
IIR Filter Implementation 1

Department of Electrical & Electronic Engineering

Imperial College of Science, Technology and Medicine

Real-time Implementation of IIR Filters

In this lab session, you will use MATLAB to design some IIR filters and then implement them in

real-time on the DSP processor.

The transfer function of an IIR filter is given by
N

N

M

N

zaza

zbzbb
zH −−

−−

+++
+++=

m

m

1

1

1

10

1
)(.

This corresponds to a time-domain recurrence relation:

)()1()()1()()(110 NnyanyaMnxbnxbxxbny NM −−−−−−++−+= mm

Single-Pole Filter

As an initial check, you should implement the single-pole low-pass filter
1

1

0

1
)(−+

=
za

b
zH . The

impulse response of this filter is a negative exponential and for a time constant of τ , you need to

set ()τ/exp1 Ta −−= where 8000/1=T is the sample period. Implement this filter with

ms 1=τ and choose 0b to give a DC gain of unity. By driving the input with a low-frequency

squarewave, verify that the impulse response is correct. Verify also that the frequency response is

as expected and has the correct corner frequency.

Bandpass Filter: Direct Form II

For the next example we want an elliptic bandpass filter with the following specifications:

Order 4
th

Passband 100 Hz to 500 Hz

Passband ripple 0.5 dB

Stopband attenuation 20 dB

This can be designed using the MATLAB function ellip(). You should write a MATLAB

function that calculates the coefficients for such a filter and writes them into a text file called

coef.t x t in a format suitable for inclusion in a C program. For example, for a third-order filter,

the file might contain:

f loat a[] = { 1, -1.76, 1.1829, -0.2781,};
f loat b[] = { 0.0181, 0.0543, 0.0543, 0.0181,};

The comma following the final value in each line is optional but makes your MATLAB output

routine easier. Note that the ellip() function requires you to specify frequencies normalized to the

Nyquist frequency and to specify the order as half the desired value.

Write a C program to implement an IIR filter in Direct Form II as shown in the Figure below.

Your program should work for any filter order, but you can assume that a[] and b[] are the same

IIR Filter Implementation 2

length. You can determine the filter order (which is one less than the length of a[]) and allocate

the required temporary storage with the following statements:

order = sizeof(a)/ sizeof(a[0]) - 1;
w = (f loat *) calloc(order, sizeof(f loat));

You may require the w[] array to be of length order or order+1 according to the nature of your

algorithm. Verify that the filter frequency response agrees with the MATLAB prediction.

+

D

+

D

D

–a
1

–a
2

–a
3

b
1

b
2

b
3

b
0xin yout

Use the profiler to determine how many instruction cycles per sample are needed for are needed

for a filter of order n in the form BnA + . You should include only the instructions between the

calls to AD535_HWI_read() and AD535_HWI_write().

Now recompile your program but using the Compiler option –o2 to optimise the program for

speed. See what difference this makes to the number of instruction cycles required.

Bandpass Filter: Direct Form II Transposed

Rewrite your program so that it implements a Direct Form II Transposed structure:

+D

–a
2

b
3

xin

yout
+D+D+

b
2

b
1

b
0

–a
3

–a
1

Verify that the filter response is unchanged. Determine the cycle count with and without

optimisation.

IIR Filter Implementation 3

Cascaded Biquad Implementation

Write the code to implement a filter as a cascade of second-order (biquad) filters. You can use

any of the direct form implementations as the basic building block: I have shown Direct Form II

below:

+

D

+

D

–a
11

–a
12

b
11

b
12

xin g
+

yout
+

D

D

–a
21

–a
22

b
21

b
22

2

2

1

1

2

2

1

1

2

12

1

11

2

12

1

11

1

1

1

1
)(−−

−−

−−

−−

++
++××

++
++×=

zaza

zbzb

zaza

zbzb
gzH

KK

KK
�

Note that you only need a single gain coefficient, g, for the whole filter and do not need

individual 0b coefficients for each stage. You may find it easiest to have four separate coefficient

arrays for the 2*1*2*1* ,,, bbaa values. In MATLAB, you can convert a direct-form filter into

cascaded second-order sections using the function t f2sos(). Verify that your bandpass filter

works correctly.

The main reason for using a cascaded biquad implementation is that it is much less sensitive to

coefficient errors. To see this, design the following enhanced version of your filter and try it out

using both your direct form and your biquad versions:

Order 12
th

Passband 100 Hz to 500 Hz

Passband ripple 0.5 dB

Stopband attenuation 40 dB

You will probably find that your direct form filter doesn’t work: to see what is going wrong, use

the watch window to examine the signal values. Even for a comparatively uncomplicated filter

such as this, the coefficients need to be fantastically precise. MATLAB works to a precision of

52 significant bits but we can artificially reduce the precision to n bits with the following routine:

funct ion y=bitsprec(x ,n)
 [x ,e]=log2(x);
 y=pow2(round(pow2(x ,n)),e-n);
end

By evaluating abs(roots(bit sprec(a,n))) for various values of n, determine how many bits of

precision are required to ensure that the 12
th
 order filter is stable (a decimal digit corresponds to

3.3 bits). Do the same for the biquad filter sections.

Optional Bi t for extra marks

