\qquad

Prime Factoring

When a number written as the product of prime factors, it is called the prime factorization of a number.
$48=3 * 2 * 2 * 2 * 2=3 * 2^{4}$
To make finding the prime factors easy, you need to be a master of "The Factor Facts" and Divisibility Rules for 2, 3, 5, 7 and 11. This workbook will review those skills before showing you the strategies for finding prime factors.

There are 2 attack strategies for quickly and easily finding the prime factors of a given number.

1. Easy Primes
2. Ladder

Factor Facts

There are 32 numbers that are supposed to be quick and easy to recognize the factors of. Math6.org calls these numbers, "Factor Facts" and offers matching exercises and drills to help you learn them quickly and easily.

12	18	25	32	42	50	63	80
14	20	27	35	45	54	64	81
15	21	28	36	48	56	70	90
16	24	30	40	49	60	72	100

Easy Factors

Often called the tree method, easy primes involves learning to think of an easy factor and write it as the product of its prime factors. Students will think 6 and write $2 * 3$. So when they are thinking $6 * 8$, they write $3 * 2 * 2 * 2 * 2$. This process isn't difficult, but it does take practice to make it so easy that it's second nature.
$4=2$ * 2
$6=3$ * 2
$8=2 * 2 * 2$
$9=3 * 3$
$10=5 * 2$

Take a look at the "Factor Facts" and notice that all of them are made out factors that can be easily primed.

$$
28 \text { is } 7 * 4=7 * 2 * 2 ; 56 \text { is } 7 * 8=7 * 2 * 2 * 2 ; 90 \text { is } 9 * 10=3 * 3 * 5 * 2
$$

Ladders

When you don't know the "easy factors" of a number, you use the divisibility rules for $2,3,5,7$, and 11 to begin breaking a number down. Using the divisibility rules and short division, you can quickly find all of the prime

	17
	51 2
202	
2	204

$$
204=17 * 3 * 2 * 2
$$

The "Factor Facts"

I want you to be much faster and make this skill even easier. I don't think you need to use the multiplication sign between the factors the way that I did. As you complete the drill on this page and the drills on the next, you may drop the multiplication sign and remember that multiplication is commutative - order doesn't matter! $120=12 \cdot 10$; you may write 1210 on your paper and leave the multiplication sign out.

4260	40	18	70
	24	28	35
54	64	100	42
56	20	63	64
30	25	50	48
21	45	12	15
70	35	16	60
27	80	72	72
49	81	14	56
48	90	36	28
32	15	90	81
	[use		

Factor Facts Drills

Use one drill each day as a warm-up before completing the assignments for the next 3 sections of the workbook.
[Key 3]
\qquad 70
72
48
45
25
14
54
15
27
60 81

100
64
40
24
56
16
32
20
36
63
42
12
18
49
[Key 4]
\qquad 64

70

72
12
40
15
45

48
\square 42
\qquad 24
__ 56
60
32
18 30 49
\qquad 25
\qquad 27
\qquad
80
90

14

28
\square

\qquad 16
\qquad 50 20
[Key 5]
[Key 6]

90			
60			14
:---			

_ 50 \qquad 25
_ 54 \qquad 56
_ 49

- 90
$-$
21
_ 20
45
\square
16
$\ldots 16$
_ 20
_ 28
_ 24
_ 60
$\ldots 54$
- 72
_ 48
- 70
- 35
- 18
_ 40
\qquad 36
$\underline{\square}$
64
_ 42
- 15
-

63
-_ 18
-

The "Easy Primes"

Lesson Box

We need to learn to think of a few numbers as the product of their primes. The easy primes are $4,6,8$, 9 , and 10 !
$4=2 \cdot 2$
$6=3 \cdot 2$
$8=2 \cdot 2 \cdot 2$
$9=3 \cdot 3$
$10=5 \cdot 2$

When you get good at thinking " 10 " and writing 5 • 2 , the rest of the prime factoring skill will be much easier. Use the drills on this page and/or practice "Easy Primes" @ Math6.org!

I want you to be much faster and make this skill even easier. I don't think you need to use the multiplication sign between the factors the way that I did. As you complete the drill on this page, you may drop the multiplication sign and remember that multiplication is commutative - order doesn't matter! $6=3 \cdot 2$; you may write 32 on your paper and leave the multiplication sign out.

$\square=5$	$=10$	$=2$	$=3$
$=8$	$=4$	$=4$	$=9$
$=10$	$=3$	$=9$	$=4$
$=4$	$=2$	$=3$	$=5$
$=9$	$=8$	$=7$	$=6$
$=2$	$=6$	$=6$	$=8$
$=3$	$=5$	$=5$	$=4$
$=7$	$=10$	$=2$	$=2$
$=6$	$=5$	$=8$	$=7$
$=7$	$=8$	$=10$	$=10$
$\longrightarrow=9$		$=7$	$=9$

[use Key 7 to check your answers]

The "Easy Factors"

Lesson Box
Now that we know the "Easy Primes", we put it together with the "Factor Facts" and easily factor these numbers! When you see a "Factor Fact" you will know the prime factorization! $\mathbf{4 0}=\mathbf{8} \cdot \mathbf{5}=\mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{5}$ $\mathbf{4 2}=\mathbf{7} \bullet \mathbf{6}=\mathbf{7} \cdot \mathbf{3} \cdot \mathbf{2}$ $\mathbf{6 3}=\mathbf{9} \cdot \mathbf{7}=\mathbf{3} \cdot \mathbf{3} \cdot \mathbf{7}$ $\mathbf{7 2}=\mathbf{9} \cdot \mathbf{8}=\mathbf{3} \cdot \mathbf{3} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2}$ Think of the factors and write those factors as easy primes. You will quickly and easily be able to factor most of the fractions that you will soon face! Use the drills on this page and/or practice "Easy Factors" @ Math6.org!

Models	
7•5	$=35$
3•3•7	$=63$
$5 \cdot 3$	$=15$
5•2•3•3	$=90$
2•2•2•2	$=16$
$7 \cdot 2$	$=14$
3-2•2•2	$=24$

I want you to be much faster and make this skill even easier. I don't think you need to use the multiplication sign between the factors the way that I did. As you complete the drills on this page and the next, you may drop the multiplication sign and remember that multiplication is commutative - order doesn't matter! $6=3 \cdot 2$; you may write 32 on your paper and leave the multiplication sign out.

$\underline{=30}$		$=18$
$=56$	$=21$	$=35$
$=48$	$=25$	$=40$
= 24	$=63$	$=42$
$=16$	$=81$	$=54$
$=45$	$=70$	$=80$
- 15		$=12$
$=14$	$=50$	$=64$
$-=60$	$=90$	$=100$
-72	$=20$	$=49$
$\underline{L}=28$	$=27$	$=24$

[use Key 8 to check your answers]

Easy Factor Drills

Use one drill each day as a warm－up before completing the assignments for the next 3 sections of the workbook．
［Key 9］
［Key 10］
$=15$
$=35$
$=54$
$=16$
$=36$
$=49$
$=12$
$=24$
$=81$
$=32$
$=72$
$=45$
$=100$
$=27$
$=20$
$=60$
$=42$
$=30$
$=28$
$=70$
$=14$
$=50$
$=48$
$=56$
$=21$
\qquad
$工=40$
$=80$
$=24$
$=14$
$=81$
$=12$
$=30$
$=28$
$=42$
$=60$
$=27$
$=64$
$工=100$
$工=30$
$工=50$
$工=16$
$工=60$
\qquad
$=90$
$=28$
\qquad
$=49$

$$
\ldots=14
$$

\qquad

\qquad

$$
=15
$$

\qquad

$$
=45
$$

－

$=20$
\qquad
$=12$
\qquad
$=100$
$=25$
\qquad
$=35$
$=36$
$=81$
$=80$
$=21$
$=56$
$=70$
\qquad
$=64$
\qquad
$=24$
$=27$
$=50$

$$
=90
$$

$工=45$
$=36$
$=48$

$$
=42
$$

Factor Ladders

Lesson Box

When a the prime factorization of a number is not easily known using "Factor Facts", you apply the divisibility rules for $2,3,5,7$, and 11 to find a divisor. Use short division to build a "Factor Ladder".

1. Check for divisibility by $2,3,5,7$, and/or 11 .
2. Use short division to find the quotient.
3. Repeat steps 1 and 2 on the quotient.

Continue until the quotient is a prime number.

Models		
113		53
$222 \underline{6}$	3	159
$226=113 \cdot 2$	$159=$	$53 \cdot 3$
23		23
$24 \underline{6}$	7	161
$523 \underline{0}$	2	322
$230=23 \cdot 5 \cdot 2$	$322=$	23•7•2

Models

$$
230=23 \cdot 5 \cdot 2
$$

$$
322=23 \cdot 7 \cdot 2
$$

Use factor ladders to find the prime factorization of each of these numbers. Write the prime factorization on the line and check your work. Remember that multiplication is commutative so the order of your answers will not matter.

$=129$	$=74$	$=127$
$=143$	$=133$	$=84$
$=147$	$=96$	$=118$
$=86$	$=171$	$=166$
$=58$	$=51$	$=122$
$=164$	$=156$	$=56$
$=102$	$=126$	$=34$
$=69$	$=152$	$=132$
$=144$	$=180$	$=38$
$=148$	$=159$	$=168$
$=26$	$=177$	$=172$
$=170$	$=93$	$=46$

[use Key $\mathbf{1 2}$ to check your answers]

Find the Prime Factorization of each of the numbers below．You should use exponents to make writing and checking your work easier．

Drill A
\qquad

Drill B$=17$
$工=18$
\qquad
$工=21$
\qquad
$工=50$
$\underline{\square}=58$
$工=63$
$\underline{\square}=72$
\qquad
$工=95$
\qquad
$\underline{Z}=220$
\qquad
$工=225$
$工=400$

Drill C
\qquad
$工=45$
$\ldots=48$
$工=64$
\qquad
$=66$
$工=76$
$工=88$
\qquad
$工=102$
$\underline{C}=350$
$工=474$

