
1

Schema Refinement and
Normal Forms

Yanlei Diao

UMass Amherst

April 10 & 15, 2007

Slides Courtesy of R. Ramakrishnan and J. Gehrke

2

Case Study: The Internet Shop

 DBDudes Inc.: a well-known database consulting
firm

 Barns and Nobble (B&N): a large bookstore
specializing in books on horse racing

 B&N decides to go online, asks DBDudes to help
with the database design and implementation

3

Redundant Storage

Jan 26, 2006Jan 3, 20063402411601230-07-24120

Jan 11, 2006Jan 3, 20061402411601231-12-23120

Jan 6, 2006Jan 3, 20062402411601230-07-11120

ship_dateorder_dateqtycardnumcidisbnordernum

120

ordernum

120

120

isbn

0-07-11

1-12-23

0-07-24

qty

2

1

3 Jan 26, 2006

ship_date

Jan 6, 2006

Jan 11, 2006

ordernum

120

cid

123

cardnum

40241160

order_date

Jan 3, 2006

Orders

Orders Orderlists

Redundant Storage!

4

The Evils of Redundancy

 Redundancy is at the root of several problems
associated with relational schemas:

 Redundant storage

 Operation (insert, delete, update) anomalies

 Integrity constraints, in particular functional
dependencies, can be used to identify schemas with
such problems and to suggest refinements.

 ICs that we have learned: domain constraints, primary key,
candidate key, foreign key

 A new type of IC: functional dependencies

5

Schema Refinement

 Main refinement technique: decomposing a
relation into multiple smaller ones

 Decomposition should be used judiciously:

 Is there reason to decompose a relation?

 Theory on normal forms.

 What problems (if any) does the decomposition cause?
Properties of decomposition include lossless-join and
dependency-preserving.

 Decomposition can cause performance problems.

 E.g. a previous selection now requires a join!

6

Functional Dependencies (FDs)

 A functional dependency X  Y holds over relation R
if ∀ allowable instance r of R:

 t1 r, t2 r, (t1) = (t2) implies (t1) = (t2),

 X and Y are sets of attributes.

 An FD is a statement about all allowable relations.

 Must be identified based on semantics of application.

 Given an allowable instance r1 of R, we can check if r1
violates some FD f, but we cannot tell if f holds over R!

 K is a candidate key for R means that K  R.

 However, K  R does not require K to be minimal!

! ! !
X

!
X

!
Y

!
Y

7

Example: Constraints on Entity Set

 Consider relation obtained from Hourly_Emps:

 Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

 Notation: denote this relation schema by listing all its
attributes: SNLRWH

 Some FDs on Hourly_Emps:

 ssn is the key: S  SNLRWH

 rating determines hrly_wages: R  W

8

Example (Contd.)

 Problems due to R  W :
 Redundant storage

 Update anomaly: Can
we change W in just
the 1st tuple of SNLRWH?

 Insertion anomaly: What if we
want to insert an employee
and don’t know the hourly
wage for his rating?

 Deletion anomaly: If we delete
all employees with rating 5,
we lose the information about
the wage for rating 5!

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

Hourly_Emps2

R W

8 10

5 7

Wages

Will 2 smaller tables be better?

9

Reasoning About FDs

 Given some FDs, we can usually infer additional FDs:

 ssn  did, did  lot implies ssn  lot

 An FD f is implied by a set of FDs F, if f holds for every
reln instance that satisfies all FDs in F.

 F+ = Closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X ⊆ Y, then Y  X

 Augmentation: If X  Y, then XZ  YZ for any Z

 Transitivity: If X  Y and Y  Z, then X  Z

10

Reasoning About FDs (Contd.)

 Couple of additional rules (that follow from AA):

 Union: If X  Y and X  Z, then X  YZ

 Decomposition: If X  YZ, then X  Y and X  Z

 These are sound and complete inference rules for FDs!

 Soundness: when applied to a set F of FDs, the axioms
generate only FDs in F+.

 Completeness: repeated application of these axioms will
generate all FDs in F+.

11

Reasoning About FDs (Contd.)

 Computing the closure F+ can be expensive:

 Compute for all FD’s.

 Size of closure is exponential in number of attrs!

 Typically, we just want to check if a given FD X  Y is
in F+. An efficient check:

 Compute attribute closure of X (denoted X+) w.r.t. F, i.e., the
largest attribute set A such that X  A is in F+.

 Check if Y ⊆ X+.

12

Attribute Closure

 Simple algorithm for attribute closure X+:
 DO if there is U  V in F s.t. U ⊆ X+,

 then X+= X+∪V

 UNTIL no change

 Check if a given FD X  Y is in F+:

 Simply check if Y ⊆ X+.

 Does F = {A  B, B  C, C D  E } imply A  E?

 That is, is A  E in the closure F+?

 Equivalently, is E in A+?

13

Normal Forms

 Returning to the issue of schema refinement, the first
question to ask is whether any refinement is needed!

 Normal forms: If a relation is in a certain normal form
(BCNF, 3NF etc.), it is known that certain redundancy
related problems are avoided/minimized.

 Role of FDs in detecting redundancy:

 Consider a relation R with 3 attributes, ABC.

– No FDs hold: There is no redundancy here.

– Given A  B: Several tuples could have the same A
value, and if so, they’ll all have the same B value!

14

Boyce-Codd Normal Form (BCNF)

 Rewrite every FD in the form of X  A (X is a set of
attributes, A is a single attribute) using the
decomposition rule.

 Reln R with FDs F is in BCNF if ∀ X  A in F+:

 A ∈ X (called a trivial FD), or

 X is a superkey (i.e., contains a key) for R.

15

Boyce-Codd Normal Form (contd.)

 R is in BCNF if the only non-trivial FDs that hold
over R are key constraints.

 Can we infer the value marked by ‘?’ ?
 Is the relation in BCNF? X Y A

x y1 a

x y2 ?

 BCNF ensures that no redundancy can be detected using

FDs!

 If a reln is in BCNF, every field of every
tuple records a piece of information that
can’t be inferred (using only FD’s) from
values in other fields.

16

Third Normal Form (3NF)

 Reln R with FDs F is in 3NF if ∀ X  A in F+:

 A ∈ X (called a trivial FD), or

 X is a superkey for R, or

 A is part of some key for R. (Minimality of a key is
crucial in the third condition!)

 If R is in BCNF, obviously in 3NF.

17

Third Normal Form (contd.)

 If R is in 3NF, some redundancy is possible!
 Reserves{Sailor, Boat, Date, Credit_card} with

S  C, C  S

 It is in 3NF, because keys are SBD and CBD.

 But for each reservation of sailor S, same (S, C) is
stored.

 Why 3NF?
 Lossless-join, dependency-preserving decomposition of R

into 3NF relations is always possible.

 This is not true for BCNF!

18

Decomposition of a Relation Scheme

 A decomposition of R replaces R by two or more
relations such that:

 Each new relation scheme contains a subset of the attributes
of R, and

 Every attribute of R appears as an attribute of at least one
new relation.

 Store instances of the relation schemas produced by
the decomposition, instead of instances of R.

19

Example Decomposition

 Decompositions should be used only when needed.

 Hourly_Emps (SNLRWH) has FDs S  SNLRWH and
R  W.

 R  W causes violation of 3NF; W values repeatedly
associated with R values.

 A way to fix this is to create a relation RW to store these
associations, and to remove W from the main schema:

• i.e., decompose SNLRWH into SNLRH and RW.

 Any potential problems with storing SNLRH and RW
instead of SNLRWH?

20

Problems with Decompositions

 Three potential problems to consider:

 Some queries become more expensive.

• e.g., How much did sailor Joe earn? (salary = W*H)

 Given instances of the decomposed relations, we may not be able
to reconstruct the corresponding instance of the original
relation!

• Fortunately, not in the SNLRWH example.

 Checking some dependencies may require joining the instances
of the decomposed relations.

• Fortunately, not in the SNLRWH example.

 Tradeoff: Must consider these issues vs. redundancy.

21

Lossless Join Decompositions

 Decomposition of R into R1 and R2 is lossless-join
w.r.t. a set of FDs F if ∀ instance r that satisfies F:

 π R1 (r) π R2 (r) = r

 It is always true that r π R1 (r) π R2 (r)

 In general, the other direction does not hold! If it does, the
decomposition is lossless-join.

 It is essential that all decompositions used to deal with
redundancy be lossless! (Avoids Problem (2).)

><

! ><

22

More on Lossless Join

 Decomposition of R into R1
and R2 is lossless-join wrt F iff
the closure of F contains:
 R1 ∩ R2  R1, or

 R1 ∩ R2  R2

 i.e. intersection of R1, R2 is a
(super) key of one of them.

 In particular, if U V holds
over R, the decomposition of
R into UV and R - V is
lossless-join.

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

23

Dependency Preserving Decomposition

 Consider Contracts(Contractid, Supplierid, Projectid,
Deptid, Partid, Qty, Value), denoted by CSJDPQV.

 Functional dependencies:

 C is key.

 JP  C: a project purchases a given part using a single
contract.

 SD  P: a department purchases at most one part from a
supplier.

 Lossless-join BCNF decomposition: CSJDQV, SDP

 Problem: Checking JP  C requires a join!

24

Dependency Preserving Decomposition

 Dependency preserving decomposition:

 If R is decomposed into R1 and R2 and we enforce the FDs
that hold on R1 and R2 respectively, all FDs that were
given to hold on R must also hold. (Avoids Problem (3).)

 Projection of set of FDs F:

 If R is decomposed into R1, ..., projection of F onto R1
(denoted FR1) is the set of FDs U V such that (i) U, V are
both in R1 and (ii) U V is in closure F+.

 FR1 ≡ F+
R1

25

Dependency Preserving Decompositions
(Contd.)

 Formally, decomposition of R into R1 and R2 is
dependency preserving if (FR1 UNION FR2)

+ = F +

 Important to consider F + (not F!) in this definition:

 ABC, A  B, B  C, C  A, decomposed into AB and BC.

 Is this dependency preserving? Is C  A preserved?

 Dependency preserving does not imply lossless join:

 ABC, A  B, decomposed into AB and BC.

 And vice-versa! (Example?)

26

Decomposition into BCNF

 Consider relation R with FDs F. If X  Y violates
BCNF, decompose R into R1=R - Y and R2=XY.

 For each Ri, compute FRi and check if it is in BCNF.

 If not, pick a FD violating BCNF and keep composing Ri.

 Repeated application of this idea gives us a lossless join
decomposition into BCNF relations, and is guaranteed to
terminate.

27

Decomposition into BCNF

 Contracts(CSJDPQV), key C, JP  C, SD  P, J  S.

1. Keys. C, JP, SDJ.

2. Normal form. Not BCNF, SD  P and J  S violate BCNF.

3. Decomposition. To deal with SD  P, decompose into SDP,
CSJDQV.

 SDP is in BCNF. But CSJDQV is not because:

1. Projection of FDs and keys. Projection of FDs: keys C and SDJ, J  S.

2. Normal form. J  S violates BCNF.

3. Decomposition. For J  S, decompose CSJDQV into JS and CJDQV.

 JS is in BCNF. So is CJDQV.

 If several FDs violate BCNF, the order in which we ``deal
with’’ them could lead to very different sets of relations!

28

BCNF and Dependency Preservation

 In general, there may not be a dependency-preserving
decomposition into BCNF.

 Decomposition of CSJDQV into SDP, JS and CJDQV is not
dependency preserving (w.r.t. the FDs JP  C, SD  P
and J  S).

 However, it is a lossless join decomposition.

 Adding JPC as a new relation gives a dependency
preserving decomposition. But JPC tuples stored only for
checking FD—Redundancy across relations!

 If we also have JC, JPC is not in BCNF.

29

Decomposition into 3NF

 The algorithm for lossless join decomposition into
BCNF can be used to obtain a lossless join
decomposition into 3NF (typically, can stop earlier).

 Idea to ensure dependency preservation: If X  Y is
not preserved, add relation XY.

 Problem is that XY may violate 3NF!

 Suppose AB  C is lost in decomposition. Add ABC to
`preserve’ AB  C. What if we also have A  B ?

 Refinement: Instead of the given set of FDs F, use a
minimal cover for F (minimal FD set G s.t. G+ = F+).

30

Decomposition into 3NF

 Step 1: Given F of FDs, compute its minimal
cover G (not required in this class).

 Step 2: Use G to create a lossless-join
decomposition of R into R1, …, Rn.

 Step 3: Identify the dependencies in F+ that are
not preserved. For each such FD XA, add a
new relation XA.

 This algorithm produces a lossless-join,
dependency-preserving decomposition into 3NF.

31

Summary of Schema Refinement

 If a relation is in BCNF, it is free of redundancies that
can be detected using FDs. Thus, trying to ensure
that all relations are in BCNF is a good heuristic.

 If a relation is not in BCNF, we can try to decompose
it into a collection of BCNF relations.

 Must consider whether all FDs are preserved. If a lossless-
join, dependency preserving decomposition into BCNF is
not possible (or unsuitable, given typical queries), should
consider decomposition into 3NF.

 Decompositions should be carried out and/or re-examined
while keeping performance requirements in mind.

