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Abstract— In this paper we derive a new upper bound for the
pairwise error probability of space-time codes in a quasi-static
Rayleigh fading channel, considering antenna configuration at
the transmitter side. The design criterion for existing space-
time trellis codes is based on the rank and the determinant
of the distance matrix between two code words. In particular,
the diversity advantage of the space-time code is associated
to the rank of the distance matrix. We show that when the
transmit antenna region is small, the diversity advantage given
by the space-time code is reduced by the transmit antenna
configuration and the diversity advantage of the code depends
on the rank of the antenna configuration matrix. We also show
that the uniform linear array antenna configuration diminishes
the diversity advantage provide by the space-time code while the
uniform circular array antenna configuration does not effect to
the diversity advantage of the space-time code.

Index Terms— Space-time trellis codes, antenna configuration,
pairwise error probability.

I. INTRODUCTION

Pairwise error probability (PEP) of space-time codes in

quasi-static Rayleigh fading channels is determined by two

parameters, which are the rank and the determinant of the

distance matrix between two code words [1]. Space-time

trellis codes are designed based on the rank determinant

criteria which involves maximizing the minimum rank and the

minimum determinant of the distance matrix over all distinct

pairs of code words. Based on the above design criteria, Tarokh

et al. [1] proposed several hand-designed QPSK and 8PSK

space-time trellis codes for transmission using two transmit

antennas in independent flat fading channels. In [2], space-

time trellis codes for more than two transmit antennas are

proposed based on the same design criteria.

When deriving space-time trellis codes, one of the main

assumptions being made is, channel gains between the trans-

mitter and receiver antennas undergo independent flat fading.

Such an assumption is valid only if the scattering environment

is isotropic, i.e. scattering is uniformly distributed over the

receiver and transmitter antenna arrays and also the antennas
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in an array are separated at a distance greater than λ/2, where

λ is the wave length [3]. However, if we consider a multi-

antenna Mobile Unit (MU), then the antennas at the MU

cannot be spaced sufficiently well apart due to the limited size

of the MU. This has motivated us to investigated the effect of

antenna separation as well as the antenna configuration (e.g.,

Uniform Linear, Uniform Circular, Uniform Grid, etc) on the

performance of space-time trellis codes.

In this paper, we derive a new upper bound for the PEP

of space-time coded system with nT -transmit antennas and

one-receive antenna, using a realistic channel model which

fully accounts for antenna separation, antenna configuration

and scattering environment. Traditionally the design criterion

for existing space-time trellis codes is based on only the rank

and the determinant of the distance matrix between two code

words. Here we show that the transmitter antenna configu-

ration should also be taken account in the rank determinant

design criteria of space-time trellis codes when fading is not

independent. We evaluate the frame error rate performance of

space-time trellis codes proposed in [2] for different antenna

configurations. We show that the uniform linear array (ULA)

antenna configuration diminishes the diversity gain provided

by the space-time trellis codes while the uniform circular

array (UCA) antenna configurations retain the diversity gain

provided by the space-time trellis codes when more than two

transmit antennas being used for transmission.

II. SYSTEM MODEL

We consider a base-band mobile communication system

which employs nT transmit antennas and one-receive an-

tenna. The data transmitted from nT transmit antennas are

encoded by a space-time trellis code. Assume that at each

time t, space-time encoder produces nT outputs xt =
[x1,t, x2,t, . . . , xnT ,t]

T , where xi,t is a signal from a certain

constellation with unit energy. These outputs are then simul-

taneously transmitted from nT transmit antennas. Assuming

quasi-static fading, the signal received at the receiver during

L symbol periods can be expressed in matrix form as

r =
√

EshX + z, (1)

where Es is the transmitted power per symbol at each transmit

antenna and h is the 1×nT transfer matrix of the channel with

entries hi, where hi is the fading coefficient between transmit

antenna i and the receive antenna, r = [r1, r2, . . . , rL] and

z = [z1, z2, . . . , zL] are 1×L matrices and X is the nT×L



transmitted code word, which has the form

X =











x1,1 x1,2 . . . x1,L

x2,1 x2,2 . . . x2,L

...
...

. . .
...

xnT ,1 xnT ,2 . . . xnT ,L











, (2)

where xm,l is the complex valued modulation symbol1

transmitted from antenna m at symbol interval l. We assume

that z is zero-mean Additive White Gaussian Noise with

covariance matrix Rz = E
{

zHz
}

= N0I, where I is the

identity matrix and E {·} is the mathematical expectation.

In this paper, we use the 2-dimensional spatial channel

model proposed in [4] to explore the spacial aspects of

space-time trellis codes. In this spatial channel model, MIMO

channel is separated in to three physical regions of interest:

scatterer free region around the transmitter antenna array,

scatterer free region around the receiver antenna array and the

complex random scattering media which is the complement

of the unions of two antenna array regions. In other words,

MIMO channel is decomposed into deterministic and random

matrices, where the deterministic portion depends on the phys-

ical configuration of the transmitter and the receiver antenna

arrays and the random portion represents the complex scat-

tering media between the transmitter and the receiver antenna

regions. In our analysis, we use a system which employs nT -

transmit antennas and one-receive antenna. Assume that the

receiver antenna is positioned at the center of the receiver

antenna region. Then the spatial channel model in [4] reduces

to

h = hsJ
†
T . (3)

where JT is the transmitter configuration matrix (or the

transmit aperture sampling matrix) which includes antenna

positions and antenna orientation relative to the transmitter

aperture origin, [·]† denotes the matrix conjugate transpose

and hS is the complex scattering gain matrix (in this case a

vector).

The transmitter antenna configuration matrix, JT , is

JT =











J−MT
(x1) . . . JMT

(x1)
J−MT

(x2) . . . JMT
(x2)

...
. . .

...

J−MT
(xnT

) . . . JMT
(xnT

)











, (4)

where Jn(x) is the spatial-to-mode2 function (SMF), which

is related to the shape of the scatterer free antenna region.

For a circular region in 2D space, the SMF is given by a

bessel function of first kind [4] and for a sphere region in

3D space, the SMF is given by a spherical bessel function

[5]. For a prism shape region, the SMF is given by a prolate

spheroidal function [6].

1 Modulation symbols are taken from a signal constellation with unit energy.
2The set of modes forms a basis of functions for representing a multipath

wave field.

In this paper, we consider the 2-dimensional3 space, where

all the transmit antennas are encompassed in a circular aperture

with a finite radius. Then the spatial-to-mode function for the

circular aperture is given by

Jn(x) �Jn(k‖x‖)ein(φx−π/2),

where Jn(·) is the Bessel function of integer order n, vector

x = (‖x‖, φx), in polar coordinates is the antenna location rel-

ative to the origin of the aperture which encloses the transmit

antennas, k = 2π/λ is the wave number with λ being the wave

length and i =
√
−1. Note that JT is a nT×(2MT +1) matrix,

where nT is the number of transmit antennas and (2MT +1) is

the number of effective communication modes at the circular

transmit aperture. MT is given by [7]

MT � ⌈πerT /λ⌉, (5)

where rT is the minimum radius of the circular aperture

which encompass all transmit antennas. Note that JT is fixed

and known for a given transmit antenna configuration. Also

note that number of effective communication modes at the

transmitter region is determined by the size of the region but

not from the number of antennas available for transmission [7].

The m-th element of 1×(2MT + 1) scattering gain vector

hS is given by

γm = {hS}m =

∫

S1

g(φ)ei(m−MT −1)φdφ

m = 1, 2, ..., (2MT + 1),

where g(φ) is the effective random complex scattering gain

function for a signal leaving the transmitter aperture at an

angle φ. Note that, for a rich scattering environment {γm}
can be assumed to be independent each other and can be

modelled as complex Gaussian random variables. Note that

equation (3) plays an integral part of this paper.

In the next section we derive a new upper bound for the

PEP of space-time codes for the channel in (3).

III. A NEW UPPER BOUND FOR THE PAIRWISE ERROR

PROBABILITY

In this section, we derive a new upper bound for the PEP

of a space-time coded system with nT -transmit antennas and

one-receive antenna. The approach we take to develop this

new upper bound is similar to that presented in [1]. Assume

that perfect channel state information (CSI) is available at

the receiver and a maximum likelihood (ML) receiver is

employed. Assume the codeword X in (2) was transmitted,

but the ML-decoder chooses another codeword X̂, then the

PEP conditioned on the channel h, can be written as

P(X → X̂|h) = P(‖r −
√

EshX̂‖2 < ‖r −
√

EshX‖2),

= P(Re{h(X̂ − X)z†} >

√

Es

4
d2(X, X̂)),

3 The 2-dimensional case is a special case of 3-dimensional case where all
the signals arrive from or depart to horizontal plane only.



where d2(X, X̂) = h(X − X̂)(X − X̂)
†
h†, Re{·} is the real

part of an argument and ‖·‖ is the Eucleadian norm. Then the

PEP can be upper bounded by the Chernoff bound [8, page

127]

P(X → X̂|h) ≤ exp

(

− Es

4N0
d2(X, X̂)

)

. (6)

Using the spatial channel model, h = hsJ
†
T , we can write

d2(X, X̂) = hsAhs
†, where

A = J
†
T (X − X̂)(X − X̂)

†
JT . (7)

Since A is a Hermitian matrix (i.e. A = A
†), there exist

a unitary matrix V and a real diagonal matrix D such that

d2(X, X̂) = hsV
†
DVh†

s. Diagonal entries of D are the

distinct eigenvalues of A, i.e., λm, m = 1, 2, . . . , (2MT +1) .

Let β = hsV = [β1, β2, . . . , β2MT +1], then (6) can be written

as

P(X → X̂|h) ≤ exp

(

− Es

4N0

2MT +1
∑

m=1

λm|βm|2
)

. (8)

For a rich scattering environment, we can model elements of

hs as zero-mean independent identically distributed complex

Gaussian random variables each with unit variance. Since V

is unitary, {|βm|} are also zero-mean independent complex

Gaussian random variables each with variance one. Then |βm|
are distributed according to a Rayleigh distribution with pdf

f(|βm|) = 2|βm|exp(−|βm|2), for |βm| ≥ 0.

The to compute the upper bound, we average (8) with respect

to independent Rayleigh distributions of |βm| to arrive at

P(X → X̂) ≤
2MT +1

∏

m=1

(

1 +
Es

4N0
λm

)−1

. (9)

Let q denote the rank of matrix A in (7). Then matrix A

has q non-zero eigenvalues including multiplicity. It follows

from the inequality (9) that for high SNR, we obtain the upper

bound of the PEP

P(X → X̂) ≤
(

Es

4N0

)−q
(

q
∏

m=1

λm

)−1

=

(

Es

4N0

)−q
1

det[J†
T (X − X̂)(X − X̂)

†
JT ]

.

(10)

Equation (10) suggests that, we can achieve a diversity ad-

vantage of q and a coding advantage of (λ1λ2 . . . λq)
1/q . So

the rank of matrix A plays a major role in determining the

diversity advantage as well as the coding advantage of a space-

time coded system. For the matrix A, we have

rank{A} = min{rank{JT }; rank{(X − X̂)(X − X̂)
†}}

(11)

Most of the space-time trellis codes derived so far were based

on maximizing the minimum rank and the minimum product

of all the none zero eigenvalues of matrix

Y = (X − X̂)(X − X̂)
†
. (12)

Most of the codes presented in [1], [2], [9] achieve the full

rank of Y, which is the number of transmit antennas.

We now illustrate the effect of antenna configuration on

the performance of space-time trellis codes. Consider a

space-time trellis code derived based on the rank determinant

criteria given in [1]. Assume that this code gives a diversity

advantage of r (for one receive antenna), which is the

rank of matrix Y. Also assume nT transmit antennas are

placed in some configuration and the rank of the transmit

antenna configuration matrix, JT , is q(< r). According to

the upper bound (10), the diversity advantage of the system

is determined by the rank of A = J
†
T (X − X̂)(X − X̂)

†
JT .

Then from (11), we can observe that the rank of matrix A

is q. So the rank reduction of the code due to the antenna

configuration will result in lower diversity advantage than the

diversity advantage given by the space-time code itself.

This raises two questions.

• Can we have a transmit antenna configuration matrix

whose rank is less than the rank of Y (or number of

transmit antennas in the case of full rank Y)?

• For a given region, what is the best antenna configuration

type that is suited to employ a space-time code, where

the antenna configuration does not reduce the diversity

advantage given by the space-time code?

If we have less number of effective communication modes

available at the transmitter aperture than the number of trans-

mit antennas, then the rank of JT will be less than or equal

to the number of modes. From (5), it is obvious that the

number of modes available at the transmitter aperture is solely

dependent on the size of the transmitter antenna region (or

radius of the circular aperture) but not on the number of

transmit antennas being used. This implies that the lesser

the radius of the region, the lesser the number of available

effective modes at the transmit aperture. Therefore, the number

of modes available at the transmitter aperture indirectly limits

the performance of space-time trellis codes by reducing the

overall rank of A.

In the next section we provide simulation results for space-

time trellis codes with three and four transmit antennas to

support the argument we developed above.

IV. SIMULATION RESULTS

We now present the performance results for space-time

trellis codes with three and four transmit antennas to support

the theoretical work of the previous section. Performance

is measured in terms of frame error rates. Note that our

objective is to investigate the performance of space-time

trellis codes when the size of the transmit aperture is quiet

small (for e.g., antennas on a mobile unit). Therefore in our

simulations we consider circular regions with radius of 0.1λ
and 0.2λ. We consider the following two space-time trellis

codes presented in [2, Table 1].



(a) 4-PSK, 16-states trellis code with three transmit

antennas. rank(Y) = 3 and det(Y) = 32.
(b) 4-PSK, 64-states trellis code with four transmit an-

tennas. rank(Y) = 4 and det(Y) = 64.

With a single receiver antenna, diversity advantage obtained

from code-(a) is 3 and code-(b) is 4.
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Fig. 1. (a)/(c)-Three/ Four transmit antennas in an uniform circular array
with radius of 0.1λ/ 0.2λ (b)/(d)-Three/ Four transmit antennas in an uniform
linear array with radius of 0.1λ/ 0.2λ.

For code-(a), we place the three transmit antennas in a

UCA and also in a ULA as depicted in Fig-1(a) and Fig-1(b)

respectively. For both configurations, we set the radius of the

circular aperture to 0.1λ, corresponding to 2⌈πe0.1⌉ + 1 =
3 effective modes at the transmit aperture. We found that

rank(JT ) = 3 = rank(Y) for UCA antenna configuration and

rank(JT ) = 2(< rank(Y)) for ULA antenna configuration.

The performance results of code-(a) for these two antenna

configurations are shown in Fig-2. On the same figure, we also

show the performance results of code-(a) without considering

the antenna configuration. In fact, here we assume that anten-

nas are placed far apart and the correlation between antenna

elements due to space is zero. From Fig-2, we can observe

that the rank of the antenna configuration matrix JT effects

the performance of space-time trellis codes. Furthermore, we

observe that as the SNR increases, the performance difference

between two configurations are quiet significant.

Fig-2 also suggests that at 0.1λ radius with three transmit

antennas, the UCA antenna configuration is best suited to

employ space-time trellis codes, as it does not diminish the

diversity gain provided by the code, where as the ULA

configuration is not suited as it reduces the diversity advantage

given by the space-time trellis code since the rank of JT is

less than the rank of Y. We can also observe that there is a

significant performance difference between the ideal case and

the UCA antenna configuration. The reason for this difference

is that, in the ideal case we assume transmit antennas are

located far apart from each other, while in the UCA case all

the transmit antennas are enclosed in a circular region having

a radius of 0.1λ. This will result in spatial correlation among

transmit antenna elements and hence limiting the performance

of the system. We also observed that, as we increase the

radius of the transmit circular aperture, the number of effective

communication modes at the transmit aperture increase. As a

result of this increment, the rank of JT becomes equal to the

number of transmit antennas, for both antenna configurations,

which gives no impact from transmit antenna configuration

to the diversity advantage given by the code. However the

performance of the code is still limited due to the finite antenna

separation.
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Fig. 2. Frame error rate performance of the 4-PSK, 16 states space-time trellis
code with three transmit antennas for UCL, ULA antenna configurations and
ideal channel case.
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Fig. 3. Frame error rate performance of the 4-PSK, 64 states space-time trellis
code with four transmit antennas for UCL, ULA antenna configurations and
ideal channel case.

For code-(b), we place the four transmit antennas as

depicted in Fig-1(c) and Fig-1(d). For both configurations we

set the radius of the circular aperture to 0.2λ, corresponding

to 2⌈πe0.2⌉+ 1 = 5 effective modes at the transmit aperture.

It is found that rank(JT ) = 3(< rank(Y)) for the ULA

antenna configuration and rank(JT ) = 4 = rank(Y) for



the UCA antenna configuration. The performance results of

code-(b) for these two antenna configurations are shown in

Fig-3. Similar performance results are observed as for the

code-(a). We observe that at 0.2λ radius with four transmit

antennas, UCA antenna configuration is best suited to employ

space-time trellis codes while ULA antenna configuration is

not.

We found that space-time trellis codes with two transmit

antennas does not suffer from diversity loss due to the transmit

antenna configuration. The reason for this is, matrix JT is

always rank two regardless of the antenna configuration.

V. CONCLUSIONS

A new upper bound for the pairwise error probability of a

space-time code is derived for a system with multiple transmit

antennas and one-receive antenna, considering antenna con-

figuration at the transmitter. We showed that the rank of the

antenna configuration matrix effects the diversity advantage

given by the space-time trellis codes when the transmit antenna

region is small. We also showed that, uniform circular antenna

configuration is best suited to employ space-time trellis codes

with more than two transmit antennas, as it does not reduce

the diversity gain provided by the code. However we found

that, the uniform linear array antenna configuration reduces

the diversity advantage given by the code, resulting lower

performance than the uniform circular antenna configuration.
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