OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERIN G

ECEN 4413 Controls II Fall 1997 Midterm Exam #2

Name :	
Student ID:	
E-Mail Address:	

Problem 1: Find the equivalent G configuration of a plant transfer function given as

$$G_p(s) = \frac{2}{s^3 + 19s^2 + 95s + 77}$$
 with state feedback control (i.e., $K = 2, k^T = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$).

Show the resulting block diagram.

Problem 2:

Apply the state feedback with controller gain (K = 2) to an open-loop DC motor with transfer function, $G_p(s) = \frac{s^2 + 2s + 1}{s^3 + 2s^2 + 3s + s}$. Find the feedback coefficients (vector k) so that the eigenvalues of the closed-loop system matrix are -2, -3 and -5.

Problem 3: For the state feedback control system described by

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \qquad ,$$

$$u(t) = 10(r(t) - \begin{bmatrix} 2 & 3 \end{bmatrix} x(t))$$

$$u(t) = 10(r(t) - \begin{bmatrix} 2 & 3 \end{bmatrix} x(t))$$

find a) $\Phi_k(s)$, b) $G_p(s)$, c) $G_{eq}(s)$, and d) Y(s)/R(s) by matrix method.

Problem 4: The resolvent matrix, $\Phi(s)$ for a given plant is

$$\Phi(s) = \begin{bmatrix} \frac{1}{s} & \frac{1}{s(s+3)} & \frac{10}{s(s+3)(s+10)} \\ 0 & \frac{1}{s+3} & \frac{10}{(s+3)(s+10)} \\ 0 & 0 & \frac{1}{s+10} \end{bmatrix},$$

and $b = \begin{bmatrix} 0 & 0 & 5 \end{bmatrix}^T$, $c^T = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$. Find only $x_2(t)$ for $u(t) = e^{-3t}u_s(t)$ (i.e., $u_s(t)$ is the step function) and $x(0) = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$.