\qquad
\qquad

Midterm \#2

Problems Points

1. \qquad 4
2. \qquad 5
3. \qquad 6

Total \qquad 15

Problems	Points
1.	4
2.	5
3.	6
Total	
	15

Electric Circuits I

Was the exam fair ?

no

\qquad
\qquad

Problem 14 points

Given are three one port reactive circuits whose graphical representation is shown in Figure 1.1.

(a)

(b)

(c)

Figure 1.1 Three one-port circuits with reactive elements.
Hint \#1 For full credit, give answers to all questions, prepare all required circuit diagrams, write all equations for which the space is left, and show all symbolic and numerical expressions whose evaluation produces shown numerical results.
An explicit demonstration of understanding the following solution steps is expected.
1.1 For the one-port circuit in Figure 1.1(a), determine the real and imaginary part representation of the impedance $\mathbf{Z}_{\mathbf{a}}$ in terms of the circuit element parameters L_{1} and L_{2}, and calculate the value of $\mathbf{Z}_{\mathbf{a}}$ at the frequency of $\mathrm{f}=60 \mathrm{~Hz}$.

$$
\mathbf{Z}_{\mathbf{a}}=j \omega \mathrm{~L}_{\mathrm{e}}=\frac{j \omega \mathrm{~L}_{1} \cdot \mathrm{~L}_{2}}{\mathrm{~L}_{1}+\mathrm{L}_{2}}=0+j \frac{120 \pi \cdot 2 \cdot 8}{2+8}=(0+j 603) \Omega
$$

1.2 For the one-port circuit in Figure 1.1(b), determine the real and imaginary part representation of the impedance $\mathbf{Z}_{\mathbf{b}}$ in terms of the circuit element parameters $\mathrm{R}_{1}, \mathrm{~L}_{1}$ and C_{1}, and calculate the frequency f at which $\mathbf{Z}_{\mathbf{b}}=\mathrm{R}_{1}$.

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{b}}=R_{1}+j \omega L_{1}+\frac{1}{j \omega C_{1}}=R_{1}+j\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right) \quad=R_{1}+j \frac{\omega^{2} L_{1} C_{1}-1}{\omega C_{1}} \\
& \mathbf{Z}_{\mathbf{b}}=R_{1} \text { for } \omega^{2} L_{1} C_{1}-1=0 \Rightarrow f=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}}=\frac{1}{2 \pi \sqrt{2 \cdot 8.2 \cdot 10^{-6}}}=39.3 \mathrm{~Hz}
\end{aligned}
$$

1.3 For the one-port circuit in Figure 1.1(c), determine the real and imaginary part representation of the impedance Z_{c} in terms of the circuit element parameters C_{1}, C_{2}, and R_{1}, and calculate the value of Z_{c} at the frequency $f=120 \mathrm{~Hz}$.

$$
\mathbf{Z}_{\mathbf{c}}=R_{1}+\frac{1}{j \omega C_{e}}=R_{1}-j \frac{1}{\omega \cdot\left(C_{1}+C_{2}\right)}=100-j \frac{1}{2 \cdot 120 \pi \cdot(8.2+47) \cdot 10^{-6}}=(100-j 24) \Omega
$$

\qquad
\qquad

Problem 25 points

Given is the electric circuit model with circuit element parameter values as shown in Figure 2.1(a).

(a)

(b)

Figure 2.1 An electric circuit model.
For the time domain electric circuit model of Figure 2.1(a), demonstrate an ability to:

1. derive the corresponding phasor domain circuit model and determine its parameter values;
2. apply equivalents of resistive circuits analysis methods to the phasor domain circuit models;
3. apply specifically the voltage/current divider formula in the phasor domain analysis of electric circuits.

Problem

Prepare a partial solution of the electric circuit whose electrical model and circuit element parameter values are shown in Figure 2.1(a). For full credit, the partial solution ought to include:
(a) the phasor domain representation of the circuit as specified under 2.1 below,
(b) the phasor domain representation $\mathbf{I}_{\mathbf{R}}$ of current i_{R} through resistor R , as specified under 2.2, 2.3 and 2.4 below,
(c) the phasor representation of the current flowing through resistor R , as specified under 2.5 below,
Hint \#1 For full credit, give answers to all questions, prepare all required circuit diagrams, write all equations for which the space is reserved, and show all symbolic and numerical expressions whose evaluation produces shown numerical results.

Solution

An explicit demonstration of understanding the following solution steps is expected.
2.1 Prepare the phasor domain representation of the circuit in Figure 2.1(a), and show it in the space reserved for Figure 2.1(b).

Hint\#2:Denote the impedance of the resistor R by Z_{R} and denote the impedance of the capacitor \mathbf{C} by $\mathbf{Z}_{\mathbf{C}}$.

2.2 Applying the voltage divider formula to the circuit of Figure 2.1(b), express the real and imaginary parts of the voltage $\mathbf{V}_{\mathbf{R}}$ across the impedance $\mathbf{Z}_{\mathbf{R}}$ in terms of circuit element parameters R and C .
\qquad
\qquad

Show your calculation in the space reserved for equation (2-1).

$$
\begin{align*}
& \mathbf{V}_{\mathbf{R}}=\mathbf{V}_{\mathbf{S}} \frac{\mathbf{Z}_{\mathbf{R}}}{\mathbf{Z}_{\mathbf{R}}+\mathbf{Z}_{\mathbf{C}}}=\mathbf{V}_{\mathbf{S}} \frac{\mathbf{R}}{\mathbf{R}+\frac{1}{j \omega \mathrm{C}}}=\mathbf{V}_{\mathbf{S}} \frac{j \omega \mathrm{CR}}{1+j \omega \mathrm{CR}}=\mathbf{V}_{\mathbf{S}} \frac{j \omega \mathrm{CR}(1-j \omega \mathrm{CR})}{1+(\omega \mathrm{CR})^{2}}=V_{\mathrm{Sm}} \frac{(\omega \mathrm{CR})^{2}+j \omega \mathrm{CR}}{1+(\omega \mathrm{CR})^{2}} \\
& \operatorname{Re}\left\{\mathbf{V}_{\mathbf{R}}\right\}=\mathrm{V}_{\mathrm{Sm}} \frac{(\omega \mathrm{CR})^{2}}{1+(\omega \mathrm{CR})^{2}} \quad \tag{2-1}
\end{align*}
$$

2.3 Using the derived expression (2-1), calculate the numerical values of the real and imaginary parts of the phasor domain voltage $\mathbf{V}_{\mathbf{R}}$. Show your calculation in the space reserved for equation (2-2)

$$
\begin{align*}
& \omega C R=200 \pi \cdot 20 \cdot 10^{-6} \cdot 15=189 \cdot 10^{-3} \quad(\omega \mathrm{CR})^{2}=\left(189 \cdot 10^{-3}\right)^{2}=0.0355 \\
& \operatorname{Re}\left\{\mathbf{V}_{\mathbf{R}}\right\}=\mathrm{V}_{\mathrm{Sm}} \frac{(\omega \mathrm{CR})^{2}}{1+(\omega \mathrm{CR})^{2}}=\frac{30 \cdot 0.0355}{1+0.0355}=1.06 \mathrm{~V} \tag{2-2}\\
& \operatorname{Im}\left\{\mathbf{V}_{\mathbf{R}}\right\}=\mathrm{V}_{\mathrm{Sm}} \frac{\omega \mathrm{CR}}{1+(\omega \mathrm{CR})^{2}}=\frac{30 \cdot 18.8 \cdot 10^{-3}}{1+0.0355}=5.67 \mathrm{~V}
\end{align*}
$$

2.4 Calculate the values of the modul and argument of the phasor domain voltage $\mathbf{V}_{\mathbf{R}}$ in the circuit of Figure 2.1(b). Use the space reserved for equation (2-3) to show your calculation, and the numerical values of the polar representation of the of the phasor $\mathbf{V}_{\mathbf{R}}$.

$$
\begin{align*}
& \bmod \mathbf{V}_{\mathbf{R}}=\left|\mathbf{V}_{\mathbf{R}}\right|=10^{-3} \quad \sqrt{1.06^{2}+5.67^{2}}=5.77 \mathrm{~V} \\
& \arg \mathbf{V}_{\mathbf{R} 2}=\operatorname{arctg} \frac{5.67}{1.06}=\operatorname{arctg}(5.35)=79.4^{\circ}=1.39 \mathrm{rad} \tag{2-3}\\
& \mathbf{V}_{\mathbf{R}}=5.77 / 79.4^{0}
\end{align*}
$$

2.5 Determine the expression for the phasor representation of the current through resistor R. Show your calculation in the space reserved for equation (2-4).
$\mathrm{G}_{\mathrm{R}}=\frac{1}{\mathrm{R}}=\frac{1}{15}=0.067 \mathrm{~S}$

$$
\begin{equation*}
\mathbf{I}_{\mathbf{R}}=\mathrm{Y}_{\mathrm{R}} \mathrm{~V}_{\mathrm{R}}=\mathrm{G}_{\mathrm{R}} \mathbb{V}_{\mathrm{R}}=0.067 \cdot 5.77 / 79.4^{\circ}=0.39 / 79.4^{0} \mathrm{~A} \tag{2-4}
\end{equation*}
$$

\qquad
\qquad

Problem 3 6points

Given is the electric circuit model whose graphical representation and circuit element parameter values are shown in Figure 3.1(a).

Figure 3.1 An electric circuit description. (a)Time domain representation of the circuit. (b)Phasor representation of the circuit, with mesh currents selected for minimum number of unknown variables in the system of mesh current equations.

For the time domain electric circuit model of Figure 3.1(a), demonstrate an ability to:

1. derive the corresponding phasor domain circuit model and determine its parameter values;
2. apply equivalents of resistive circuits analysis methods to the phasor domain circuit models;
3. apply specifically the nodal voltage method to the analysis of electric circuits in phasor domain.

Problem

1. prepare the phasor domain representation of the circuit as specified under 3.1 below,
2. prepare the admittances of the passive circuit elements, as specified under 3.2 below,
3. use the nodal voltage method of analysis to determine:
(a) phasor domain representation $\mathbf{V}_{\mathbf{L}}$ of the voltage across inductor L , as specified under 3.3 through 3.5 below,
(b) phasor domain representation $\mathbf{I}_{\mathbf{R} 2}$ of the current through resistor R_{2}, as specified under 3.6 below,
(c) the complex powers $\mathbf{S}_{\mathbf{L}}$ and $\mathbf{S}_{\mathbf{R} \mathbf{2}}$ delivered to inductor L and resistor R respectively, as specified under 3.5 and 3.6 below.
Hint \#1 For full credit, give answers to all questions, prepare all required circuit diagrams, write all equations for which the space is reserved, and show all symbolic and numerical expressions whose evaluation produces shown numerical results.
An explicit demonstration of understanding the following solution steps is expected.
1 3.1 Showing the admittances of the passive circuit elements, prepare a phasor representation of the circuit in Figure 3.1(a) and show it in the space reserved for Figure 3.1(b); also show in the circuit of Figure 3.1(b) the positive reference directions for the nodal voltages.
Hint \#2 As the preparation for writing the nodal voltage equations, replace in the phasor representation of Figure 3.1 (b) the series connection of the voltage source and the resistor $\mathbf{R}_{\mathbf{1}}$ by its Norton's equivalent circuit.

1 3.2 For the four admittances in the circuit of Figure 3.1(b), prepare the symbolic expressions of their real and imaginary parts in terms of the circuit parameters, and calculate their values. Show the work
\qquad
in the space reserved for equations (3-1).
$\mathbf{Y}_{\mathbf{R 1}}=\frac{1}{\mathrm{R}_{1}}=\frac{1}{0.5}=2 / 0 \mathrm{~S}$
$\mathbf{Y}_{\mathbf{R} \mathbf{2}}=\frac{1}{\mathrm{R}_{2}}=\frac{1}{5}=0.2 / \underline{0} \mathrm{~S}$
$\mathbf{Y}_{\mathbf{C}}=j \omega \mathrm{C}=\mathrm{j} 2000 \pi \cdot 250 \cdot 10^{-6}=0+\mathrm{j} 1.57 \mathrm{~S}$

$$
\begin{equation*}
\mathbf{Y}_{\mathbf{L}}=\frac{1}{j \omega L}=\frac{-j}{2000 \pi \cdot 32 \cdot 10^{-6}}=(0-j 5) S \tag{3-1}
\end{equation*}
$$

$$
\mathbf{V}_{\mathbf{S}}=20 / 0 \mathrm{~V}
$$

$$
\mathbf{I}_{\mathbf{S}}=\mathbf{Y}_{\mathbf{R} 1} \mathbf{V}_{\mathbf{S}}=2 / 0 \cdot 20 / 0=40 / \underline{0} \mathrm{~A}
$$

3.3 Prepare the the canonical form of nodal voltage equations for the circuit in Figure 3.1(b) and show it in the space reserved for equations (3-2); also show in the same space the calculation of the numerical values of the self and mutual admittances using the values of circuit element admittances calculated in Section 3.2.

$$
\begin{aligned}
& \mathbf{Y}_{11} \mathbf{V}_{\mathbf{1}}-\mathbf{Y}_{\mathbf{1 2}} \mathbf{V}_{\mathbf{2}}=\mathbf{I}_{\mathbf{S}} \\
& -\mathbf{Y}_{\mathbf{2}} \mathbf{V}_{\mathbf{1}}+\mathbf{Y}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}=0
\end{aligned}
$$

where,

$$
\begin{align*}
& \mathbf{Y}_{11}=\mathbf{Y}_{\mathbf{R} 1}+\mathbf{Y}_{\mathbf{L}}+\mathbf{Y}_{\mathbf{C}}=2-\mathrm{j} 5+\mathrm{j} 1.57=2-\mathrm{j} 3.43=4 /-59.8^{\circ} \mathrm{S} \tag{3-2}\\
& \mathbf{Y}_{22}=\mathbf{Y}_{\mathbf{R} 2}+\mathbf{Y}_{\mathbf{C}}=0.2+\mathrm{j} 1.57=1.58 / \underline{82.7^{\circ} \mathrm{S}} \\
& \mathbf{Y}_{\mathbf{1 2}}=\mathbf{Y}_{21}=\mathbf{Y}_{\mathbf{C}}=\mathrm{j} 1.57=1.57 / \underline{90}^{\circ} \mathrm{S}
\end{align*}
$$

3.4 Solve the Equations (3-2) and show the solution process in the space reserved for equations (3-3)

1 The three determinant needed for the solution of equations (3-2) are,

$$
\begin{align*}
& \Delta=\left|\begin{array}{cc}
\mathbf{Y}_{11} & -\mathbf{Y}_{12} \\
-\mathbf{Y}_{21} & \mathbf{Y}_{22}
\end{array}\right|=\mathbf{Y}_{11} \mathbf{Y}_{22}-\mathbf{Y}_{12} \mathbf{Y}_{21}=4 / \underline{-60^{\circ}} \cdot 1.58 / \underline{82.7^{\circ}-\left(1.57 / \underline{90^{\circ}}\right)^{2}=} \begin{array}{l}
=6.3 / 22.7^{0}-2.46 / \underline{180^{\circ}}=5.81+\mathrm{j} 2.43+2.46=8.24+\mathrm{j} 2.43=8.6 / 73.5^{\circ} \mathrm{S}^{2} \\
\Delta_{1}=\left|\begin{array}{cc}
\mathbf{I}_{\mathbf{S}} & -\mathbf{Y}_{12} \\
0 & \mathbf{Y}_{22}
\end{array}\right|=\mathbf{I}_{\mathbf{S}} \mathbf{Y}_{22}=40 \cdot 1.58 / 82.7^{0}=63.2 / \underline{82.7^{\circ} \mathrm{AS}} \\
\Delta_{2}=\left|\begin{array}{ll}
\mathbf{Y}_{11} & \mathbf{I}_{\mathbf{S}} \\
-\mathbf{Y}_{21} & 0
\end{array}\right|=\mathbf{I}_{\mathbf{S}} \mathbf{Y}_{\mathbf{2 1}}=40 \cdot 1.57 / \underline{90^{\circ}}=62.8 / \underline{90^{\circ}} \mathrm{AS}
\end{array}
\end{align*}
$$

\qquad
\qquad
which then yield the nodal voltages as,

$$
\begin{align*}
& \mathbf{V}_{\mathbf{1}}=\frac{\Delta_{1}}{\Delta}=\frac{63.2 / 82.7^{\circ}}{8.6 / 73.5^{\circ}}=\left(7.34 / 9.2^{\circ}\right) \mathrm{V} \tag{3-3}\\
& \mathbf{V}_{\mathbf{2}}=\frac{\Delta_{2}}{\Delta}=\frac{62.8 / 90^{\circ}}{8.6 / 73.5^{\circ}}=\left(7.30 / \underline{16.5^{\circ}}\right) \mathrm{V}
\end{align*}
$$

3.5 Determine the symbolic expression, and calculate the value of the phasor representation of inductor's voltage $\mathbf{V}_{\mathbf{L}}$, and the complex power $\mathbf{S}_{\mathbf{L}}$ delivered to the admittance $\mathbf{Y}_{\mathbf{L}}$. Show your work in the space reserved for equation (3-4)

Voltage across the inductor is equal to the nodal voltage V_{1},

$$
\begin{equation*}
\mathbf{V}_{\mathbf{L}}=\mathbf{V}_{\mathbf{1}}=7.34 / 9.2^{\circ} \mathrm{V} \tag{3-4}
\end{equation*}
$$

and the power follows as

$$
\mathbf{S}_{\mathbf{L}}=\frac{\mathbf{V}_{\mathbf{L}} \mathbf{V}_{\mathbf{L}} * \mathbf{Y}_{\mathbf{L}}^{*}}{2}=\frac{\mid \mathbf{V}_{\mathbf{L}}{ }^{2} \mathbf{Y}_{\mathbf{L}}^{*}}{2}=\frac{|7.34|^{2}(0+\mathrm{j} 5)}{2}=135 / 90^{\circ} \mathrm{VAR}
$$

3.6 Determine the symbolic expression, and calculate the value of the phasor representation of the current $\mathbf{I}_{\mathbf{R} \mathbf{2}}$ through admittance $\mathbf{Y}_{\mathbf{R} \mathbf{2}}$, and the complex power $\mathbf{S}_{\mathbf{R} \mathbf{2}}$ delivered to the admittance $\mathbf{Y}_{\mathbf{R} \mathbf{2}}$. Show your work in the space reserved for equation (3-5). Show the positive reference direction of the current $\mathbf{I}_{\mathbf{R} 2}$ jn the circuit of Figure 3.1(b).

Current through $\mathrm{Y}_{\mathrm{R} 2}$ can be expressed, and calculated as,

$$
\begin{equation*}
\mathbf{I}_{\mathbf{R} \mathbf{2}}=\mathbf{V}_{\mathbf{2}} \mathbf{Y}_{\mathbf{R} 2}=7.3 / \underline{16.5^{\circ}} \cdot 0.2 \angle 0=1.46 / \underline{16.5^{\circ}} \mathrm{A} \tag{3-5}
\end{equation*}
$$

and the power follows as

$$
\mathbf{S}_{\mathbf{R} 2}=\frac{\mathbf{V}_{\mathbf{R} 2} \mathbf{I}_{\mathbf{R} 2}^{*}}{2}=\frac{7.3 / \underline{16.5}^{\circ} 1.46 /-16.5^{\circ}}{2}=(5.4+\mathrm{j} 0)=5.4 \mathrm{~W}
$$

