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ABSTRACT 

DISTRIBUTED COMPUTING AND OPTIMIZATION SPACE EXPLORATION FOR 
FAIR AND EFFICIENT BENCHMARKING OF CRYPTOGRAPHIC CORES IN 
FPGAS 

Benjamin Brewster, MSCpE. 

George Mason University, 2012 

Thesis Director: Dr. Kris Gaj 

 

Benchmarking of digital designs targeting FPGAs is a time intensive and 

challenging process. Benchmarking results depend on a myriad of variables beyond the 

properties inherent to the designs being evaluated, encompassing the tools, tool options, 

FPGA families, and languages used. In this thesis we will be discussing enhancements 

made to the ATHENa benchmarking tool to utilize distributed computing as well as 

optimization space exploration techniques to increase the efficiency of the ATHENa 

benchmarking process. Capabilities of the environment are demonstrated using four 

example designs from the SHA-3 cryptographic hashing function competition, BLAKE, 

JH, Keccak and Skein. 
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1. INTRODUCTION 

The development of new cryptographic standards through competition has 

necessitated the need for fair and comprehensive benchmarking tools and a methodology 

for their use that deals with the inherent objective difficulties in these evaluations. 

Proposed algorithms must be compared in terms of security, cost and implementation 

flexibility for both their hardware and software implementations. The end goal of 

ATHENa[1] is to remove the burden of generating high quality benchmarking results 

from the algorithm designer and generate benchmarking results in a clear unbiased 

manner for publication and comparison. 

Open competition has become the method of choice for adopting new 

cryptographic standards starting with the AES competition sponsored by NIST in 1997-

2000, and followed by the NESSIE and eSTREAM competitions in Europe and the 

CRYPTREC competition in Japan. The move from traditional standards development to 

open competition has driven the need for evaluation environments that allow for the 

fairest possible benchmarking of competing algorithms. Algorithms are typically 

evaluated based on four criteria, security, performance in software, performance in 

hardware, and flexibility. While of the utmost concern, the security provided by these 

algorithms can be incredibly difficult to quantify in the timeline provided by these 

competitions. After careful examination of an initial pool of algorithm candidates 
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elimination of a few can be done based on inherent security flaws in the algorithms 

themselves and the remaining candidates can be considered to be equally secure. It has 

been shown, interestingly enough, that the largest differences tend to emerge in the 

hardware implementation of the algorithms and this can often serve as the deciding 

criteria for algorithm adoption in the face of no other clear advantages.  

Fair comparison of the hardware efficiency of cryptographic algorithms modeled 

in Hardware Description Languages and targeted to FPGA platforms is a computationally 

complex problem that depends on many factors beyond just the algorithm being 

evaluated and includes targeted architectures, implementation techniques, FPGA 

families, languages and tools. ATHENa is an evaluation environment that is meant to 

address these issues with respect to FPGAs and provide a platform to more objectively 

evaluate and compare new designs. The inherent computational complexity makes the 

development of a tool that can automate this task as efficiently as possible vitally 

important to algorithm developers and evaluators alike. 

Problem 
The main focus of this thesis is the objective evaluation of functionally equivalent 

algorithms across different metrics implemented in hardware targeted to FPGA platforms 

focusing on their use in future cryptographic standards. Evaluations of this kind are 

subject to many pitfalls and difficulties that must be addressed to arrive at a fair 

comparison which is of interest to a cryptographic community that has become reliant on 

competition for standards adoption. It is necessary to remove the burden of performing 

benchmarking and comparisons of algorithms from the algorithm designer and create an 
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environment that addresses these needs objectively and efficiently.  Benchmarking of 

digital designs targeting FPGAs is a time intensive and challenging process. 

Benchmarking results depend on a myriad of variables beyond the properties inherent to 

the designs being evaluated, encompassing the tools, tool options, FPGA families, and 

languages used. In this paper we will be discussing enhancements made to the ATHENa 

benchmarking tool to utilize distributed computing as well as optimization space 

exploration techniques to increase the efficiency of pre-existing process. Select 

candidates for the ongoing NIST SHA-3 competition are used as a case study in utilizing 

the improved ATHENa benchmarking environment. It is shown that through the use of 

the ATHENa environment the process of objectively comparing candidate algorithms 

with respect to optimization can be performed much more efficiently and thus aid in their 

evaluation. 
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2. BACKGROUND 

Cryptographic Standards Competitions 
In 1997 NIST announced the desire to adopt a new encryption standard as a 

replacement to DES. The new standard, AES, was adopted through an open competition 

in the cryptographic community and competitions of this type have become the preferred 

method for the development and adoption of new cryptographic algorithms. These 

competitions require the competing algorithms to be scrutinized and compared in the 

finest detail. The algorithms must pass rigorous cryptanalysis, hardware and software 

benchmarking and implementation examination. The amount of work that goes into 

analysis of these types is incredible and time consuming. 

Previous Competitions 
Apart for the previously mentioned AES competition, open competition has been 

used successfully in other cases. NESSIE was a competition in Europe that was aimed at 

identifying different classes of secure cryptographic primitives. The competition included 

block ciphers, public-key encryption, MAC algorithms and cryptographic hash functions, 

digital signature algorithms, and identification schemes. The NESSIE competition lead 

directly to the formation of the eSTREAM competition to identify stream ciphers due to 

the fact that all stream ciphers submitted to NESSIE fell to cryptanalysis. Another related 

competition was the Japanese competition CRYPTREC which was sponsored by the 
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Japanese government with intent to find cryptographic primitives suitable for industrial 

and government use. 

SHA-3 Competition 
The latest cryptographic competition is the NIST sponsored SHA-3 competition. 

Announced in 2007 its aim is to develop a replacement to the SHA-2 cryptographic hash 

algorithm. The competition is in its final round of algorithm evaluation and the five 

finalist algorithms are all used as an illustration of the improvements made to ATHENa 

as outlined in this text. 

Hardware Benchmarking 
Hardware benchmarking is a process that requires a lot of care and effort to 

accomplish properly. With respect to digital systems targeting FPGAs modeled with 

hardware description languages, many difficulties can arise. The goal of the ATHENa 

project is to address these goals by creating an environment that tries to eliminate 

evaluation pitfalls while benchmarking as much as possible. 

Benchmarking Pitfalls 
Benchmarking pitfalls, also known as evaluation pitfalls are easier to identify and 

remedy if the evaluation and benchmarking is done with care. One of the most common 

benchmarking pitfalls is metric selection. Metric Selection is simply ensuring that the 

designs being compared are using a fair and common metric. Comparison metrics must 

be chosen with care and must be common across the algorithm implementations that are 

being used for comparison. Common comparison metrics that are used by ATHENa are 

throughput, area, and throughput to area ratio. It is also important that a metric such as 

area is common between designs because area can be composed of different things such 
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as slices, look-up tables, flip-flops, or BRAMs. Within ATHENa the common area metric 

for Xilinx devices is slices used while Altera devices rely on comparisons using ALUTs.  

Another common pitfall is taking credit for technology improvement as algorithm 

improvement. In FPGAs this can most notably be seen when comparing an algorithm 

targeting one FPGA family and device to another. The newer devices are higher 

performing and it is important to only compare algorithms targeting the same device 

family to account for these technology improvements.  

It is also extremely important to ensure that the algorithms being compared and 

benchmarked against each other have similar functionality. It would be unfair to compare 

two algorithms with different functionality as proof that one algorithm was superior to 

the other. It must be ensured that the two algorithms have the same intent and 

functionality before a meaningful comparison can be made. 

Optimization target is another issue that is very similar in nature to the metric 

pitfall described earlier but relates more directly to targeted optimization than the metric 

itself. Optimization targets are goals that a system is trying to achieve relative to a given 

metric. For example if my optimization target was speed I would optimize my design and 

especially the implementation to achieve the highest throughput. If this was the case it 

would be unfair for me to compare the speed of my algorithm to that of an algorithm with 

an area optimization target. It is also essential that the correct numbers are compared. 

This is especially true in the field of FPGAs where there are many steps to the design 

implementation and performance metrics could be generated at many of the intermediate 

steps. It is important that the final placed and routed designs only be compared as these 
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are the true numbers that would manifest themselves on a device. You must ensure that 

you are not comparing synthesis results to final timing results for instance. 

These pitfalls are quite prevalent in many algorithm comparisons and arise for 

various reasons from simple mistakes to purposefully misleading results. ATHENa has 

functionality that helps combat these pitfalls and offer a fairer system for comparison and 

benchmarking. 

 

Orchestration Algorithms 
The main area for improvement for ATHENa was identified to be the way that the 

various option sets offered by the Synthesis and Implementation software were explored 

and an optimal set chosen for each algorithm. Experimentally it has been shown that 

changes in the tool options can have an enormous impact on the realized performance of 

an algorithm with respect to a given metric. The options are numerous enough that it is 

non-trivial to determine the best option combination provided by the software tools. The 

goal of a fair comparison of the competing algorithms necessitates the exploration of 

many option sets for all algorithms to ensure that the true performance is fully 

discovered. If two algorithms are being compared using handpicked option sets by their 

creators, it is hard to determine the better design. This is compounded by the fact that 

option sets vary depending on the specific device, family and vendor chosen as an 

implementation target.  

Previous related research has been undertaken by the computer science 

community focusing on compiler option selection for optimization of computer 

programs[4]. While there are differences and caveats that have to be taken into account 
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when comparing work done for software compilers and FPGA synthesis and 

implementation tools, many parallels exist and previous work can be leveraged to a 

certain extent. In the section focused on comparing hardware and software benchmarking 

some of these issues are discussed in greater depth especially pertaining to the methods 

used by ATHENa as opposed to the eBASH system for software benchmarking. Modern 

compilers offer many optimization option flags that can be selected to extract greater 

performance from a given source code. These optimizations offer potentially large 

performance gains but are largely underutilized given their complexity and the number of 

options to choose from. The compilers themselves are generally unable to find the best 

options at compile time and require a user to manually perform feed-back driven analysis 

of different options sets. The process is further hindered by the fact that certain 

optimizations can have a negative performance impact on certain source codes so 

applying a highest optimization level for all options is not always the best approach. The 

time consuming tedious nature of feed-back driven analysis has led to the development of 

different orchestration algorithms for the determination of optimization option selection.  

Compiler construction-time pruning as proposed in Compiler Optimization-Space 

Exploration is a method that determines the hot-paths of a program based on profiling 

data and iteratively constructs new optimization sets for these hot-paths based on unions 

of previous iterations’ sets. The ability to determine hot-paths, or the sections of a 

program that is executed most often, could be very useful in the domain of FPGAs. 

Optimizations could be found that benefit individual modules or sections of an FPGA 
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implementation and then optimized separately. While the concept appears promising it is 

outside the scope of this investigation but could be a subject of future research.  

Orthogonal arrays are proposed as a means to statistically analyze profile 

information generated by an optimized program and measure the main effect of different 

optimization options in Statistical Selection of compiler Options. The large number of 

compiler options is too great to perform a full exhaustive search to arrive at the optimal 

solution, this would require approximately 2k option sets, where k is the number of 

options if all options are binary(on/off). The method employed is borrowed from the 

framework of the Design of Experiments.   Orthogonal Arrays are a matrix of 1’s and 0’s 

where each column represents an option and each row is an option set for the compiler, 1 

representing the option is on, 0 representing the option is off. An Orthogonal Array has 

the property that two arbitrary columns contain the patterns 00, 01, 10, 11, equally often. 

Orthogonal Arrays provide a method for obtaining a fractional factorial design allowing 

information about a large set of variables be analyzed with much fewer runs than an 

exhaustive search over the full factorial search space. This approach has many 

applications in experimental design and testing but the creation of orthogonal arrays that 

map to the options used by FPGA synthesis and implementation tools is difficult because 

of the existence of options with more than two levels. This method can be adapted to the 

binary options provided by the tools and used as a method for FPGA optimization within 

ATHENa.  

Fast and Effective Orchestration of Compiler Optimizations for Automatic 

Performance Tuning also investigates the use of feed-back driven methods to determine 
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the most effective compiler optimizations. Batch Elimination (BE) and Iterative 

Elimination (IE) are put forth as viable alternatives to an exhaustive search in terms of 

the optimality of the solution and the time that is required to achieve near optimal results. 

It is shown that by isolating each option and comparing the isolated option’s effect 

against a baseline that the effect of loosely interacting options can be determined. This is 

the idea behind batch elimination. To take into account the effect of one option on 

another iterative elimination can be employed to perform successive batch eliminations in 

a way that the interactions of options can be taken into account. Both batch elimination 

and iterative elimination can be mapped easily to ATHENa and need only minor changes 

to handle options that are not binary as they were originally intended. 
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3. ATHENA 

The open-source benchmarking environment called ATHENa (Automated Tool 

for Hardware EvaluatioN) aims to address the difficulties associated with the fair 

comparison of digital systems designed and modeled using hardware description 

languages and implemented on FPGAs. These comparisons require thorough 

benchmarking of the digital systems to determine the optimal set of design tool options to 

use given an FPGA family and device target that achieves the highest performance 

relative to the selected evaluation metric. Determining the optimal set of tool options is a 

task that requires searching the entire option space of the tools used for FPGA 

implementation. This task becomes infeasible for large tool option sets provided by 

modern FPGA implementation tools. ATHENa aims to alleviate the complexity of this 

task, overcome the pitfalls and difficulties inherent to these evaluations, and to spread 

awareness of good practices for the benchmarking of algorithms belonging to the same 

class. The goal of this section is to describe the ATHENa environment and introduce a 

number of improvements to this system that can greatly increase its usefulness as a 

benchmarking tool. 

What is ATHENa 
ATHENa is at its most basic a set of Perl scripts that allow a user to easily run 

FPGA synthesis and implementation tools in the batch mode from the command line. It is 
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free and open source software under development by the Cryptographic Engineering 

Research Group at GeorgeMasonUniversity. The scripts support tools from the two 

largest FPGA vendors, Xilinx and Altera and can utilize both licensed and unlicensed 

versions of the tools. Both VHDL and Verilog description languages are supported. 

ATHENa also supports automated functional verification of the designs and detailed 

report generation. 

 

Design and Workflow 
ATHENa allows a user to take VHDL codes that they have written and easily 

execute synthesis and implementation tools on these codes using configurations that have 

been developed by the ATHENa team as well as other users who have uploaded results to 

the ATHENa database. A designer can specify a number of options such as the devices 

they wish to target, timing constraints, generic values they wish to set and then execute 

the design tools for their device target through the command line and automatically 

generate results that can be uploaded to the ATHENa results database. 

 

Strategies and Searches 
One of the goals of the ATHENa environment is to provide a tool that aids in the 

optimization of design targeting FPGAs. These optimizations are carried out through the 

use of strategies and searches.  

Strategies are predetermined option sets that target a certain performance metric 

such as throughput to area. The options have been determined to yield good results for 
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the specific metric that they target making it easy for a designer to optimize their design 

for a specific metric even if they are ignorant to the underlying tools and how they work. 

While strategies do not guarantee best performance or optimal results for the metric that 

they target, they provide good targeted results with no effort or tool knowledge from the 

designer.   

Searches are like strategies except that they aim to achieve more optimal results 

than strategies aim at. Instead of a static predetermined set of options the options and 

their values are programmatically determined. This process requires running the design 

tools multiple times varying the input options in response to the output performance 

results. Placement Search permits the exploration of result dependencieson the starting 

point of placement. This starting point is determined by the options of the FPGA 

implementation tools called: Cost Table in Xilinx tools and Seed in Altera tools. Cost 

Table can take any integer value between 1 and100, and Seed any value between 1 and 

2^32. Placement search is done by exhaustively searching a subset of the valid placement 

values. Exhaustive search is an extension of placement search and includes options other 

than placement options. Any tool option can be evaluated in the exhaustive search, but 

the number must be constrained to a relatively low value because if not the search is 

unfeasible. The last search provided by ATHENa is frequency search. Both Xilinx and 

Altera tools have an option corresponding to the desired frequency of the resulting 

implementation. By adjusting this value the performance of the design can change 

leading to greater performance. Frequency search aims to determine the best value for 

input frequency that yields the best resultant performance. 
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Areas for Improvement 
One of the largest drawbacks to the previous version of ATHENa is the inability 

of the system to efficiently process large benchmarking and comparison workloads. In 

the general case ATHENa executes all jobs in a serial batch manner. Limited parallelism 

existed with some search algorithms but is limited to the logical cores of the host system. 

It was determined that a way to extract the parallelism that exists in these jobs and 

distribute it across multiple compute nodes would greatly increase the effectiveness of the 

system. Many of the benchmarking tasks executed by ATHENa have few dependencies 

on other tasks and are candidates for parallel execution. By utilizing the parallelism 

offered by a distributed batch system this inherent parallelism can be exploited.   

It was also determined that besides the nearly serial nature of the execution of 

tasks in ATHENa, more effective optimization algorithms should be developed that can 

make better use of the distributed system architecture and find a more efficient way to 

reach an optimized design solution. This shortcoming lead to the design of the 

optimization space exploration algorithms presented in this text as well as the Frequency 

Search and Placement Search that was designed with the distributed system in mind. 

The last issue that needed to be addressed was the user interface of the system. 

ATHENa up to this point was a command line tool. The ability to effectively monitor and 

manage large benchmarking workloads was missing. In the design of the new ATHENa a 

GUI front-end was developed to help alleviate these issues and allow easy monitoring 

and management of ATHENa tasks.   



15 
 

By combining these new features ATHENa becomes much more powerful and 

practical to use. It also helps the system to become much more approachable from a user 

perspective and not just a pure engineering tool that requires knowledge of the 

implementation details to use effectively.   
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4. BATCH SYSTEMS AND HIGH THROUGHPUT COMPUTING 

Benchmarking algorithms designed with hardware description languages and 

targeted to FPGA devices require the use of synthesis and implementation tools that can 

utilize a large amount of CPU time to complete. This fact is compounded by the need to 

run many benchmarks with separate option sets to comprehensively benchmark any 

single implementation. The result is that it can take many days and even weeks to 

properly synthesize and implement a candidate algorithm for evaluation across all of the 

option sets required. One solution to this problem is to utilize High Throughput 

Computing (HTC) architectures to help alleviate the massive CPU hours required to 

complete benchmarking and evaluation tasks. 

HTC is the use of computing systems to maximize the number of operations that 

can be completed per month or year as opposed to how to minimize the latency of an 

operation. They are specifically computing environments that can deliver large amounts 

of processing capacity over long periods of time. They are specially suited for problems 

with long compute times that can be parallelized over the input data sets that need to be 

processed. Many systems exist for setting up HTC environments, but a subset, Batch 

Systems, are of interest to this study. Batch systems are systems that can distribute the 

execution of batch programs across multiple computing nodes simultaneously. They are 

primarily used in research environments where the same program needs to process a large 
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set of varying data. This applies directly to the ATHENa problem space where the 

program is ATHENa and the data are the various option sets used to benchmark the 

cryptographic algorithms. By leveraging the parallelism offered by a HTC batch system, 

multiple benchmarking jobs can be run at once alleviating the time to comprehensively 

benchmark any single algorithm. 

 

Batch System Comparison 
In the case of ATHENa a HTC environment needs to be able to distribute and 

manage multiple benchmarking runs across heterogeneous computing resources. This 

will allow ATHENa to decrease the time needed to complete benchmarking substantially 

and increase the utilization of the existing resources. A set of requirements was gathered 

and ranked in importance to help compare various systems. Many different batch systems 

as well as other HTC environments exist and are widely used. Below is an investigation 

of a subset of such systems that were identified for their potential use with ATHENa. 

 

Requirements 
The requirements are listed below and given a weight that ranks their importance. 

Each system is given a score for each requirement and then the weighted result is used for 

final comparison. The weighting scheme used to determine the best system and the scores 

for the different systems that were evaluated are located in Table 1. 

 



18 
 

Architecture 
The architecture of the system is important for ATHENa. It is desirable to have a 

system that has a centralized server that manages the batch jobs with compute and submit 

nodes that communicate with this server. The systems should impose no language 

restrictions on the jobs that are run and would preferably not require any special build 

steps for the ATHENa software. The last architectural requirement would be the ability of 

the system to transparently fall back to a single machine system if the user is not 

connected to the central server requiring only one ATHENa environment that would 

work in a HTC and single node system. This flexibility is paramount to making the 

system intuitive and easy to use. 

 

Administration 
The system should be easy to administer and setup as well as easy to use. It 

should also support remote administration allowing a user to schedule and monitor 

submitted jobs remotely. Once jobs are submitted a user of the system should be able to 

leave it unattended for long periods of time and monitor the submitted jobs from any 

machine with network access to the system. A graphical user interface to monitor and 

administer jobs would also be recommended. 

 

Resource Specification 
The batch system should be flexible enough to handle multiple types of resources. 

In the context of ATHENa, the resources would be available machines, processing cores 

and software licenses that are needed by the ATHENa programs. 
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Fault Tolerance 
The system should be able to recover from basic errors and reschedule work 

accordingly. The fault tolerance needs to exist at both the central server if one exists and 

at the compute nodes that do the actual processing. In the most basic case the system 

needs to allow work to not be lost if the central server goes down, and the central server 

should be able to allow for nodes that execute jobs to leave the system without failure. 

 

Security 
The system should try to minimize the potential security threats inherent to 

distributed systems. Basic authentication and other measures must be present. 

 

Stage In/Out 
The system should allow files to be specified that must be transferred to execution 

nodes in order to process the batch job and files that must be transferred back upon 

completion. The system optionally should provide a mechanism to transfer the executable 

batch program with the input for maximum flexibility. The transfers would preferably use 

ssh/scp for transmission. 

 

Platform Support 
The batch system should support multiple operating systems. ATHENa currently 

runs on both Windows and Linux and the batch system should utilize both if possible. 
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Scheduling 
Scheduling is a very important aspect of batch systems. Scheduling effects how 

the compute resources are used and to what extent the resources are utilized. The system 

should provide flexibility to define multiple scheduling options, change job priorities, 

pause/resume/terminate jobs, and define different user profiles. 

 

Batch Systems Investigated 
For the purpose of this investigation, six different batch systems where found and 

compared for use with ATHENa. While some of the systems are not pure batch systems 

all can be used for this purpose. All of the systems are FOSS (free open source software) 

systems and are under active development. 

Condor 
Condor is a HTC project under development by the University of Wisconsin-

Madison department of computer science. The system was first put into production 15 

years ago and is still under active development. Condor is a specialized workload 

management system for compute intensive jobs that provides job queuing mechanisms, 

scheduling policies, priority schemes, resource monitoring, and resource management. 

Condor can process serial or parallel jobs and can utilize idle machines for processing. 

Condor contains many other features as well as third party additions for things such as 

graphical displays and accounting. Stage In/Out is supported as well as the ability to 

transfer the application to be executed to the remote compute node. Condor also has the 

ability to run on a single machine in the absence of a cluster, though this behavior is not 
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transparent to the user and requires specialized configuration. Condor is a multi-platform 

system and can run on many flavors of Linux, Solaris as well as Windows. 

Globus 
Globus is a tool kit for grid computing. Unlike the traditional batch systems 

Globus is a meta-scheduler, used to schedule work across multiple compute clusters. 

Globus can be adapted and used to administer a single compute cluster although with 

slightly less functionality than the full system. Globus provides a basic scheduler but does 

not provide a mechanism for data transfer without the existence of a shared file system. 

Third party tools have also been created for Globus for the monitoring and accounting of 

jobs. 

Torque 
Torque is a resource manager providing control over batch jobs on distributed 

compute nodes. Torque is a community effort that was based on the PBS (portable batch 

system) project. Torque has a basic scheduler but is primarily used as only a resource 

manager with an external scheduler. Torque provides job management, resource 

management, resource and job monitoring, job queuing and basic batch scheduling. 

Torque has stage in/out capabilities utilizing SCP or networked file systems. Torque can 

be configured on a standalone machine although is not intended to be configured this 

way. 

 

Toque with MAUI Scheduler 
The MAUI scheduler is an open source scheduler for clusters and super 

computers. It has an array of scheduling policies, can handle dynamic priorities, resource 
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reservations, and other advanced scheduling capabilities. It also contains useful 

monitoring and diagnostic tools and keeps track of resource utilization. MAUI while not 

a batch system can be integrated into Torque, increasing Torque’s scheduling 

capabilities. 

JPPF 
JPPF is the Java Parallel Processing Framework. JPPF enables applications with 

large processing requirements to be run on any number of computers. JPPF is written in 

Java and requires jobs to wrapped in a simple java class for execution. Because JPPF is a 

Java framework any platform that supports Java can run JPPF jobs. There are extensive 

examples and third party tools for JPPF. While JPPF is a parallel processing framework it 

can easily be adapted for batch processing. While the documentation appears to be good, 

information was scarce on support for stage in/out and what is used for security and inter-

node communications. Basic scheduling is supported with job prioritization and tools for 

monitoring and managing resources and job execution. JPPF also contained a full 

featured GUI for job management and monitoring, a feature that no other system had to 

this extent. 

SLURM 
SLURM (simple Linux utility for resource management) is an open source cluster 

management and job scheduling system for Linux clusters. It was developed by 

Lawrence Livermore National Laboratory and has been used on many projects. It 

provides exclusive or non-exclusive access of compute resources, a framework for 

starting, executing and monitoring work on the compute nodes, and it arbitrates  
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Table 1 Batch System Comparison 

 

  Condor Globus Torque MAUI JPPF SLURM 

A
rc

h
it
e

c
tu

re
 

Centralized Server(1) 5 5 5 5 5 5 

No Language Restrictions(2) 5 5 5 5 2 5 

No Special Build Steps(2) 5 5 5 5 3 5 

Transparent Single Machine Use(1) 3 0 0 0 4 0 

Total (30) 28 25 25 25 19 25 

A
d

m
in

is
tr

a
tio

n
 Ease of Use(1) 4 2 4 4 2 4 

Remote Admin(2) 4 3 4 4 4 4 

Remote Monitoring(2) 4 3 4 4 4 4 

GUI(1) 2 0 0 0 4 2 

Total (30) 22 14 20 20 22 22 

R
e

s
o

u
rc

e
 

S
p

e
c
if
ic

a
ti

o
n
 

Machines(2) 5 0 5 5 3 5 

CPU Cores(1) 4 0 5 5 0 5 

Licenses(2) 5 0 3 4 0 3 

Total (25) 24 0 21 23 6 21 

F
a

u
lt
 

T
o

le
ra

n

c
e

 

Server(1) 5 0 4 4 0 5 

Compute Node(1) 5 0 4 4 0 5 

Total (10) 10 0 8 8 0 10 

S
e

c
u

ri

ty
 

System Security(2) 4 4 2 2 0 4 

Total (10) 8 8 4 4 0 8 

S
ta

g
e

 

In
/O

u
t 

Stage In/Out(2) 5 5 4 4 3 0 

Binary/Program Transfer(1) 5 0 3 3 0 0 

SSH/SCP(2) 0 2 5 5 0 0 

Total (25) 15 14 21 21 6 0 

P
la

tf
o

r

m
s
 

Windows(2) 5 0 0 0 5 0 

Linux(2) 5 5 5 5 5 5 

Total (20) 20 10 10 10 20 10 

S
c
h

e
d

u
lin

g
 

Job Priorities(2) 5 0 5 5 5 5 

Flexibility(1) 4 0 2 5 2 3 

Manual Pause/Resume/Terminate(2) 5 0 5 5 5 5 

User Profiles(1) 5 0 0 5 0 3 

Total (30) 29 0 22 30 22 26 

 

Overall 
Score (175) 156 71 131 141 95 122 
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contention for resources by managing a queue of pending work. SLURM is intended as a 

resource management system with other utilities used for stage in/out and complicated 

scheduling. 
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5. ATHENA CONDOR ARCHITECTURE 

ATHENa in the initial version is a non-distributed multiprocessing program that 

consists of a set of Perl scripts that are used to interact with FPGA synthesis and 

implementation tool command line interfaces. The scripts take user configurations 

provided in structured configuration files that specify tool options, project options and 

formulas for latency calculations that are used to manage the execution of the command 

line tools and provide detailed reports after execution has completed. The parallelism was 

limited to the number of processors on the host system and was thus limited in the ability 

to efficiently process large sets of configurations as needed in benchmarking tasks. Due 

to the computational load of running benchmarks with the ATHENa system, a new 

approach was adopted to deal with these shortcomings. Distributed batch systems would 

allow the existing ATHENa scripts to remain for the most part intact and leverage the 

parallelism provided by a compute cluster to scale the system to the extent that compute 

resources are available. Parallelism is extracted at the run level, each run is a job that can 

be submitted to a remote compute node for processing. This is extremely beneficial with 

respect to advanced benchmarks such as exhaustive search and other orchestration 

algorithms for optimization because each run or option set being investigated is an 

independent work unit that can leverage the parallelism provided by the new architecture. 
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It was found in the investigation of distributed batch systems that Condor was the 

candidate system that most completely met the various requirements that ATHENa 

needed. The adoption of a distributed architecture required an evolutionary revision in the 

design of the ATHENa system as detailed here.  

 

Condor Architecture 
Condor as described previously is a distributed batch system for high throughput 

computing under development by the University of Wisconsin Department of Computer 

Science[5],[6]. The system allows for the distribution of computing across a cluster of 

heterogeneous computing resources. 

 

Class Ad Mechanism 
Condor utilizes a specialized class ad mechanism, similar to newspaper classified 

ads, to match jobs to compute resources[7].  Class Ad Matchmaking as described in 

Matchmaking: Distributed Resource Management for High Throughput Computing 

allows a program to specify what requirements it has and properly allocate the processing 

to a compute node that contains these requirements. It is particularly effective in an 

environment where various dissimilar resources such as compute nodes and software 

licenses change between available and unavailable states without advance notice. This is 

particularly important with respect to ATHENa because it needs to be deployed in an 

environment where compute nodes are not necessarily dedicated to processing 
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ATHENajobs and the availability of software licenses needed for the design tools being 

executed can change continually. 

 

Condor Pool 
Condor organizes the processes and compute resources at its disposal into what is 

referred to as a condor pool. A condor pool consists of a single machine known as the 

central server and an arbitrary number of machines that have joined the pool as either a 

submit or execute host. Conceptually the pool is a collection of resources and resource 

requests.  The role of Condor is to match the requests to the appropriate resources for 

processing. All of the machines that are part of the Condor pool send periodic updates to 

the central server which is the centralized repository for all pool state information.  

Each resource, or execute host within the Condor pool has an owner that defines 

the policies by which that particular resource will be used. These policies can include 

things such as the number of slots available to Condor and the software and licenses 

provided by the resource. Slots are analogous to processors and represent the number of 

jobs a resource will execute simultaneously. Condor can be configured to minimize the 

impact to an owner of a resource while in use or leverage as much processing power as 

possible. The policies and specific attributes of the resource are defined in Condor 

ClassAds. 

Resource requests, or jobs are the units of work that are distributed to the execute 

hosts for processing. Each resource request has an owner, the individual who submitted 

the resource for execution. Resource requests are defined in Condor submit files that 
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represent the requirements that the resource request has. These requirements can be very 

simple or complex. A description of the Condor submit files and an example of one 

generated by ATHENa are in the appendix. 

 

Condor Master 
The condor_master daemon is a software process that is responsible for 

maintaining the availability of the various software processes needed by a Condor pool 

running on all of the nodes within a condor pool. 

 

Condor Startd 
The condor_startd daemon is the process responsible for representing a computing 

resource to the Condor pool. It advertises the attributes and capabilities of a resource 

through the ClassAds defined by the owner of the resource. It is responsible for providing 

the information to the central manager that it needs to match resource requests to a 

particular resource. Condor_startd will run on all machines in the condor pool that wish 

to be an execute host. When a resource request has been matched to the resource 

represented by condor_startd it spawns the condor_starter process as described below. 

 

Condor Starter 
The condor_starter process is the process that spawns the job that is to be 

executed remotely on an execute host. It sets up the environment needed by the job and 

monitors the job while it is running. It is also responsible for sending status about a job 

back to the submit host that submitted the job when the job completes. 
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Condor Schedd 
The condor_schedd daemon is the process responsible for representing resource 

requests to the Condor pool. The condor_schedd daemon needs to be running on any 

machine that wishes to play the role of a submit host in the Condor pool. The 

condor_schedd stores all jobs submitted by users in a job queue that is managed by the 

schedd. The condor_schedd advertises the jobs in the job queue to the Condor pool and is 

responsible for claiming the resources needed to serve the job requests. Once the 

condor_schedd has been matched with a particular resource it spawns the condor_shadow 

process as described below to serve the request. 

 

Condor Shadow 
The condor_shadow process is responsible for managing a remote job that is 

executing on a remote host. It handles file input and output for the remote job and 

handles retrieving the results produced by a remote job and delivering them to the submit 

host that submitted the job. 

 

Condor Collector 
The condor_collector process runs on the central server of a Condor pool and 

collects all of the information about the state of the Condor pool. It is responsible for 

managing all of the ClassAd updates from the resources that comprise the pool. It also 

maintains the information needed for all submit hosts to communicate with all of the 

execute hosts in the pool.  
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Condor Negotiator 
The condor_negotiator is the intelligence that manages resources and resource 

requests within the pool. It is responsible for all matchmaking in the pool. The process 

that the negotiator uses to match resources and resource requests is known as a 

negotiation cycle. Periodically the negotiator begins a negotiation cycle where it queries 

the collector for the state of the pool. It then contacts each condor_schedd that has jobs in 

its job queue and tries to match the pending jobs with available resources in the pool. The 

negotiator enforces the priorities of all users and jobs within the pool and users this 

information as a basis for scheduling. The negotiator runs on the central manager. 

 

Roles 
There are three roles that a machine can take on in a Condor pool with respect to 

ATHENa. These roles define what daemons and processes run on the machine and what 

capabilities the machine has. In addition to being able to take on a single role in the pool 

a machine can encompass multiple roles at once. A machine can be both a submit host 

and an execute host. A single machine pool can also be configured where a single 

machine takes on all roles and runs in isolation. 

 

 

Central Manager 
The central manager is the machine that contains the scheduling ability within the 

pool. It collects all of the state information about the resources provided by execute hosts 
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and the pending jobs offered by the submit hosts. It’s job is to effectively match resource 

requests with the available resources while enforcing the policies provided by the 

ClassAds in the system. The processes that need to run on the central manager include the 

condor_negotiator, the condor_collector, and the condor_master. A Condor pool 

generally contains a single central manager although it can contain more for redundancy 

in the case that the central manger becomes inoperable. 

 

Submit Host 
Submit hosts are machines that users submit jobs from. The submit hosts run the 

condor_schedd daemon and host the condor_shadow process for each remote job that has 

been submitted by that particular submit host. The submit host communicates pending 

jobs and their requirements to the Condor pool for consumption by the central server for 

matchmaking. It is also responsible for file I/O to the remote jobs that it manages. 

 

Execute Host 
Execute hosts are machines in the Condor pool that actually process the resource 

requests made by submit hosts. The condor_startd daemon and condor_starter run on the 

execute hosts as well as the remote job specified by a resource request. The execute host 

communicates state and resource information to the central manager via Condor 

ClassAds. The execute host manages the jobs that are matched to it and provide job status 

to the central manager as well as the submit host that submitted the job. Figure 1 shows 
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the different roles within a condor pool and how they interact. The daemons that make up 

the roles are listed for each.  

 

 

 

 

Figure 1 Condor Roles 

 

 
 

ATHENa Client/Server Architecture 
Enhanced ATHENa was designed from the beginning to utilize parallelism as 

much as possible. The enhanced ATHENa software is developed in Python and follows 

object oriented design principles. The new design was divided into two distinct pieces, a 
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client application where a user submitted benchmarking jobs, and a server side 

application that processes the jobs. The client application consists of a GUI for 

submitting and monitoring jobs. Information regarding each job is displayed as well as 

controls to pause, resume, and cancel existing jobs. Behind the GUI is an application that 

extracts the relevant information from the job configurations then sends the job to the 

server side application via the Condor batch system. The application will determine if a 

user submitted job can be broken up into independent subtasks for processing in parallel 

and send these subtasks to the batch system separately. The client application resides on a 

machine that takes on the submit host role within the system. The application generates 

Condor submit files for scheduling and interacts with the Condor daemons to schedule, 

process, and monitor the jobs submitted by a user. The new design space exploration 

algorithms that are explained in more detail to follow are also a part of the client 

application. By residing on the client, the algorithms can utilize the parallelism offered by 

Condor. Figure 2 and Figure 3 are screenshots of the GUI designed for the client 

application. Figure 2 shows the job monitoring table. The table lists what jobs have been 

submitted, by whom, and what state they are currently in. Figure 3 is the node monitoring 

table. It displays data on the connected execute hosts in the condor pool. Information is 

displayed about the operating system, CPU architecture as well as the state of the execute 

hosts. 

 

 



34 
 

 

Figure 2 Client GUI Submissions 

 

 

 

Figure 3 Client GUI Execute Hosts 
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The server side application is very similar to the original ATHENa in design. It 

receives sets of configuration options and executes the synthesis and implementation 

tools with those options. The server side application is executed by the batch system 

when a job is submitted and matched to the compute node that the server side application 

resides on. The server application resides on a machine that takes on the Execute Host 

role in the system. Results are generated by the application and the batch system is 

notified of job completion and collects these results for transporting back to the machine 

that the user submitted the job from. Figure 4 shows the general dataflow and architecture 

of the combined ATHENa Condor Client/Server system. The User Job is the 

configuration file used as input by the user. The Submission generator extracts subtasks 

from thee User Job. These subtasks are described in the Condor Submission that is 

consumed by the Central Manager and used for matching the jobs to an appropriate 

execute host. The execute hosts communicate classAds as well as state information to the 

Central Manager to aid in the Match Making process. Once the jobs have been matched 

to execute hosts, the ATHENa server application executes the design tools with the 

proper command line options to generate results. Once the results are generated the server 

application packages the data for consumption by the client application for report 

generation. 
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6. RELATED TOOLS 

There are other systems that aim to accomplish similar goals to the ones being 

accomplished with enhanced ATHENa. The main advantages of ATHENa over most 

other offerings are the multi-vendor device and tool chain support, optimization strategies 

aimed at maximum performance as opposed to design closure, and the automated 

extraction of results that integrates seamlessly with a results database. 

eBACS 
eBACS (ECRYPT Benchmarking of Cryptographic Systems)[2], [3] is a system 

similar to ATHENa that focuses on the benchmarking of cryptographic primitives in 

software.  Different processor architectures are evaluated as well as various compiler 

options. eBACS contains the eBATS(ECRYPT Benchmarking of Asymmetric Systems), 

eBASC(ECRYPT Benchmarking of Stream Ciphers), and eBASH(ECRYPT 

Benchmarking of All Submitted Hashes) systems.  The eBASH portion of the system 

compares hashes, including the SHA-3 candidates utilized in the experiments for 

ATHENa. eBASH has already collected 51 implementations of 28 different hashes from 

14 different families. These have been benchmarked on 69 different computers 

recompiled with 1201 different options. The system defines a standardized Application 

Programming Interface (API) for the supported cryptographic primitives. The goal of the 

system is to determine the best option set for each design on each machine architecture 
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investigated. The concept and goal for ATHENa was inspired by the eBACS system, to 

remove the burden of generating high quality benchmarking results from the algorithm 

designer and generate benchmarking results in a clear unbiased manner for publication 

and comparison. The biggest difference between the systems is the software focus of 

eBACS. The job of optimizing the software algorithms is also simpler for eBACs because 

of their focus on one compiler, gcc. Software benchmarking and optimization also has an 

advantage in that one tool is used for optimization, the compiler, where with FPGA 

optimization there are multiple tools that need to be optimized to reach a final solution, 

Synthesis, Mapping, Placement, and more depending on the specific tool chain used.   

Xilinx PlanAhead 
Xilinx has developed an integrated design environment called PlanAhead that 

contains many similar features to ATHENa. The PlanAhead software allows multiple 

synthesis and implementation attempts using different options and constraints. The 

synthesis and implementation attempts can be queued to launch sequentially or 

simultaneously with multiprocessor machines using the Xilinx synthesis and 

implementation software. PlanAhead also can be deployed in a distributed cluster 

environment to increase the throughput of the benchmarking tasks. PlanAhead also 

contains predefined option sets for benchmarking purposes. One of the main differences 

between the optimization techniques employed by PlanAhead and those used by 

ATHENa is the isolation of each specific tool in PlanAhead. PlanAhead optimizes each 

stage of the tool chain in isolation, reducing the total number of runs to explore the same 

search space. Enhanced ATHENa has limited support for this capability, allowing each 
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tool to be run in isolation but providing little optimization algorithm support other than 

Most Effort optimization while in this mode. PlanAhead while similar to ATHENa does 

not support any other vendor device or tool chains limiting its use to Xilinx devices and 

tools alone. 

Altera Design Space Explorer 
Design Space Explorer is a tool similar to Xilinx PlanAhead but integrated into 

the Quartus tools for use with Altera devices. It is meant to be an easy-to-use design 

optimization utility that can assist in optimizing a design in terms of power, area, and 

speed. A predefined set of Quartus II options are searched to determine optimal settings 

for a particular design. Different optimization targets are predefined that choose option 

sets to achieve performance relative to a given metric. Design Space Explorer can 

optimize for area, speed, and power. Design Space Explorer can also work on 

multiprocessor systems as well as distributed cluster environments. As with the Xilinx 

specific tool PlanAhead, Design Space Explorer only utilizes Altera devices and the 

Altera tool set to optimize designs.  
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7. OPTIMIZATION SPACE EXPLORATION 

 

Least Effort 
Least effort optimization is not really an optimization method at all, but simply a 

method used to compare other algorithms against. Least effort consists of setting all 

options to their perceived high state. This enables us to compare the actual benefit of 

searching the option space more thoroughly. Running tests with this method will help 

establish a baseline for the minimum time that you can spend tuning and what sort of 

results you could expect. It serves as a useful baseline for comparison of all other 

optimization methods. The exact options and the states that are used are described in the 

case studies. 

Most Effort 
Most effort optimization is comprised of an exhaustive search of all option 

combinations within the option search space. An exhaustive search will yield the optimal 

option set for the design but places an enormous burden on resources by requiring that all 

option combinations be tested. An exhaustive search requires 2n runs to test the entire 

option search space for on/off options where n is the number of options being 

investigated. While limited in use it is incredibly powerful for a small search space and 
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will be used to compare the effectiveness of the other algorithms using a constrained set 

of options. 

Batch Elimination 
The Batch Elimination algorithm proposed here is adapted from previous research 

in compiler option selection [8]. Batch elimination is an algorithm that aims to 

approximate an exhaustive search of the optimization options in a much more efficient 

manner. The benefit of this algorithm is that it requires only   optimization 

combinations to complete, (with n being the number of options), a significant savings 

compared to exhaustive search. While significantly faster than an exhaustive search, there 

is no guarantee that an optimal combination will be discovered. It will be shown through 

experimentation that a near optimal solution can be achieved if there is minimum 

interaction between options for the tested design. 

The algorithm itself is quite simple in design. The effect of one option,    is represented 

by a metric called Relative Improvement Percentage,    (  ), which is the difference in 

performance relative to a chosen metric of the benchmark with and without option   .   (    )is the performance measured when the option is off, and  (    ) is the 

performance measured when the option is on.  

Equation 1 Relative Improvement    (  )    (    )   (    ) (    )       

The baseline used for comparison is the performance of the design with all 

options switched off.  The relative improvement of an option as compared to the baseline 

is defined as: 
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Equation 2 Relative Improvement Baseline     (  )    (    )            

If,   (    )   , the option   has a positive effect. The Batch elimination algorithm 

enables this option in the final option set. The pseudo code for the algorithm is as 

follows:  

1. Run the FPGA synthesis and implementation tools using the baseline option 

set (all options set to off) to generate PB. 

2. For each option being investigated Oi , switch the option on and run the 

synthesis and implementation tools to generate (    ). Determine    (    ). 
3. Enable all options with positive RIPs. Run the synthesis and implementation 

tools with this tuned option set to determine the final performance metric. 

 

The options are not limited to binary on/off option types as shown above and can 

be n-ary in nature. In the case of an n-ary option performance is calculated for each 

option state P(Oi=1), P(Oi=2), … P(Oi=n) and the option state with the greatest RIP is 

used in the final option set. To help illustrate the example Table 2 represents the option 

set at each step of the batch elimination algorithm. 0 represents the default option where a 

1 represents a non-default option state. A + for the Relative improvement denotes an 

improvement over the baseline and a – denotes none, or negative impact. 

 

 



43 
 

 

Table 2 Batch Elimination 

 

Run 
Option 
1 

Option 
2 

Option 
3 

Option 
4 

Option 
5 

Relative 
Improvement 

Ob 0 0 0 0 0 N/A 

O1 1 0 0 0 0 + 

O2 0 1 0 0 0 - 

O3 0 0 1 0 0 - 

O4 0 0 0 1 0 + 

O5 0 0 0 0 1 + 

Of 1 0 0 1 1 N/A 
 

Note: 1 Ob is the baseline, Of is the final run 

  

 

Batch Elimination takes n+1 runs of the design tools to complete where n is the 

number of options being investigated but can be completed in the equivalent of 2 runs by 

utilizing n compute resources. Figure 5 illustrates the task decomposition of the Batch 

Elimination algorithm.Ob is the baseline and O1-O5 are the runs representing the optios 

being investigated. 

 

 

 

Figure 5 Batch Elimination Parallel Task Decomposition 
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Iterative Elimination 
Iterative elimination is a modification to the previously defined batch elimination 

that takes into account the interaction of optimizations into consideration. The price that 

is paid to deal with interactions is an increase in algorithm time complexity. Iterative 

elimination performs the RIP calculation described in batch elimination for each option 

but then only sets the most beneficial option at a time, creating a new baseline and 

continuing the process iteratively until options no longer yield a positive RIP. Iterative 

elimination requires at most          runs to complete while on average it can be much 

less. The following pseudo code describes the algorithm in more detail. 

 

1. Run the FPGA synthesis and implementation tools using the baseline option 

set (all options set to off) to generate  PB 

2. For each option being investigated Oi , switch the option on and run the 

synthesis and implementation tools to generate P(Oi=1). Determine the RIP(Oi 

= 1). 

3. Find the option Oi , that has the greatest RIP. Create a new baseline with this 

option set to on instead of off. 

4. Repeat the previous steps until there is no positive RIP for any option.  

 

The final baseline will represent the fully optimized option set. To help illustrate 

the example Table 3 represents the option set at each step of the iterative elimination 

algorithm. 0 represents the default option where a 1 represents a non-default option state. 
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A + for the Relative improvement denotes an improvement over the baseline and a – 

denotes none, or negative impact. 

 

 

 
Table 3 Iterative Elimination 

 

Run Option 1 Option 2 Option 3 Option 4 Option 5 
Relative 
Improvement 

Ob 0 0 0 0 0 N/A 

O1 1 0 0 0 0 +5 

O2 0 1 0 0 0 - 

O3 0 0 1 0 0 - 

O4 0 0 0 1 0 +7 

O5 0 0 0 0 1 +2 

Ob2 0 0 0 1 0 
+7 from 
baseline 1 

O1 1 0 0 1 0 +3 

02 0 1 0 1 0 - 

03 0 0 1 1 0 - 

04 0 0 0 1 1 +1 

0b3 1 0 0 1 0 
+3 from 
baseline 2 

O1 1 1 0 1 0 - 

O2 1 0 1 1 0 - 

O3 1 0 0 1 1 - 

Of 1 0 0 1 0 +10 total 

 

Iterative Elimination can take as little as        runs of the design tools to 

complete and up to          where n is the number of options being investigated. The 

algorithm can be realized in at most n runs if there are at least n compute resources 

available. Figure 6 illustrates the task decomposition of Iterative elimination. The ellipses 

is used to signify the unknown number of runs required to complete the optimization. Ob-
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Obn represent the baselines used at each step of the Iterative Elimination process. Of 

represents the final optimized option state. 

 

 

Figure 6 Iterative Elimination Parallel Task Decomposition 

 

 

Orthogonal Array 
Orthogonal arrays have been used as an efficient means to design experiments 

in many fields of engineering. Recent research has been done using orthogonal arrays 

as a means to choose gcc compiler options, an application that mirrors ours [9], [10]. 

In our experiment we have n factors being considered creating an optimization space 

with   settings. This is known as a full factorial design. As n increases, it is not 

possible to test the entire search space to determine the optimal option combination. 

Orthogonal arrays are a means to create an experiment that is called a fractional 

factorial design, allowing meaningful information to be determined about option 

combinations while searching only a fraction of the full factorial design optimization 

space. An Orthogonal Array is an N x k matrix where the columns represent 
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optimization options and the rows represent the settings used for each experiment. The 

matrix is filled with 1’s and 0’s to represent whether or not a specified option is on or 

off. The property that makes Orthogonal Arrays useful for creating fraction factorial 

designs is that any two arbitrary columns contain the patterns {00, 01, 10, 11} equally 

often. An Orthogonal array of this type is said to be of strength 2, referring to the two 

column patterns. A strength 2 array allows the discovery of main effects for options, 

similar to the non-interacting option detection that is used in batch elimination. The 

effect of options interacting among one another can be analyzed with greater strength 

Orthogonal Arrays and should achieve results similar to iterative elimination. An 

example of an Orthogonal Array of strength 2 is shown with eight rows corresponding 

to eight separate experiments, or sets of options. The array contains five columns, 

representing a search space of five options. Figure 7 shows the orthogonal array used 

in the Orthogonal Array Optimization implementation demonstrated in this thesis. 

 

 

1 0 0 0 0
0 1 0 1 0
1 1 1 0 1
0 0 1 1 1
1 0 0 0 1
0 1 0 1 1
1 1 1 0 0
0 0 1 1 0  

Figure 7 Orthogonal Array 
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 Orthogonal Arrays allow us to view performance when an option is 

switched on and off in an arbitrary context of other options. This algorithm also 

guarantees that half of the experiments will be conducted with an option Oi on and half 

with option Oioff. The algorithm provides another guarantee, for an arbitrary optionOj, 

there are N/4 experiments where Oi is on and Oj is off, and N/4  experiments where Oi is 

on and Oj is on. The same holds true for when Oi is off. These properties allow the 

Orthogonal Array algorithm to show main effects of options without resorting to a full 

factorial design. To properly utilize Orthogonal Arrays to conduct option space 

optimization we need to define a metric called relative improvement, similar to that 

calculated for the prior two algorithms.  

Equation 3Relative Improvement OA    (  )   ∑ (    )  ∑ (    )∑ (    )  

WhereP(Oi=1) is the performance when the option Oi is enabled and P(Oi=0) is the 

performance when option Oi is disabled. The relative improvement for each option is 

calculated after running all of the experiments defined by the Orthogonal Array. Any 

options that yield a positive relative improvement are enabled in the final set while those 

yielding no improvement or negative improvement are disabled.  

The algorithm as designed for ATHENa only supports binary options. Options 

that have more than two states are not considered and require more complicated 

Orthogonal Arrays to support. For our purposes a strength 2 array is used, so only main 

effects are taken into account leading to a less optimal final solution. Higher strength 

arrays are more complicated and so a tradeoff was made for increased simplicity over 
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better results. We hope to show that in most cases main effects are sufficient and further 

complexity yields diminishing returns for our specific application. 

To help illustrate the example Table 4 represents the option set at each step of the 

orthogonal array algorithm. 0 represents the default option where a 1 represents a non-

default option state. The Of option state is the final option state determined by the 

calculated RIP of the previous runs. 

 

 

 

Table 4 Orthogonal Array 

 

Run 
Option 
1 

Option 
2 

Option 
3 

Option 
4 

Option 
5 

O1 1 0 0 0 0 

O2 0 1 0 1 0 

O3 1 1 1 0 1 

O4 0 0 1 1 1 

O5 1 0 0 0 1 

O6 0 1 0 1 1 

O7 1 1 1 0 0 

O8 0 0 1 1 0 

Of 1 1 0 0 1 

 

 

 

 

Orthogonal Array optimization using the previously illustrated orthogonal array 

takes 9 runs of the design tools to complete. By running jobs in parallel with the 

distributed batch system, the algorithm takes the equivalent of 2 tool executions to 
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complete running up to 8 instances in parallel if there are available compute resources.  

Figure 8 is the task decomposition of the Orthogonal Array optimization. O1-O8 

represents the options combinations used to determine the RIP of each option. Of 

represents the final option state that results from the optimization.  

 

 

 

 

 

Figure 8 Orthogonal Array Parallel Task Decomposition 

 

 

 

Frequency Search 
Frequency search attempts to determine the input frequency that yields the highest 

performance from the design. Frequency search is accomplished as follows: 

 

1. An initial input frequency Fin0 is chosen a starting point for the frequency 

search. An initial option set is also used as input. In all of our experiments it is 

the default option set. All options set to the tool defaults. 
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2. Fout0is the frequency generated from running the tools with an input 

frequency of Fin0. 

3. A set of values used as input frequencies for the next stage Finn  are 

determined.           [  (     )]for n from 1 to 10 

4. maxP(Fin) is determined from the set of results generated with the input 

frequency set 
nFin .    is used as the input to the next stage of the frequency 

search. 

5.          [  (      )]is determined for n = -3,-2,-1,1,2,3 

6. maxP(Fin) is determined again for the new input set and a new    is used as 

input to the final stage of frequency search. 

7.          [  (      )]is determined for n = -2,-1,1,2 

8. After this set of runs has completed the input frequency that lead to the best 

overall performance is selected. 

Frequency Search requires 21 full runs of the design tools to complete. Utilizing 

the distributed batch system frequency search takes the equivalent to the time to execute 

the design tools 4 times if at least 10 compute resources are available. 

Placement Search 
Placement search is a very basic search that does an exhaustive search of a subset 

of possible placement values then refines the search and performs a second exhaustive 

search on a more granular set of placement options. For example, placement seed is 

specified as an integer from 1-100 in the Xilinx tools. The initial exhaustive search 

searches 1,10,20,30,40,50,60,70,80,90,100 as the value for the placement option. The 
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best result of these runs is picked and the value for the placement option is used to 

determine the next set of values to be searched. A second set of placement values is 

searched centered on the best value experimentally determined from the first set. The new 

values are  +/- 5, +/- 4,+/- 3, +/- 2, +/- 1 from this value. If the best value from the initial 

set was 100, then only -5,-4,-3,-2,-1 are used. If the best value from the initial set was 

one, then +1,+2,+3,+4,+5 are used. As an illustration if the value for placement 

experimentally determined in the first set was 50 then the second set would be 45, 46, 47, 

48, 49, 51, 52, 53, 54, 55. After running the second set, the value for placement that lead 

to the greatest resultant performance is the result of the search. The Placement Search 

algorithm can complete in the time it takes to run two sequential runs if there are at least 

11 compute resources. 

Tool Separation 
Tool separation is a method that isolates each tool and performs an optimization 

per tool as opposed to for all tools at once. This method can limit the search space that is 

tested by each algorithm by limiting the search space to only those for a specific tool. 

While in theory this is a good way to limit the search space, it has drawbacks as well. 

With respect to the Xilinx tool chain problems arise with the output generated at each 

stage. The Xilinx synthesis tool generates a synthesis frequency, but in most cases it is 

not apparent or consistent how the generated synthesis frequency affects the outcome of 

other stages that follow. The highest synthesis frequency does not in all cases lead to the 

highest implementation frequency. The map tool will not generate timing information 

unless a certain option is used that is not compatible with many other map tool options. 
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Tool separation is also not an optimization method used but a technique to apply 

optimization algorithms. Currently only Most Effort optimization is supported due to the 

difficulty in determining best option sets at each stage. Adapting the other algorithms 

presented here, or developing new algorithms that take advantage of this technique could 

be an area of future work. The advantage of separation is the ability to isolate the 

optimization of each tool from each other, providing means to potentially search more 

options with fewer runs. This concept hinges on the idea that each successive stage is best 

optimized using the most optimal result from the previous stage. While this seems 

reasonable it is not always the case and can cause problems when optimizing in this 

manner. 

Metrics 
The metrics used by ATHENa for optimization are throughput, the ratio of 

throughout to area, and area. Area is defined by the number of slices used by a design. 

Each algorithm aims to optimize one of these metrics as a target. This is done by 

calculating the necessary metric from the results and using it as input to the following 

optimization stages. Even in the evaluation of frequency search where desired frequency 

is being manipulated the metric being used to determine the best input frequency could be 

area or throughout to area ratio instead of the more directly related throughput.  

Throughput is used to illustrate the raw computational speed of a design. It is 

useful in determining which algorithm may be the fastest. Formulas entered in the 

configuration files are used to calculate throughput in the results.  



54 
 

 Area is used to illustrate how much circuit real estate a design will cost, 

how much hardware resources are used to implement the design. It is useful to determine 

the smallest design in a comparison. Area can be calculated using a number of different 

metrics reported by the synthesis and implementation tools. LUTs or CLB Slices are 

commonly used while other metrics such as the number of DSPs or number of BRAMs 

used could be considered as well but have some issues when making comparisons. The 

use of BRAMs or DSPs when comparing area is difficult because it is hard to make a 

direct comparison between BRAMS or DSPs and slices/LUTs to determine which design 

is technically smaller.  

The ratio of throughput to area is used to show which designs exhibit the best 

balance between raw speed and hardware cost. For the case studies included in this paper 

this ratio is used for comparison. 
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8. SHA-3 CASE STUDY 

SHA-3 Candidates 
 The SHA-3 competition is in the final round of evaluation in determining 

the next Cryptographic Hash Algorithm to be adopted as a NIST standard. This final 

round contains a total of five algorithms, four of which are evaluated in the enhanced 

ATHENa experiments.  

BLAKE is a cryptographic hash algorithm designed by Jean-Philippe Aumasson, 

Luca Henzen, Willi Meier, and Raphael C.-W. Phan. It is based on the ChaCha stream 

cipher developed by Daniel Bernstein and comes in two variations, 256 and 512 using 

32-bit and 64-bit words respectively. 

JH is a cryptographic hash algorithm submitted to the NIST SHA-3 competition 

by Hongjun Wu. The algorithm produces a digest of 224, 256, 384 or 512 bits. 

Keccak is a hash algorithm designed by Guido Bertoni, Joan Daemen, 

MichaëlPeeters and Gilles Van Assche. The algorithm has been measured to be notably 

faster in ASIC implementations in hardware than the other candidates as shown in "Fair 

and Comprehensive Performance Evaluation of 14 Second Round SHA-3 ASIC 

Implementations."Keccak makes use of the sponge construction and is hence a sponge 

function family.Keccak is a joint design by STMicroelectronics and NXP 

Semiconductors. 
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Skein was created by Bruce Schneier, Stefan Lucks, Niels Ferguson, Doug 

Whiting, MihirBellare, Tadayoshi Kohno, Jon Callas and Jesse Walker. Skein is based on 

the Threefishtweakable block cipher. Skein supports internal state sizes of 256, 512 and 

1024 bits, and arbitrary output sizes. 

Experimental Design 
To demonstrate the effectiveness of the enhanced ATHENa environment as well 

as the new optimization algorithms a set of experiments were conducted. The 

experiments used four proposed algorithms from the SHA-3 cryptographic hash 

algorithm competition, BLAKE, JH,Keccak, and Skein and targeted two Xilinx devices, a 

Spartan 3 device, xc3s1000fg676-5, and a Virtex 6 device, xc6vlx75tff784-3. The 

architectures chosen for evaluation were the basic iterative architectures as implemented 

by the Cryptographic Engineering Research Group at George Mason University [11], 

[12]. The basic iterative architectures were chosen because the designs were previously 

benchmarked by the ATHENa system showing good performance improvement through 

optimization. The two devices were chosen to show how benchmarking and optimization 

tasks change when pairing different devices and algorithms. The experiments were 

conducted using Xilinx ISE version 13.1. The enhanced ATHENa distributed 

environment was deployed on two eight-core workstations that provided sixteen compute 

resources for use. 

In addition to the device and algorithms, different option sets were used to 

illustrate different properties of the system. The first experiment is meant as a test to 

determine the ability of the orchestration algorithms to achieve near exhaustive search 
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performance in much fewer runs. Since an exhaustive search of the optimization space is 

being utilized, the search space necessarily needs to be small for this initial experiment. A 

small constrained option set including only 5 options was chosen for both the Spartan 3 

and Virtex 6 experiments. An expanded option set of 9 options was chosen for each 

device for the second experiment to show how well the algorithms could trim the search 

space, and how the enhanced ATHENa environment performed with respect to the old 

ATHENa environment and the Xilinx PlanAhead tool. The option sets are slightly 

different for the Spartan 3 and Virtex 6 devices because of what options are supported for 

these devices. 

 

 

 

Table 5 Experiment 1 Options 
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Table 6 Experiment 2 Options 
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1, 2 speed, 
area 

off, 
area 

as_optimized, 
rebuilt 

std,hig
h 

b, 
off 

 on, 
off 

speed,off std, 
high 

 

 

 

 

Results 
The JH algorithm results are shown in detail in Table 7. For Experiment 1 

targeting the Spartan 3 device Batch Elimination produces a 5.3% performance increase, 

11% below the optimal increase achievable. Iterative Elimination produces a nearly 

optimal result only .3% below the optimal performance, showing the ability of the 

Iterative Elimination algorithm to produce better results than Batch Elimination. Iterative 

Elimination achieves this result while executing the design tools only 9 times, nearly one 

third the amount needed for Most Effort Optimization. The Orthogonal Array algorithm 

produces a near optimal 15.5% performance increase. 

The results of Experiment 1 for JH targeting the Virtex 6 device show a much 

better improvement for Batch Elimination, 8.6%, only 4.9% below the optimal solution 

of 13.5%. Iterative Elimination reaches the optimal solution in 14 runs, less than half the 
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Most Effort optimization requires. The Orthogonal Array algorithm also produces an 

optimal result and does so in a minimal 9 runs. 

Experiment 2 targeting the Spartan 3 device shows an improvement of 18.6% by 

just moving to the larger option space. Batch Elimination leads to an improvement of 

11.4%, less than Least Effort with 9 options but 6.1% higher than the initial Batch 

Elimination with 5 options. Iterative Elimination improves the performance to 21.9% 

above the base line. The Frequency Search Algorithm provides the greatest performance 

improvement of 42.5%. Both Batch Elimination and Iterative Elimination fail to improve 

the overall performance after the Frequency Search leading to results of 25.7% and 

38.4% respectively. Batch Elimination is improved to 35.4% with a final placement 

search while Iterative Elimination is unchanged. It should be noted that Frequency Search 

yields the greatest performance in terms of throughput to area ratio, the metric that is the 

focus of the optimization, however, applying the design space exploration algorithms to 

the frequency search results leads to greater throughput performance at the cost of area. 

The final optimized design outperforms the results generated by the old ATHENa 

environment by 15% and achieves this result in only 13 more sequential runs. 

Targeting the Virtex 6 device, Experiment 2 shows identical results for both 

Batch Elimination and Iterative Elimination. This can be attributed to the optimization 

options common between the 5 and 9 option sets. Frequency Search yields a performance 

increase of 31.8% and subsequent applications of Batch Elimination and Iterative 

Elimination yield 27.4% and 47.8% respectfully. Iterative Elimination increases 

performance over that achieved by frequency search by 16% while Batch Elimination 
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decreases this performance by 4%. Placement Search yields performance increases of 

51.9% and 54.4% for each set. The final performance increase for JH targeting the Virtex 

6 device is the one case where the enhanced ATHENa environment underperforms the 

old ATHENa environment by a significant margin, having performance 16% lower with 

a sequential runtime 8 runs longer.  

 

 

 

 

Table 7 JH Results 

 
 Algorithm Area 

(Slices) 

Throughput 

(Mbits/s) 

T/A %  

Impr. 

#Runs 

(parallel) 

Area 

(Slices) 

Throughput 

(Mbits/s) 

T/A %  

Impr. 

#Runs 

  Spartan 3 Virtex 6 

E
x
p
er

im
en

t 
1

 

LE 4084 1530 0.375 0.0 1 1170 4370 3.735 0.0 1 

ME 3525 1543 0.438 16.8 32 1024 4342 4.241 13.5 32 

BE 3621 1428 0.394 5.3 7(2) 1080 4379 4.055 8.6 7 (2) 

IE 3525 1532 0.435 16.0 11(2) 1024 4342 4.241 13.5 15 (3) 

OA 3520 1524 0.433 15.5 9(2) 1024 4342 4.241 13.5 9(2) 

E
x
p
er

im
en

t 
2

 

LE9 3471 1543 0.444 18.6 1 1487 4368 2.937 -21.3 1 

BE9 3471 1449 0.417 11.4 11(2) 1080 4379 4.055 8.6 11(2) 

IE9 3383 1545 0.457 21.9 40(5) 1024 4342 4.241 13.5 34(4) 

FS 3337 1782 0.534 42.5 21(4) 979 4820 5.845 31.8 21(4) 

FS=>BE9 3564 1680 0.471 25.7 32 (6) 906 4312 5.696 27.4 32(6) 

FS=>IE9 3602 1869 0.519 38.4 48(7) 911 5030 5.905 47.8 55(8) 

FS=>BE9=>PL 3612 1833 0.508 35.4 53(8) 884 5015 5.807 51.9 53(8) 

FS=>IE9=>PL 3602 1869 0.519 38.4 69(9) 911 5252 6.279 54.4 76(10) 

 GMU-1 3913 1804 0.461 23.1 56 849 5412 6.375 70.7 68 

XPA 3690 1671 0.453 20.9 54 1024 4182 4.084 8.2 54 
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The experimental results for the BLAKE design are shown in detail in Table 8. 

The Batch Elimination algorithm generates results that are 7.9% better than the Least 

Effort optimization and 25.1% less than the optimal solution for Experiment 1 targeting 

the Spartan 3 device. The less than optimal result can be attributed to interaction effects 

within the option space for this design and device target.  Interaction effects are side 

effects that occur when two options are used simultaneously. The Batch Elimination 

algorithm does not handle these types of option interactions. Iterative Elimination 

produced an optimal solution, matching the performance of the Most Effort algorithm. 

The Orthogonal Array algorithm produced a decrease in performance of around 3%. 

For Experiment two the Batch Elimination and Iterative Elimination algorithms 

targeting the Spartan 3 device perform exactly as in Experiment 1, leading to the 

conclusion that the options added for Experiment 2 have no performance impact in this 

design device pairing. Frequency Search leads to a 15% performance increase over the 

Least Effort baseline results, showing the effect of input frequency on results. Both Batch 

Elimination and Iterative Elimination cause a degradation of results when applied 

following the frequency search. A final 18% and 17% performance increase are recorded 

for Batch Elimination and Iterative Elimination respectively after the final placement 

search is applied. The failing of the larger option space to yield an increase in 

performance over the Experiment 1 option space is due to complex interaction effects as 

described earlier. With more options, the likelihood of interaction effects impacting 

performance is higher. Iterative Elimination is built to handle interaction effects better 

than Batch Elimination and this is shown to be true in all cases. 
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The Batch Elimination algorithm performs closer to expectations for the BLAKE 

design targeting the Virtex 6 device. Batch Elimination results in a 26% performance 

increase for Experiment 1, only 10% below the optimal value achieved by Most Effort 

optimization. As in the Spartan 3 device instance Iterative Elimination results in an 

optimal solution with a performance increase of 36%. The Orthogonal Array algorithm 

performs slightly better than the Batch Elimination algorithm with a performance 

improvement of 26.5%. 

Experiment 2 yields some of the interaction effects that were experienced 

targeting the Spartan 3 device. The expanded option set yields only 15% increase in 

performance for Batch Elimination, 11% below that achieved with the smaller option set. 

Iterative Elimination overcomes the interaction effects experienced by the Batch 

Elimination algorithm but reaches the exact same performance as the initial 5 option set. 

Frequency search increases the performance by 43% over the Least Effort baseline 

performance. Applying Batch Elimination after the frequency search causes the 

performance to drop down to 22% due to option interaction effects. Iterative Elimination 

leaves the performance unchanged. The final Placement Search increases the 

performance in both cases for a final fully optimized design that leads to a performance 

increase of 44% using Iterative Elimination and an increase of 24% using Batch 

Elimination techniques. 

In comparison to the two other optimization methods, Xilinx PlanAhead and the old 

ATHENa using GMU_Optimization_1, the performance of the new algorithms is better. 

Targeting the Spartan 3 device the new algorithms provide a maximum performance 
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advantage of nearly 30%. The number of runs used to determine this value is lower, 

requiring only a frequency search to achieve, resulting in 21 runs. The fully optimized 

design has a performance increase of 15% using 69 runs, slightly more than either of the 

two competing techniques. Targeting the Virtex 6 device the performance increase is 

about 1%, and it takes 93 runs to reach this performance, much more than the other two 

techniques. While the algorithms do use more runs when compared to the other tools in 

terms of sequential runs, the actual runtime utilizing the 16 compute node system was 9 

and 13 runs respectively leading to an actual runtime significantly lower than the other 

algorithms.  

 

 

 

Table 8 BLAKE Results 

 
 Algorithm 

Area 

(Slices) 

Throughput 

(Mbits/s) 
T/A 

% 

Impr. 

#Runs 

(parallel) 

Area 

(Slices) 

Throughput 

(Mbits/s) 
T/A 

% 

Impr. 
#Runs 

  Spartan 3 Virtex 6 

E
x

p
er

im
en

t 
1

 

LE 641 150 0.234 0.0 1 199 239 1.656 0.0 1 

ME 467 146 0.312 33.0 32 145 328 2.259 36.4 32 

BE 502 127 0.253 7.9 7 (2) 158 331 2.093 26.4 7 

IE 467 146 0.312 33.0 11 (2) 145 328 2.259 36.4 18 

OA 487 110 0.226 -3.04 9 (2) 155 324 2.096 26.5 9 (2) 

E
x
p
er

im
en

t 
2

 

LE9 641 150 0.234 0.0 1 212 346 1.631 -1.5 1 

BE9 502 127 0.253 7.9 11 (2) 187 356 1.906 15.1 11 (2) 

IE9 467 146 0.312 33.0 19 (2) 145 328 2.259 36.4 34 (4) 

FS 611 165 0.270 15.5 21 (4) 205 486 2.373 43.3 21 (4) 

FS=>BE9 479 118 0.246 5.3 32 (6) 180 364 2.024 22.3 32 (6) 

FS=>IE9 619 163 0.263 12.7 48 (7) 205 486 2.373 43.3 70 (11) 

FS=>BE9=>PL 477 131 0.276 18.0 53 (8) 171 353 2.066 24.7 53 (8) 

FS=>IE9=>PL 602 164 0.273 17.1 69 (9) 203 484 2.389 44.3 91 (13) 

 
GMU-1 641 154 0.240 2.5 57 182 432 2.376 43.5 57 

XPA 599 137 0.228 -2.7 54 207 422 2.039 23.1 54 
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Skein targeting the Spartan 3 device for Experiment 1 shows a 3.2% and 5.9% 

increase in performance for Batch Elimination and Iterative Elimination Respectively. 

Both of these algorithms fall far short of the optimal result of 18.4%. Orthogonal Array 

results again show an overall decrease in performance of almost 2%.  

Experiment 2 targeting the Spartan 3 device shows an improvement of 11.8% and 

13.03% for Batch Elimination and Iterative Elimination respectively. These results still 

fall short of the optimal 5 option results but offer a 2% and 4% increase over the Least 

Effort Optimization using 9 options. Frequency Search leads to an increase in 

performance of 16.3%. The final optimization algorithms all achieve the same result and 

are unable to improve upon Frequency Search achieving an overall performance increase 

of 15.3%, 1% lower than achieved with Frequency Search alone. In comparison to the old 

ATHENa environment and increase in 4% is achieved. 

Experiment 1 targeting the Virtex 6 device shows a decrease in performance for 

Batch Elimination while and optimal result for Iterative Elimination. Orthogonal Array 

optimization increases throughput to area ratio by 7.1%, just 2% below the optimal 

performance increase. The failing of the Batch Elimination algorithm in this case can be 

attributed to interaction effects. 

Experiment 2 targeting the Virtex 6 device shows very poor performance for 

Batch Elimination, achieving a decrease in 7% with respect to the original baseline. 
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Iterative Elimination with the larger option set leads to identical performance as realized 

with the smaller option space. The options added in the larger option set have no effect 

on the design optimization in this configuration. Frequency Search leads to a 

performance increase of 10.2%. Applying Batch Elimination after the frequency search 

decreases overall performance but does have a performance increase of 3.5% over the 

Least Effort optimization. The poor performance of Batch Elimination was expected due 

to the prevalence of interaction effects in previous applications of Batch Elimination for 

this design target device pairing. Iterative Elimination applied after Frequency Search 

increases performance by an additional 6% leading to an overall performance increase of 

16.7%. Placement Search applied following the Batch Elimination Frequency Search 

chain yields a total performance increase of 18.8% outperforming the old ATHENa 

environment by nearly 4%. The final optimized result for this design device target pairing 

is 21.1% above the Least Effort optimization performance. This result is also nearly 7% 

higher than the best result achieved by the old ATHENa environment.  

 

 

 
Table 9 Skein Results 

 
 Algorithm 

Area 
(Slices) 

Throughput 
(Mbits/s) 

T/A 
% 
Impr. 

#Runs 
Area 
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Throughput 
(Mbits/s) 
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% 
Impr. 
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  Spartan 3 Virtex 6 

E
x
p
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LE 3199 416 0.130 0.0 1 914 1232.202 1.348 0.0 1 

ME 2447 376 0.154 18.4 32 836 1232.854 1.475 9.4 32 

BE 3100 416 0.134 3.3 7(2) 905 1187.959 1.313 -2.6 7(2) 

IE 3045 419 0.138 5.9 11(2) 836 1232.854 1.475 9.4 18(4) 

OA 3317 422 0.127 -1.9 9(2) 836 1207.801 1.445 7.2 9(2) 

E
x
p
er

im
en

t 
2
 

LE9 2944 420 0.143 9.7 1 959 1202.008 1.253 3.9 1 

BE9 2870 417 0.145 11.9 11(2) 922 1144.348 1.241 -7.9 11(2) 

IE9 2886 425 0.147 13.3 34(4) 836 1232.854 1.475 9.4 34(4) 
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FS 2906 439 0.151 16.4 21(4) 969 1439.891 1.486 10.2 21(4) 

FS=>BE9 2874 431 0.150 15.4 32(6) 890 1242.245 1.396 3.5 32(6) 

FS=>IE9 2874 431 0.150 15.4 31(5) 882 1388.579 1.574 16.8 61(9) 

FS=>BE9=>PL 2874 431 0.150 15.4 53(8) 918 1470.380 1.602 18.8 53(8) 

FS=>IE9=>PL 2874 431 0.150 15.4 52(7) 867 1415.764 1.633 21.1 82(11) 

 GMU-1 2870 417 0.145 11.9 -------- 858 1330 1.55 14.9 -------- 

 

 

 

The results for the Keccak design targeting the Spartan 3 device show a decrease 

in performance of 1.3% for Batch Elimination in Experiment 1. Iterative Elimination 

reaches the optimal solution in the confined search space of 10.78% improvement and the 

Orthogonal Array algorithm leads to an near optimal improvement of 8.47%.  

Spartan 3 Experiment 2 results show an improvement of 12.5% and 14.7 % for 

Batch Elimination and Iterative Elimination respectively.  Frequency Search provides an 

improvement of 13.3% to the baseline results. Batch Elimination applied after the 

frequency search lowers the performance increase to only 4.39%, indicating a potential 

issue when applying optimizations with the Frequency Search in this way. Iterative 

Elimination increases performance to 19.13% after the frequency search. After applying 

Placement Search following the Frequency Search, Batch Elimination optimization chain, 

performance reaches 13.63% improved over the baseline. The application of a placement 

search following the Iterative Elimination optimization chain leads to no further 

improvement. The fully optimized result achieves a 10% performance advantage over the 

old ATHENa environment in a low 61 serial runs, and only a parallel runtime of 8 

parallel runs. 
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For Experiment 1 targeting the Virtex 6 device Batch Elimination shows a 

decrease in performance of 2.5%. An improvement of only 1.1% is shown by using the 

Iterative Elimination algorithm. The Orthogonal Array optimization also shows a 

decrease in performance registering a decrease of 3.7%. The Keccak design appears to 

have more interaction effects than most designs when targeting the Virtex 6 device. 

Another key issue in this experiment was that the maximum performance increase was 

quite low, only 6.4% showing that the design was harder to optimize than some. 

For Experiment 2 Batch Elimination leads to a decrease of 3.4% while Iterative 

Elimination leads to an increase in performance of 6.9%. Frequency Search yields an 

increase of 26.3% with respect to throughput to area ratio. The additional application of 

Batch Elimination leads to significant performance decrease with a relative improvement 

of -27%. Iterative Elimination outperforms the baseline by 22%, but less than the 26% 

achieved by Frequency Search alone. Placement search has no effect on the Batch 

Elimination results. When Placement Search is applied to Iterative Elimination the 

performance is increased to a total of 24.4% above the baseline. 

 

 

Table 10Keccak Results 

 
 Algorithm 

Area 

(Slices) 

Throughput 

(Mbits/s) 
T/A 

% 

Impr. 
#Runs 

Area 

(Slices) 

Throughput 

(Mbits/s) 
T/A 

% 

Impr. 
#Runs 

  Spartan 3 Virtex 6 

E
x
p
er

im
en

t 
1

 

LE 3398 4641 1.37 0.0 1 1132 9928 8.770 0.0 1 

ME 3062 4633 1.51 10.8 32 1068 9972 9.337 6.5 32 

BE 3441 4637 1.35 -1.3 7 (2) 1162 9930 8.546 -2.6 7 (2) 

IE 3062 4633 1.51 10.8 15 (3) 1144 10143 8.867 1.1 15 (3) 

OA 3317 4641 1.40 8.5 9 (2) 1215 10258 8.443 -3.7 9 (2) 

r i m LE9 3129 4636 1.48 6.9 1 1221 9757 7.991 -8.9 1 
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BE9 3175 4636 1.46 12.5 11 (2) 1154 9776 8.472 -3.4 11 (2) 

IE9 2971 4654 1.57 14.7 34 (4) 1173 11000 9.378 6.9 34 (4) 

FS 3135 4851 1.55 13.3 21 (4) 1276 14144 11.09 26.4 21 (4) 

FS=>BE9 3408 4859 1.43 4.4 32 (6) 1355 10876 8.027 -27.6 32 (6) 

FS=>IE9 2990 4865 1.63 19.1 40 (6) 1256 13436 10.69 22.0 55(8) 

FS=>BE9=>PL 3129 4856 1.55 13.6 53 (8) 1355 10876 8.027 -27.6 53 (8) 

FS=>IE9=>PL 2990 4865 1.63 19.1 61 (8) 1129 12352 10.94 24.4 76(10) 

 GMU-1 3366 5039 1.50 9.8 --------- 1086 11839 10.90 24.3 --------- 

 
 

 

 

Experiment 1 was intended to explore the ability of the optimization space 

exploration algorithms to achieve optimal performance in a constrained option space. The 

goal was to see how well the algorithms optimized the designs and if they were a good 

candidate for replacing Most Effort optimization for the enhanced ATHENa 

environment.  

Batch Elimination was the first algorithm tested and was the least resource 

intensive algorithm of the three candidates. For all the designs tested and both targeted 

FPGA devices Batch Elimination never reaches the optimal result. On average Batch 

Elimination achieves 84% less performance than the optimal option combination with a 

median of 79% below optimal for the Spartan 3 device. Targeting the Virtex 6 device 

results are similar showing an average underperformance of 82% with a median of 82%. 

This underperformance can be attributed to the largest drawback of the Batch Elimination 

algorithm, the inability to handle interaction effects. The Xilinx FPGA tool options that 

were used to optimize the cryptographic has algorithms presented here exhibited some 
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mild to extreme interaction effects in each case. These effects are completely ignored by 

the Batch Elimination algorithm and lead to the observed poor performance. While 

performance of the Batch Elimination algorithm was poor relative to the optimal solution, 

it did outperform the Least Effort optimization by an average of 3.7% and 7.4% for 

Spartan 3 and Virtex 6 device conditions respectively. The 9 option version of the 

algorithm performed marginally better achieving an average performance increase of 

10% for Spartan 3 and 3% for Virtex 6. The results of the 9 option version is not 

surprising given that the performance could increase due to more options being 

investigated but more interaction effects could also be introduced.  

   Iterative Elimination performed the best of the three optimization space 

exploration algorithms introduced. Due to the iterative nature of the algorithm it was able 

to mitigate the effects of simple interaction effects and achieve good performance in most 

cases. In tests targeting the Spartan 3 device the Iterative Elimination algorithm averaged 

only 18% below the optimal performance with a median of only 2% below. For two of 

the four hash algorithms Iterative Elimination achieved the optimal result and 

underperformed by 4.7% in a third. When applied to the Skein has algorithm Iterative 

Elimination underperformed the optimal result by 67%. It should be noted that when 

targeting the Spartan 3 device, all of the optimization space exploration algorithms 

severely underperformed Most Effort optimization. This can again be attributed to 

stronger interaction effects between the options for this design device pairing. Iterative 

Elimination when targeting the Virtex 6 device achieves the optimal option set in 3 of the 

4 tests. The average that it underperformed the optimal solution was nearly 20% due to 
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underperforming by 83% for the Keccak design. Like the Spartan targeted optimizations 

before it the one design that caused Iterative Elimination issues also exhibited the same 

strong interaction effects for all other algorithms as well. The performance gain realized 

when using Iterative Elimination was 16% and 15% for the Spartan 3 and Virtex 6 

devices respectively. The 9 option version achieved a 20% average performance increase 

for the Spartan 3 device and a 16% performance increase for the Virtex 6 device. The 

performance of the 5 option version is almost identical to the 9 option version for the 

Virtex 6 device, differing only when optimizing the Keccak design. This behavior can be 

attributed to the fact that the options that drove the optimization most were the options 

common to both option sets. This behavior does not show itself for the Batch Elimination 

algorithm due to the limits imposed on that algorithm by even simple interaction effects. 

The Orthogonal Array algorithm proved to result in performance between the 

Batch Elimination algorithm and Iterative Elimination algorithm in most cases. Targeting 

the Spartan 3 device the Orthogonal Array algorithm underperformed the optimal results 

by an average of 62%. The algorithm does reach only 7% below optimal for the JH 

design. With respect to the optimizations performed targeting the Virtex 6 device the 

Orthogonal Array algorithm underperforms the optimal result by 52% but with a median 

of only 25% achieving the optimal result for the JH design. While the Orthogonal Array 

algorithm is still susceptible to interaction effects it is less influenced by them than the 

Batch Elimination algorithm. If a stronger underlying orthogonal array was used to 

construct the algorithm interaction effects could in theory be further mitigated. The 

Orthogonal Array algorithm achieves a nearly 5% and 11% performance increase relative 
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to Least Effort optimization for the Spartan 3 and Virtex 6 devices respectfully. The 

largest drawbacks of the Orthogonal Array algorithm is the need to construct an entirely 

new orthogonal array for different sized option sets and the inability of the algorithm to 

optimize options that take on more than two states.     

 
 
 
Table 11 Performance Relative to Most Effort Spartan 3 

 

 
JH BLAKE Skein  Keccak 

Avg.  
%below 
opt 

Med.  
%below 
opt 

BE -68.5 -76.1 -82.3 -112.4 -84.8 -79.2 

IE -4.8 0.00 -67.7 0.0 -18.1 -2.4 

OA -7.7 -109.2 -110.8 -21.4 -62.3 -65.3 

 
 
 
 
Table 12 Performance Relative to Most Effort Virtex 6 

 

 
JH BLAKE Skein  Keccak 

Avg.  
%below 
opt 

Med.  
%below 
opt 

BE -36.3 -27.5 -128.0 -139.5 -82.8 -82.2 

IE 0.0 0.0 0.0 -83.2 -20.8 0.0 

OA 0.0 -27.2 -23.7 -157.5 -52.1 -25.4 

 
 
 
 
Table 13 Performance Relative to Least Effort Spartan 3 

 

 
ME BE IE OA BE9 IE9 

JH 16.8 5.3 16.0 15.5 11.4 21.9 

BLAKE 33.0 7.9 33.0 -3.0 7.9 33.0 

Skein 18.4 3.3 5.9 -1.9 11.9 13.3 

Keccak 10.8 -1.3 10.8 8.5 12.5 14.7 

Average 
%inc 

19.8 3.8 16.4 4.7 10.9 20.7 

Median %inc 17.6 4.3 13.4 3.2 11.6 18.3 
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Table 14 Performance Relative to Least Effort Virtex 6 

 

 
ME BE IE OA BE9 IE9 

JH 13.5 8.6 13.5 13.5 8.6 13.5 

BLAKE 36.4 26.4 36.4 26.5 15.1 36.4 

Skein 9.4 -2.6 9.4 7.2 -7.9 9.4 

Keccak 6.5 -2.6 1.1 -3.7 -3.4 6.9 

Average 
%inc 

16.4 7.5 15.1 10.9 3.1 16.6 

Median %inc 11.4 3.0 11.4 10.3 2.6 11.4 

 

 

 

 The enhanced ATHENa environment proved more than capable of outperforming 

the old ATHENa environment in all but one case investigated. When targeting the 

Spartan 3 device the new environment outperformed the legacy environment by an 

average of nearly 16%, achieving notable gains of 31% for the BLAKE design and 19% 

for the JH design. The results for the Virtex 6 device target was much closer, 

underperforming the old environment by an average of 2.3%. This result is misleading, 

skewed by the fact that the old environment outperformed the new one by 16% for the JH 

design but underperformed in every other design. 

The value added with the new ATHENa environment goes beyond just the 

performance achieved but also encompasses the optimization time needed to complete 

the benchmarking tasks. For the experiments conducted none of the fully optimized 

designs took longer than 13 parallel runs, easily realized using just two multicore 

workstations. Due to the parallel nature of the algorithms presented, if more compute 

resources were available more options could be investigate, or finer resolution Frequency 
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and Placement Searches could be performed, leading to even better performance in 

theory. Table 15 shows the maximum performance achieved by the new and old 

ATHENa for each targeted device. Figure 9 illustrates the performance of the systems 

targeting the Spartan 3 device while Figure 10 illustrates the performance of the systems 

targeting the Virtex 6 device. 

 

 

 
Table 15 Maximum Performance 

 

 
Saprtan3 Virtex 6 S3 GMU V6 GMU 

Keccak 19.1 26.5 9.8 24.3 

JH 42.5 54.4 23.1 70.7 

Skein 16.4 21.1 11.9 14.9 

Blake 33.0 44.3 2.5 43.5 

Average %inc. 27.8 36.6 11.8 38.4 

Median 26.1 35.4 10.9 33.9 
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Figure 9 New ATHENa vs. Old ATHENa: Max Performance Spartan 3 
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Figure 10 New ATHENa vs. Old ATHENa: Max Performance Virtex 6 

 
 
 
 

Algorithm chaining using the Frequency and Placement Search algorithms in 

conjunction with Iterative Elimination and Batch Elimination yielded the most optimized 

result in most cases. While these results are quite promising additional work needs to be 

done to determine the optimal way to chain the algorithms together. Different results can 

be achieved by running the optimization space exploration first and then executing the 

search algorithms. It is also possible to run a preliminary Placement Search as one of the 

options investigated in the optimization space exploration algorithms, resulting in yet a 

different optimized design. The difficulty in determining how to chain the search 

algorithms and optimization algorithms together is due the dependencies of each stage 

with the other. By using a different option set as input to the Frequency Search, a 

different result is obtained. The corollary is also true, by adjusting the input frequency 

used by Batch Elimination and Iterative Elimination, a different option set could result, 
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and most often does. These dependencies have not been fully explored yet and could lead 

to better insight into how these algorithms could be used together to greatest effect.  
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9. CONCLUSION 

Through the use of the ATHENa benchmarking and comparison environment 

extended with a distributed batch system and the addition of new optimization space 

exploration algorithms the efficiency of benchmarking and comparison tasks can be 

greatly increased.  

Using the Condor distributed batch system allows for the scaling of the ATHENa 

environment to utilize as many compute nodes as desired. By increasing the number of 

benchmarking subtasks that can be executed in parallel the time to complete most 

benchmarking tasks decreases significantly. While decreased execution time is a 

welcome addition it also aids in more thorough benchmarking and optimization of 

candidate algorithms by allowing users to test and optimize using more options than 

feasible in a serial or multiprocessor system. Condor is especially suited to this task 

allowing heterogeneous compute resources to be pooled into a high throughput 

computing cluster. This along with other features of Condor allow users of the system to 

utilize any available compute resource that supports their desired design tools, even fairly 

sharing resources that are owned and used by other users.     

In addition to adopting the Condor distributed batch system, a graphical front-end 

was developed for ATHENa to aid in monitoring and managing the tasks executing on 

the system. By giving a user a better picture of the available resources and control over 
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the execution of the jobs executing on these resources users can more easily and 

efficiently use the system. The interface allows users to view all of the current compute 

nodes available, view all running and queued tasks, and run, pause, resume and cancel 

any task in the system. Beyond the monitoring and management features a job 

submission wizard is also included to aid in the creation of new job submissions. The 

wizard allows a user to build a custom job submission from pre-defined building blocks 

that include tool option sets, optimization algorithms, optimization targets and 

algorithms. The addition of the graphical front-end lowers the learning curve for users of 

the system and increases the overall usability of ATHENa. 

The last addition to the ATHENa environment and the focus of most of the 

research are the new optimization space exploration algorithms. In total five new 

algorithms were designed for use with the enhanced ATHENa environment. Frequency 

Search and Placement Search are parallel implementations of two searches that existed in 

the original ATHENa. By increasing the parallelism of these two searches both become 

much more efficient as a part of the benchmarking toolset. Frequency Search can be 

accomplished in four parallel steps, while Placement Search can be accomplished in just 

two. While this is impressive it must be noted that at least eleven compute resources must 

be available to achieve these results. If run on a single compute resource both searches 

require twenty one sequential runs to complete.  

Batch Elimination was the first completely new algorithm introduced and was 

shown to achieve moderate success as an optimization algorithm for the ATHENa 

environment. The algorithm can be completed in as few as two parallel steps with n 
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resources where n is the number of options investigated in the optimization. If only one 

compute resource is available Batch Elimination can complete in n+2 sequential runs. 

This balance of parallel and sequential runtime makes Batch Elimination a good 

algorithm to use in a resource constrained environment. While Batch Elimination does 

not guarantee near optimal results, the results are often better than a naïve Least Effort 

optimization. It is also a good choice for when it is unclear what state an option should 

take on for a particular optimization target. The largest drawback of Batch Elimination is 

the inability of the algorithm to handle what are known as interaction effects, or when an 

option changes behavior in the presence of another option or set of options. Batch 

Elimination only tests options in isolation so interaction effects are unaccounted for. 

Because of the interaction effect liability of Batch Elimination it is recommended for use 

with fewer options or options known not to interact so as to mitigate these effects. 

Iterative Elimination is a direct evolution of the Batch Elimination algorithm 

modified to handle basic interaction effects. Iterative Elimination chooses only one 

option per step and then adds that option to the baseline used for the next step. This 

allows each option to be considered with respect to every option chosen in previous steps. 

The removal of interaction effects makes Iterative Elimination the most effective 

optimization algorithm added to the ATHENa environment. In almost all cases Iterative 

Elimination reaches an optimal or near optimal option set. While the performance of 

Iterative Elimination with respect to optimization is the best, the runtime is the slowest of 

the algorithms presented. Iterative Elimination requires at least two parallel runs of the 

system to complete but can require as many as n where n is the number of options being 
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investigated for the optimization. Rarely does the algorithm require the worst case 

runtime, in fact it was never shown to require more than seven parallel runs in the 

experiments conducted and required less than 4 on average. The largest drawback of the 

algorithm is the sequential execution time if only one compute resource is available. If 

required to run serially, the minimum runs required increases to n+n-1. The maximum 

runs required increases to             This serial execution time means that it is unsuited 

for single resource or low resource environments if the number of options investigated is   

too large.  

The Orthogonal Array optimization algorithm is a departure from the two 

previously described algorithms. It utilizes a mathematical construct called an orthogonal 

array to determine option sets for each run in an optimization. The orthogonal array has 

properties that when used to determine the option states of options in an optimization it 

can approximate a full Most Effort optimization. The Orthogonal Array algorithm as 

implemented for ATHENa requires only two parallel runs to complete, and at most nine 

runs in serial striking a good sequential parallel runtime balance. As shown in the 

experimental results the Orthogonal Array algorithm was the least consistent algorithm 

providing optimal and near optimal results in a few cases while also underperforming 

Least Effort optimization in a few cases. This variation in results can be attributed to the 

fact that a strength two orthogonal array was used for this implementation. The higher the 

strength orthogonal array the better approximation of a Most Effort optimization and thus 

optimal result it achieves. This better optimization performance comes at a cost however, 

increasing the number of runs required for optimization and requiring a much more 
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complex underlying orthogonal array. The main drawback of this optimization algorithm 

is the fact that it cannot be adapted easily to handle options that have more than two 

states. This severely limits the usefulness of the algorithm for more comprehensive 

benchmarking and comparison tasks.  

It was shown in the experimental results that by chaining together optimization 

algorithms like Iterative Elimination, Frequency Search, and Placement Search together 

that optimization performance can be increased greatly. In almost every case the most 

optimized result from the enhanced ATHENa environment outperformed the results 

generated by the old ATHENa environment utilizing the GMU_Optimization_1 

optimization technique. While the enhanced ATHENa did require more sequential runs to 

achieve this improved performance, the parallel runtime utilizing sixteen compute 

resources realized as two eight core workstations was far less. While chaining 

optimization techniques proved beneficial, more work and research needs to be done to 

determine the best way to chain the optimization techniques together. The method used in 

the experiments sequentially applied Frequency Search followed by either Batch 

Elimination or Iterative Elimination followed by Placement Search. Vastly different 

results can be achieved by rearranging the order of the algorithms. It should also be noted 

that the Frequency Search and Placement Search algorithms presented only work for the 

Xilinx tool chain and would need to be adapted to work properly for Altera design tools 

or other tool chains. 

While the new algorithms and distributed batch system greatly increased the 

efficiency and optimization performance of ATHENa, the enhanced environment can be 



82 
 

deployed in such a way that it is backwards compatible with the old ATHENa 

environment. Job submissions can be generated that can run benchmarks with the old 

ATHENa scripts on an execute host. This is invaluable for verifying old results and 

utilizing the more serial runtime friendly optimization algorithms developed for the old 

environment. 

It was shown through the four case studies that the enhanced ATHENa 

environment can greatly aid in the benchmarking and comparison of algorithms 

implemented in hardware description languages and targeted to FPGAs. The parallelism 

offered by the enhanced environment decreases the overall runtime and allows larger 

option spaces to be explored leading to more thorough benchmarking of algorithms. The 

optimization space exploration algorithms further aid the benchmarking process by 

allowing near optimal optimization of the algorithms in the presence of large option 

search spaces where a Most Effort optimization is infeasible. By increasing both the 

efficiency and performance of ATHENa while also adding features to increase usability 

the enhanced ATHENa environment is positioned to effectively increase the quality of 

benchmarking and comparison tasks that are of great interest to the cryptographic 

engineering community as algorithm competitions gain widespread acceptance and use.  
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APPENDIX A: CONFIGURATION FILES 

Condor Submit File 
 
Executable = ATHENaLauncher.sh 
Universe = vanilla 
Output = ATHENa.$(cluster).out 
Log = ATHENa.log 
Error = ATHENa.$(cluster).err 
should_transfer_files = YES 
when_to_transfer_output = ON_EXIT 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.0" 
transfer_input_files = design.config.0.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.1" 
transfer_input_files = design.config.1.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.2" 
transfer_input_files = design.config.2.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.3" 
transfer_input_files = design.config.3.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
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Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.4" 
transfer_input_files = design.config.4.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.5" 
transfer_input_files = design.config.5.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.6" 
transfer_input_files = design.config.6.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.7" 
transfer_input_files = design.config.7.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.8" 
transfer_input_files = design.config.8.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
environment = "Process=$(Process) Cluster=$(cluster) 
Name=options.FPLEXLES_balancedBaseName=options.FPLEXLES_balancedNameDC
=design.config.9" 
transfer_input_files = design.config.9.txt, options.FPLEXLES_balanced.txt, 
rename_workspace.py, single_run.txt 
arguments = -new 
Queue 
 



85 
 

ATHENa Design Config 
 
# ============================================= 
# ============================================= 
# Global Settings 
# ============================================= 
# ============================================= 
[Global Settings] 
# work directory, used as a root for all result directories 
 
WORK_DIR = 140_2 
 
# directory containing synthesizable source files for the project 
SOURCE_DIR = examples/keccak 
 
# A file list containing list of files in the order suitable for synthesis and implementation 
# low level modules first, top level entity last 
SOURCE_LIST_FILE = source_list.txt 
 
# project name 
# it will be used in the names of result directories 
PROJECT_NAME = keccak 
 
 
# ============================================= 
# ============================================= 
# Synthesis and Implementation Settings 
# ============================================= 
# ============================================= 
[Synthesis and Implementation Settings] 
# name of top level entity 
TOP_LEVEL_ENTITY =  keccak_top_ppl 
 
# name of top level architecture 
#TOP_LEVEL_ARCH = main 
TOP_LEVEL_ARCH = structure 
 
# name of clock net 
CLOCK_NET = clk 
 
#formula for latency 
LATENCY = 15 * TCLK 
 
#formula for throughput 
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THROUGHPUT =1088 /(24*TCLK) 
 
# OPTIMIZATION_TARGET = speed | area | balanced 
OPTIMIZATION_TARGET = balanced 
 
OPTIONS = FPLEXLES 
 
 
APPLICATION = exhaustive_search 
 
TRIM_MODE = zip 
 
# ============================================================= 
# ============================================================= 
 
[spartan3] 
req_syn_freq=102 
req_imp_freq=102 
FPGA_DEVICES=xc3s1000fg676-5 
 
 

ATHENa Option File 
 
[DESIGN SOFTWARE] 
XILINX_SYNTHESIS_TOOL = XST 
[XILINX DESIGN SOFTWARE OPTIONS] 
xilinx_par_opt = -ol[high] -xe[c] 
xilinx_trace_opt = -v[3] -a[]  
xilinx_map_opt = -logic_opt[on] -ol[high] -xe[c] -pr[b] -timing[] 
xilinx_xst_opt = -opt_level[2] -opt_mode[speed] -netlist_hierarchy[rebuilt] -
cross_clock_analysis[yes] 
xilinx_synplify_opt = []  
xilinx_ngdbuild_opt = [] 
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APPENDIX B: USERS GUIDE 

This is a simple user’s guide to the enhanced ATHENa benchmarking tool. This 

guide assumes that the requisite software is already installed on the system and that 

Condor is configured properly. A separate manual describes the setup and installation of 

the entire enhanced ATHENa in more detail.  

GUI 
The first step from a user’s perspective is to launch the ATHENa GUI. This is 

done by typing: “python Submitter.py” from the command line in the directory that the 

ATHENa client application resides in. Once the GUI has been launched use the mouse to 

click the bottom icon on the set of right hand icons. 

 

 

 

Figure 11 Configuration Wizard Icon 
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This launches the Configuration Wizard. The first page of the configuration wizard 

contains fields to set the name of the project, the source list file, the source directory and 

the work directory for the benchmarking task that you are configuring. Subsequent pages 

of the Wizard contain various settings for the project. When configuring the 

benchmarking tasks with the Configuration Wizard there are still some manual step 

involved at this time. When selecting the application that is to be executed there are 

additional configuration files that need to be configured and used that are not controlled 

by the Configuration Wizard. If the application selected is single_run, an option file 

representing the tool options to be used must be created with the name 

“options.[OPTIONS]_[OPTIMIZATION_TARGET}.txt” where [OPTIONS] and 

[OPTIMIZATION_TARGET] are replaced by the selections from the Configuration 

Wizard for those fields. The end result should be a file named something like 

“options.default_balanced.txt”.  The format of the file should follow the format in 

Appendix A for ATHENa Options files. If the application is any of placement_search, 

exhaustive_search, batch_elimination, iterative_elimination, OA or frequency_search, 

then two files need to be edited and configured. The first file that needs to be configured 

is a file named “exhaustive_search.txt”. This file contains two entries, 

EXHAUSTIVE_SEARCH_STRATEGY, and TYPE. The 

EXHAUSTIVE_SEARCH_STRATEGY should be set to an ATHENa Option filename 

that you wish to use for the optimization being used. The TYPE should be set to the name 

of the optimization you wish to execute. To run an exhaustive search, TYPE should be 
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set to all. For all others it should be set to the names specified previously. As with the 

single_run application the ATHENa Option file needs to be configured as shown in 

Appendix A.  

Once a configuration has been created and saved, it is now time to execute the 

configuration. This is done by clicking the submissions icon from the left and then 

clicking the submit icon from the top row as shown in the diagram below. 

 

 

 

Figure 12 Job Submission Process 
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Once the submission icon is pressed a dialog appears that browses the local 

directory. Select the newly created configuration file from the file listing and the Client 

will extract submit the job for processing. When this occurs a directory will be created 

that corresponds to the major job id denoted as “run_[major job id]/”. This directory will 

contain the results of the job when the job completes. Two files will be contained within 

this directory that contain the options used and the results, option_summary.csv, and 

report_summary.csv respectively. 

 

  

 



91 
 

REFERENCES 



92 
 

REFERENCES 

[1] K. Gaj, J. Kaps, V.Amirineni, M. Rogawski, E.Homsirikamol, B. Brewster, 
“ATHENa – Automated Tool for Hardware EvaluatioN: Toward Fair and 

Comprehensive Benchmarking of Cryptographic Hardware using FPGAs,” 2010 
International Conference on Field Programmable Logic and Applications, 2010. 

 
[2] D. Bernstein and T. Lange (editors). eBACS: ECRYPT Benchmarking of 

Cryptographic Systems. http://bench.cr.yp.to, accessed 12 March 2012. 
 
[3] D. Bernstein and T. Lange, “ECRYPT Benchmarking of Cryptographic 

 Systems,” CHES 2009 Workshop Benchmarking Cryptographic Hardware, 2009 
 
[4] S.Triantafyllis, M.Vachharajani, N. Vachharajani, D. I. August, “Compiler 

Optimization Space Exploration,” International Symposium on Code Generation 
and Optimization, 2003. 

 
[5] D. Thain, T. Tannenbaum, and M. Livny, "Distributed Computing in Practice: The 

Condor Experience" Concurrency and Computation: Practice and Experience, 
Vol. 17, No. 2-4, pages 323-356, February-April, 2005. 

 
[6] University of Wisconsin Computer Science,  The Condor Project. 

http://research.cs.wisc.edu/condor/ (accessed March 21, 2012). 
 
[7] R. Raman, M. Livny, and M. Solomon, "Matchmaking: Distributed Resource 

Management for High Throughput Computing", Seventh IEEE International 

Symposium on High Performance Distributed Computing, July 28-31, 1998, 
Chicago, IL. 

 
[8] Z. Pan, and R. Eigenmann, “Fast and effective Orchestration of Compiler 

Optimizations for Automatic Performance Tuning,”International Symposium on 
Code Generation and Optimization, 2006. 

 
[9] R.P.J. Pinkers, P.M.W Knijnenburg, M. Haneda, and H.A.G. Wijshoff, “Statistical 

Selection of Compiler Options,”The IEEE Computer Society’s 12th Annual 
International Symposium on Modeling, Analysis, and Simulation of Computer 
and Telecommunication Systems, 2004. 

 
[10] P.M.W. Knijnenburg, M. Haneda, and H.A.G. Wijshoff, “Automatic Selection of 

Compiler Options using Non-Parametric Inferential Statistics,”14th International 
Conference on Parallel Architectures and Compilation Techniques, 2005. 



93 
 

 
[11] K.Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. Sharif, “Comprehensive 

Evaluation of High-Speed and Medium Speed Implementations of Five SHA-3 

Finalists Using Xilinx and Altera FPGAs,”The 3rd SHA-3 Candidate Conference, 
Washington, D.C., March 22-23, 2012. 

 
[12] Cryptographic Engineering Research Group, GMU Source Codes. 

http://cryptography.gmu.edu/athena/index.php?id=source_codes (accessed March 
4, 2012). 

 
 
   



94 
 

CURRICULUM VITAE 

Benjamin Brewster graduated from Centreville School, Centreville, Virginia, in 2001. He 
received his Bachelor of Science from West Virginia University in 2005. He is employed 
as a software engineer with seven years of experience in the defense industry. 
 


