
1

Schema Refinement and
Normal Forms

Yanlei Diao

UMass Amherst

April 10 & 15, 2007

Slides Courtesy of R. Ramakrishnan and J. Gehrke

2

Case Study: The Internet Shop

 DBDudes Inc.: a well-known database consulting
firm

 Barns and Nobble (B&N): a large bookstore
specializing in books on horse racing

 B&N decides to go online, asks DBDudes to help
with the database design and implementation

3

Redundant Storage

Jan 26, 2006Jan 3, 20063402411601230-07-24120

Jan 11, 2006Jan 3, 20061402411601231-12-23120

Jan 6, 2006Jan 3, 20062402411601230-07-11120

ship_dateorder_dateqtycardnumcidisbnordernum

120

ordernum

120

120

isbn

0-07-11

1-12-23

0-07-24

qty

2

1

3 Jan 26, 2006

ship_date

Jan 6, 2006

Jan 11, 2006

ordernum

120

cid

123

cardnum

40241160

order_date

Jan 3, 2006

Orders

Orders Orderlists

Redundant Storage!

4

The Evils of Redundancy

 Redundancy is at the root of several problems
associated with relational schemas:

 Redundant storage

 Operation (insert, delete, update) anomalies

 Integrity constraints, in particular functional
dependencies, can be used to identify schemas with
such problems and to suggest refinements.

 ICs that we have learned: domain constraints, primary key,
candidate key, foreign key

 A new type of IC: functional dependencies

5

Schema Refinement

 Main refinement technique: decomposing a
relation into multiple smaller ones

 Decomposition should be used judiciously:

 Is there reason to decompose a relation?

 Theory on normal forms.

 What problems (if any) does the decomposition cause?
Properties of decomposition include lossless-join and
dependency-preserving.

 Decomposition can cause performance problems.

 E.g. a previous selection now requires a join!

6

Functional Dependencies (FDs)

 A functional dependency X Y holds over relation R
if ∀ allowable instance r of R:

 t1 r, t2 r, (t1) = (t2) implies (t1) = (t2),

 X and Y are sets of attributes.

 An FD is a statement about all allowable relations.

 Must be identified based on semantics of application.

 Given an allowable instance r1 of R, we can check if r1
violates some FD f, but we cannot tell if f holds over R!

 K is a candidate key for R means that K R.

 However, K R does not require K to be minimal!

! ! !
X

!
X

!
Y

!
Y

7

Example: Constraints on Entity Set

 Consider relation obtained from Hourly_Emps:

 Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

 Notation: denote this relation schema by listing all its
attributes: SNLRWH

 Some FDs on Hourly_Emps:

 ssn is the key: S SNLRWH

 rating determines hrly_wages: R W

8

Example (Contd.)

 Problems due to R W :
 Redundant storage

 Update anomaly: Can
we change W in just
the 1st tuple of SNLRWH?

 Insertion anomaly: What if we
want to insert an employee
and don’t know the hourly
wage for his rating?

 Deletion anomaly: If we delete
all employees with rating 5,
we lose the information about
the wage for rating 5!

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

Hourly_Emps2

R W

8 10

5 7

Wages

Will 2 smaller tables be better?

9

Reasoning About FDs

 Given some FDs, we can usually infer additional FDs:

 ssn did, did lot implies ssn lot

 An FD f is implied by a set of FDs F, if f holds for every
reln instance that satisfies all FDs in F.

 F+ = Closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):
 Reflexivity: If X ⊆ Y, then Y X

 Augmentation: If X Y, then XZ YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

10

Reasoning About FDs (Contd.)

 Couple of additional rules (that follow from AA):

 Union: If X Y and X Z, then X YZ

 Decomposition: If X YZ, then X Y and X Z

 These are sound and complete inference rules for FDs!

 Soundness: when applied to a set F of FDs, the axioms
generate only FDs in F+.

 Completeness: repeated application of these axioms will
generate all FDs in F+.

11

Reasoning About FDs (Contd.)

 Computing the closure F+ can be expensive:

 Compute for all FD’s.

 Size of closure is exponential in number of attrs!

 Typically, we just want to check if a given FD X Y is
in F+. An efficient check:

 Compute attribute closure of X (denoted X+) w.r.t. F, i.e., the
largest attribute set A such that X A is in F+.

 Check if Y ⊆ X+.

12

Attribute Closure

 Simple algorithm for attribute closure X+:
 DO if there is U V in F s.t. U ⊆ X+,

 then X+= X+∪V

 UNTIL no change

 Check if a given FD X Y is in F+:

 Simply check if Y ⊆ X+.

 Does F = {A B, B C, C D E } imply A E?

 That is, is A E in the closure F+?

 Equivalently, is E in A+?

13

Normal Forms

 Returning to the issue of schema refinement, the first
question to ask is whether any refinement is needed!

 Normal forms: If a relation is in a certain normal form
(BCNF, 3NF etc.), it is known that certain redundancy
related problems are avoided/minimized.

 Role of FDs in detecting redundancy:

 Consider a relation R with 3 attributes, ABC.

– No FDs hold: There is no redundancy here.

– Given A B: Several tuples could have the same A
value, and if so, they’ll all have the same B value!

14

Boyce-Codd Normal Form (BCNF)

 Rewrite every FD in the form of X A (X is a set of
attributes, A is a single attribute) using the
decomposition rule.

 Reln R with FDs F is in BCNF if ∀ X A in F+:

 A ∈ X (called a trivial FD), or

 X is a superkey (i.e., contains a key) for R.

15

Boyce-Codd Normal Form (contd.)

 R is in BCNF if the only non-trivial FDs that hold
over R are key constraints.

 Can we infer the value marked by ‘?’ ?
 Is the relation in BCNF? X Y A

x y1 a

x y2 ?

 BCNF ensures that no redundancy can be detected using

FDs!

 If a reln is in BCNF, every field of every
tuple records a piece of information that
can’t be inferred (using only FD’s) from
values in other fields.

16

Third Normal Form (3NF)

 Reln R with FDs F is in 3NF if ∀ X A in F+:

 A ∈ X (called a trivial FD), or

 X is a superkey for R, or

 A is part of some key for R. (Minimality of a key is
crucial in the third condition!)

 If R is in BCNF, obviously in 3NF.

17

Third Normal Form (contd.)

 If R is in 3NF, some redundancy is possible!
 Reserves{Sailor, Boat, Date, Credit_card} with

S C, C S

 It is in 3NF, because keys are SBD and CBD.

 But for each reservation of sailor S, same (S, C) is
stored.

 Why 3NF?
 Lossless-join, dependency-preserving decomposition of R

into 3NF relations is always possible.

 This is not true for BCNF!

18

Decomposition of a Relation Scheme

 A decomposition of R replaces R by two or more
relations such that:

 Each new relation scheme contains a subset of the attributes
of R, and

 Every attribute of R appears as an attribute of at least one
new relation.

 Store instances of the relation schemas produced by
the decomposition, instead of instances of R.

19

Example Decomposition

 Decompositions should be used only when needed.

 Hourly_Emps (SNLRWH) has FDs S SNLRWH and
R W.

 R W causes violation of 3NF; W values repeatedly
associated with R values.

 A way to fix this is to create a relation RW to store these
associations, and to remove W from the main schema:

• i.e., decompose SNLRWH into SNLRH and RW.

 Any potential problems with storing SNLRH and RW
instead of SNLRWH?

20

Problems with Decompositions

 Three potential problems to consider:

 Some queries become more expensive.

• e.g., How much did sailor Joe earn? (salary = W*H)

 Given instances of the decomposed relations, we may not be able
to reconstruct the corresponding instance of the original
relation!

• Fortunately, not in the SNLRWH example.

 Checking some dependencies may require joining the instances
of the decomposed relations.

• Fortunately, not in the SNLRWH example.

 Tradeoff: Must consider these issues vs. redundancy.

21

Lossless Join Decompositions

 Decomposition of R into R1 and R2 is lossless-join
w.r.t. a set of FDs F if ∀ instance r that satisfies F:

 π R1 (r) π R2 (r) = r

 It is always true that r π R1 (r) π R2 (r)

 In general, the other direction does not hold! If it does, the
decomposition is lossless-join.

 It is essential that all decompositions used to deal with
redundancy be lossless! (Avoids Problem (2).)

><

! ><

22

More on Lossless Join

 Decomposition of R into R1
and R2 is lossless-join wrt F iff
the closure of F contains:
 R1 ∩ R2 R1, or

 R1 ∩ R2 R2

 i.e. intersection of R1, R2 is a
(super) key of one of them.

 In particular, if U V holds
over R, the decomposition of
R into UV and R - V is
lossless-join.

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

23

Dependency Preserving Decomposition

 Consider Contracts(Contractid, Supplierid, Projectid,
Deptid, Partid, Qty, Value), denoted by CSJDPQV.

 Functional dependencies:

 C is key.

 JP C: a project purchases a given part using a single
contract.

 SD P: a department purchases at most one part from a
supplier.

 Lossless-join BCNF decomposition: CSJDQV, SDP

 Problem: Checking JP C requires a join!

24

Dependency Preserving Decomposition

 Dependency preserving decomposition:

 If R is decomposed into R1 and R2 and we enforce the FDs
that hold on R1 and R2 respectively, all FDs that were
given to hold on R must also hold. (Avoids Problem (3).)

 Projection of set of FDs F:

 If R is decomposed into R1, ..., projection of F onto R1
(denoted FR1) is the set of FDs U V such that (i) U, V are
both in R1 and (ii) U V is in closure F+.

 FR1 ≡ F+
R1

25

Dependency Preserving Decompositions
(Contd.)

 Formally, decomposition of R into R1 and R2 is
dependency preserving if (FR1 UNION FR2)

+ = F +

 Important to consider F + (not F!) in this definition:

 ABC, A B, B C, C A, decomposed into AB and BC.

 Is this dependency preserving? Is C A preserved?

 Dependency preserving does not imply lossless join:

 ABC, A B, decomposed into AB and BC.

 And vice-versa! (Example?)

26

Decomposition into BCNF

 Consider relation R with FDs F. If X Y violates
BCNF, decompose R into R1=R - Y and R2=XY.

 For each Ri, compute FRi and check if it is in BCNF.

 If not, pick a FD violating BCNF and keep composing Ri.

 Repeated application of this idea gives us a lossless join
decomposition into BCNF relations, and is guaranteed to
terminate.

27

Decomposition into BCNF

 Contracts(CSJDPQV), key C, JP C, SD P, J S.

1. Keys. C, JP, SDJ.

2. Normal form. Not BCNF, SD P and J S violate BCNF.

3. Decomposition. To deal with SD P, decompose into SDP,
CSJDQV.

 SDP is in BCNF. But CSJDQV is not because:

1. Projection of FDs and keys. Projection of FDs: keys C and SDJ, J S.

2. Normal form. J S violates BCNF.

3. Decomposition. For J S, decompose CSJDQV into JS and CJDQV.

 JS is in BCNF. So is CJDQV.

 If several FDs violate BCNF, the order in which we ``deal
with’’ them could lead to very different sets of relations!

28

BCNF and Dependency Preservation

 In general, there may not be a dependency-preserving
decomposition into BCNF.

 Decomposition of CSJDQV into SDP, JS and CJDQV is not
dependency preserving (w.r.t. the FDs JP C, SD P
and J S).

 However, it is a lossless join decomposition.

 Adding JPC as a new relation gives a dependency
preserving decomposition. But JPC tuples stored only for
checking FD—Redundancy across relations!

 If we also have JC, JPC is not in BCNF.

29

Decomposition into 3NF

 The algorithm for lossless join decomposition into
BCNF can be used to obtain a lossless join
decomposition into 3NF (typically, can stop earlier).

 Idea to ensure dependency preservation: If X Y is
not preserved, add relation XY.

 Problem is that XY may violate 3NF!

 Suppose AB C is lost in decomposition. Add ABC to
`preserve’ AB C. What if we also have A B ?

 Refinement: Instead of the given set of FDs F, use a
minimal cover for F (minimal FD set G s.t. G+ = F+).

30

Decomposition into 3NF

 Step 1: Given F of FDs, compute its minimal
cover G (not required in this class).

 Step 2: Use G to create a lossless-join
decomposition of R into R1, …, Rn.

 Step 3: Identify the dependencies in F+ that are
not preserved. For each such FD XA, add a
new relation XA.

 This algorithm produces a lossless-join,
dependency-preserving decomposition into 3NF.

31

Summary of Schema Refinement

 If a relation is in BCNF, it is free of redundancies that
can be detected using FDs. Thus, trying to ensure
that all relations are in BCNF is a good heuristic.

 If a relation is not in BCNF, we can try to decompose
it into a collection of BCNF relations.

 Must consider whether all FDs are preserved. If a lossless-
join, dependency preserving decomposition into BCNF is
not possible (or unsuitable, given typical queries), should
consider decomposition into 3NF.

 Decompositions should be carried out and/or re-examined
while keeping performance requirements in mind.

