, suppose that c encodes an 

isolated k-1 base change. 

 r1 r2 • • • rk-1 rk
Reference: B0   B1   B2   •  •  •   Bk-1   Bk

 | • • • • • • |

Read: B0 D1 D2 • • • Dk-1 Bk

 c1 c2 • • • ck-1 ck

Then the base B0 preceding c is not a variant because it must 

serve to isolate the k-1 base change. Similarly, the base Bk 

following c is also not a variant because it too must serve to 

isolate the base change. Equation 1 and 2 are derived by using 

the color addition properties. 

 and

Equation 2 stays the same, because all bases between B0 to 

Bk are variants.
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To prove the reverse direction, suppose that the base B0 

preceding color c is not a variant, as shown below, and that 

Equations 1 and 2 hold. 

 r1 r2 • • • rk-1 rk
Reference: B0   B1   B2   •  •  •   Bk-1   Bk
 | • • • • • • |

Read: B0 D1 D2 • • • Dk-1 Dk

 c1 c2 • • • ck-1 ck

Then Equation 1 implies that Dk = Bk, as follows:

Bases D1 through Dk-1 are therefore isolated by matched 

bases B0 and Bk. Furthermore, all isolated bases are variants 

that are Di ≠ Bi for all i between 1 and k-1, which follows with 

the help of Equation 2:

The equation above completes this proof. If a substring  

of colors is consistent with a k-base change, assume the 

leading base is not a variant and apply Theorem 1. To annotate 

color calls, note that a color call is consistent with a k-base 

change if it is part of a color string that is consistent with a 

k-base change. 

Theorem 2: A color call that is consistent with a k-base change 

is not also consistent with an m-base change for m ≠ k.

Proof: Assume the opposite, so that there is a color call ci 

that is part of a color string c that is consistent with a k-base 

change, and also part of a color string d that is consistent 

with an m-base change. There are two substrings of bases, 

of differing lengths k+2 and m+2, where the outer two bases 

are matches and the inner k and m form the isolated variants. 

Assume without loss of generality that the k-base sequence 

overlaps the m-base sequence, at color ci, “on the left”. The 

extreme case is sketched below, in which a matched base is 

a ‘1’ and a mismatched base is an ‘x’. Recall that color calls 

appear only between bases.

1xxx1 k-base mismatches on the left

1xxxx1 m-base mismatches

The irst base of the m-base sequence, a match, coincides 

with a mismatch in the k-base sequence, which contradicts the 

fact that a base cannot simultaneously match and mismatch 

the reference. This contradiction proves the theorem. 

the algorithm

The pseudo-code function getCompatibility, shown here, 

returns m if the color call at position j is compatible with an 

isolated group of m mismatched bases (variants), where m 

is between 0 and a preset maximum acceptable number M. 

For readability, this pseudo-code ignores read “edge effects”. 

By Theorem 1, position j is compatible with m isolated variants 

at line break. By Theorem 2, there is no need to continue 

searching, because j will not be compatible with any other 

number. Note the eficiency of this algorithm: if j is compatible 

with m variants, the algorithm makes the least number of 

tests possible before breaking from the loop. On the other 

hand, all the tests that it does make are required by Theorem 

1 because if it skips any test, an “adversary” could devise an 

input on which the algorithm would give the wrong answer. 

See Appendix 2 for an implementation in Java. Figure 6 shows 

a small portion of a visualization of a GFF ile annotated with 

this method.

algorithm: getCompatability 

Input:    Read colors C, Reference colors R, Query position j, Maximum 

acceptable variants M

Output: Number of compatible isolated base variants m.

Method: 

   //sumCjm is the group theoretic sum of m read colors ci starting at i=j.

   //sumRjm is the group theoretic sum of m read colors ri starting at i=j.  

Initialize: m = sumCjm = sumDjm = 0; n = size(c)

    while m  ≤  M, do

   { 

        sumCjm = additionTable[sumCjm][cj];

        sumRjm = additionTable[sumRjm][dj];

        if (sumCjm == sumRjm)

           break; // Substring s = cj…cj+m is compatible with an isolated group of m    

           adjacent variants.

        m = m + 1

    } // for m

    // If the loop terminates with m = M+1, then j is not compatible with M or less 

    isolated variants. 

    if (m > M) return “Incompatible”

    else  return m 
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appendix 1: alternative 2 Base Color Coding Schemes

This appendix explores alternative color coding schemes that 

exist, and their effects on subsequent group properties. 

Maintaining the requirements

There is essentially only one coding scheme that satisies all 

the requirements. Once the irst row has been decided, the 

requirements determine the rest of the table, as shown in 

Figure 3. Each of the 4! = 24 ways to lay down the irst row 

(given requirements 1 and 2) corresponds to a “different” 

table. But these are all isomorphic to one another. Even though 

there can only be one table, the colors can be permuted to 

obtain 23 other tables. For example, the permutation:

0 ⇒ 2

1 ⇒ 3

2 ⇒ 0

3 ⇒ 1

generates the table in Figure 7.

Conclusion

The existing 2 base color code for SOLiD sequencing follows 

from a small set of requirements. This color code is essentially 

the only one that satisies these requirements. If colors are 

treated as transformers of bases, these requirements lead to 

a formulation of color combinations as the well-known Klein 

four-group. The group theoretic properties lead to eficient 

and systematic methods for annotating color reads from the 

SOLiD™ System. In particular, they allow for a simple Java 

implementation that annotates color-calls with any given 

number of DNA variants.
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Figure 7. a permuted color addition table.

Second Base

A C G T

F
irst B

ase

A 2 3 0 1

C 3 2 1 0

G 0 1 2 3

T 1 0 3 2

Figure 6. Visualization of an annotated GFF ile Using the 

getCompatibility algorithm.



relaxing the Constraints

Different coding schemes can be generated by relaxing the 

constraints. Unfortunately, these alternative schemes are not 

guaranteed to satisfy the group theoretic properties that are 

needed for annotation, error detection, and correction. Here 

are four of the requirements:

For all bases b, d, e in B:

1.  The available colors are 0, 1, 2, and 3: 

color (bd ) ∈{0,1,2,3}.

2.  Two different di-bases that nevertheless have the same irst 

base get different colors: 

color (bd ) ≠ color (be) if d ≠ e.

For example, color (AC) ≠ color (AG).

3.  A di-base and its reverse get the same color:

color (bd ) = color (db)

For example, color(AC) = color(CA).

4.  Monodibases get the same color:

color (bb) = color (dd )

That is, color (AA) = color (CC) = color (GG) = color (TT).

Can requirement 4 be dropped? One such table is shown 

in Figure 8, Panel A, but it no longer satisies the group 

properties. For example 01 does not behave like a single color 

anymore: A01 = C and A1 = C, but C01 = T and C2 = T. So color 

0⊕1 behaves like color 1 for A, but it behaves like color 2 for C. 

Can we drop just requirement 3? Such a table is shown 

in Figure 8, Panel B, but it no longer satisies the group 

properties. For example 23 does not behave like a single color 

anymore: A23 = C and A1 = C, but C23 = C and C0 = C. So 

color 2⊕3 behaves like color 1 for A, but it behaves like color 0 

for C.

appendix 2: a Java implementation of getCompatibility

The Java function below, getCompatibility, implements the 

pseudo-code in the Section The Algorithm. 

Figure 8. Dropping Color Code requirements Will Not Satisfy all Group 

Properties. (a) A color code that satisies only requirements 1, 2, and 3, now 

does not allow 01 to behave like a single color. (B) A color code that satisies 

only requirements 1, 2, and 4, now does not allow 23 to behave like a single 

color.

Second Base

A C G T

F
irst B

ase

A 0 1 2 3

C 1 3 0 2

G 2 0 3 1

T 3 2 1 0

Panel a

Second Base

A C G T

F
irst B

ase

A 0 1 2 3

C 1 0 3 2

G 3 2 0 1

T 2 3 1 0

Panel B

private int getCompatability( String readColors, String refColors, int j )

  {

    //sumCjm is the group theoretic sum of ref color ci from i=j to j+m.

    int m = 0; // Number of color ‘mismatches’.

    int sumCjm = 0; 

    int sumDjm = 0;

    int n = Math.min(readColors.length(), refColors.length());

    int numRemaining = n - j - 1; // The number of positions past j.

    // maxM is the largest block size m to check.

    int maxM = (MAX_ADJACENT_VARIANTS < numRemaining)

             ?  MAX_ADJACENT_VARIANTS : numRemaining;

    for (m=0; m<=maxM; m++)

    {

      int cj = Character.getNumericValue(refColors.charAt(j+m));

      int dj = Character.getNumericValue(readColors.charAt(j+m));

      // Add in the new colors.

      // Assume missing data if either is out of range.

      if (0 <= cj && cj <=3 && 0 <= dj && dj <= 3) // in range.

      {

        sumCjm = addColors[sumCjm][cj];

        sumDjm = addColors[sumDjm][dj];

        if (sumCjm == sumDjm)

          break; // Compatible with isolated group of m adjacent variants.

      }

      else // out of range. Terminate this test as if we ran over maxN.

      {      

        m = maxM + 1;

      }

    } // for m

    // Return m if it is in range. Otherwise, 0 means incompatible and isolated,

    // and -1 means incompatible but not isolated.

    if (m < 1 || m > maxM) { m = isIsolated(j, readColors, refColors) ? 0 : -1; }

    return m;

  } // getCompatability()
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