$\qquad$
Unit 5: Trigonometry \& The Unit Circle
5.4 Equations \& Graphs of Trigonometric Funtions

Ex. Use your graphing calculator to determine the solutions for the trigonometric equation


$$
\left\{\begin{array}{l}
265^{2} x-1=0 \\
\cos ^{2} x=1 / 2 \\
65 x= \pm 1 / \sqrt{2} \\
7 \neq \theta_{k}=45^{\circ} \\
180-45180+45365^{\circ}+5
\end{array}\right.
$$

Ex. Determine the general solutions for the trigonometric equation $16=6 \cos \frac{\pi}{6} x+14$. Express your answer to the nearest hundredth.

intersect finder

$$
x=2.35+12 n
$$

$$
\& x=9.65+12 n ; n \in I
$$

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{\pi / 6} \\
& =2 t \times 6 / 4 \\
& =12 \\
& n \in Z
\end{aligned}
$$

Ex. The depth of water ( $d$ in meters) at dock by the Bay of Fundy at a certain time ( $t$ in hours after midnight) varies according to the function:

$$
d(t)=3 \cos \frac{2 \pi}{12.4}(t-4.5)+5
$$

$\mathrm{amp}=3 \mathrm{~m} \begin{aligned} & \text { change in depth } \\ & \text { from the mean }\end{aligned} \quad$ phase shift $=4.5 \mathrm{~h}$ low high tide (cosine)
vert. dist. $=5 \mathrm{~m}$ the mean $\left\{\begin{array}{l}2 \mathrm{~m} \\ \text { high } \\ 8 \mathrm{~m}\end{array}\right.$
At what time is the first low tide? time between
hightide time $+\frac{1}{2}$ period $=4.5+6.2=10.74 \quad 10.424 \mu \mathrm{M}$ hightides
Graph in calculator for a 24 hour period.


Find the depth at 2:30 PM to the nearest tenth.

$$
t=14.5
$$



A ship can dock safely if the depth of water is at least 6.9 m . For how many hours in a 24 hour cycle is it safe to dock?


$$
\begin{aligned}
& 2(6.25-2.75) \\
& 2(3.5) \\
& =7 \mathrm{hos}
\end{aligned}
$$

Ex. A Ferris wheel has a radius of 20 m . It rotates once every 40 seconds. Passengers get on at the lowest point 1 m above the ground. Determine a function that represents the height ( $h$ in meters) of a passenger at time ( $t$ in seconds) after it starts to rotate.

Graph (sketch) the height of a passenger above the ground for one rotation:


$$
\begin{aligned}
& \mathrm{amp}=20 \\
& \text { period }=\frac{40}{20} \\
& \therefore b=\frac{2 \pi}{40}
\end{aligned}
$$

vert. isp. $=21$
possible functions:

$$
\begin{aligned}
& \# 1+\text { cosine } \quad h(t)=20 \cos ^{2 \pi / 40}(t-20)+21 \\
& \text { \#2 - cosine } h(t)=-20 \cos 2 \pi / 40 t+21 \text { "̈ easiest to graph } \\
& \text { \#3 + sine } \quad h(t)=20 \sin ^{2 \pi / 40}(t-10)+21 \\
& \text { \#4 - sine } \quad h(t)=-20 \sin 2 \pi / 40 \underbrace{(t-30)}_{t+10}+21
\end{aligned}
$$

Find the height after 5 seconds? After 22 seconds? (nearest tenth)


$$
\begin{aligned}
& h(5)=6.9 \mathrm{~m} \\
& h(22)=40.0 \mathrm{~m}
\end{aligned}
$$

When is a passenger at 30 m height during one rotation of the wheel?


$$
\begin{gathered}
t=13.0 \mathrm{~s} \\
\quad \& 27.0 \mathrm{~s}
\end{gathered}
$$

Practice: pg. 275/\# 1, 3-6, 8-11, 13, 15, $17-20$

