Unit 5: Trigonometry & The Unit Circle 5.4 Equations & Graphs of Trigonometric Funtions

Ex. Use your graphing calculator to determine the solutions for the trigonometric equation

Ex. The depth of water (d in meters) at dock by the Bay of Fundy at a certain time (t in hours after midnight) varies according to the function:

$$d(t) = 3\cos\frac{2\pi}{12.4}(t-4.5) + 5$$

$$amp = \int_{M} \frac{chonge}{from He} \frac{deph}{mean}$$

$$results from He} phase shift = 4.5\%$$

$$from He} \frac{from he}{mean}$$

$$results from He} \frac{from he}{mean}$$

$$results from he} \frac{from he}{high} \frac{from he}{high} \frac{from he}{high} \frac{from he}{high}$$

$$results from he} \frac{from he}{high} \frac{from he}{high} \frac{from he}{high}$$

$$results from he} \frac{from he}{high} \frac{from he}{high} \frac{from he}{high}$$

$$results from he} \frac{from he}{high} \frac{from he}{high}$$

$$results from he} \frac{from he}{high}$$

$$results from he}{high}$$

$$results from he} \frac{from he}{high}$$

$$results from he}{high}$$

$$resul$$

Find the depth at 2:30 PM to the nearest tenth.

Date _____

A ship can dock safely if the depth of water is at least 6.9 m. For how many hours in a 24 hour cycle is it safe to dock?

Ex. A Ferris wheel has a radius of 20 m. It rotates once every 40 seconds. Passengers get on at the lowest point 1 m above the ground. Determine a function that represents the height (h in meters) of a passenger at time (t in seconds) after it starts to rotate.

Graph (sketch) the height of a passenger above the ground for one rotation:

possible functions:

Find the height after 5 seconds? After 22 seconds? (nearest tenth)

