Non-normal form of abstract evolution equations of hyperbolic type

Noboru OKAZAWA and Kentarou YOSHII

Department of Mathematics, Tokyo University of Science

Set I := [0, T]. Let $\{A(t); t \in I\}$ be a family of closed linear operators in a complex Hilbert space X and $\{B(t); t \in I\}$ a family of positive-definite selfadjoint operators in X. Then we consider the abstract Cauchy problem for linear evolution equations of the form

(ACP)
$$\begin{cases} B(t)(d/dt)u(t) + A(t)u(t) = f(t), & t \in I, \\ u(0) = u_0. \end{cases}$$

Here the initial value u_0 is selected as in Theorem 2 (see below).

First we introduce our assumption on $\{B(t); t \in I\}$.

Assumption on $\{B(t)\}$. The family $\{B(t)\}$ satisfies the following three conditions: (B1) For $t \in I$, B(t) is positive-definite selfadjoint in X with

$$||w||_{X_t} := ||B(t)w|| \ge ||w||$$
 for $w \in X_t := D(B(t)), t \in I$.

(B2) For $t \in I$, $X_0 = X_t$ and $B(\cdot) \in C_*(I; L(X_0, X))$, where the subscript $_*$ is used to refer the strong operator topology in $L(X_0, X)$. (for this notation see Kato [3]).

(B3) There exists a nonnegative function $\gamma \in L^1(I)$ such that

$$\left| \|w\|_{X_t} - \|w\|_{X_s} \right| \le \left| \int_s^t \gamma(r) \, dr \right| \|w\|_{X_s}, \quad w \in X_0, \ t, s \in I.$$

To introduce our assumption on $\{A(t); t \in I\}$ we need one more family $\{S(t); t \in I\}$ of auxiliary operators in X.

Assumption on $\{S(t)\}$. Let $\{S(t)\}$ be a family of closed linear operators satisfying the following four conditions:

(S1) For $t \in I$, B(t)S(t) is also positive-definite selfadjoint in X with

$$\operatorname{Re}\left(B_n(t)u, S(t)u\right) \ge \|B_n(t)u\|^2, \quad u \in D(S(t)), \ t \in I, \ n \in \mathbb{N},$$

where $B_n(t) := B(t)(1 + n^{-1}B(t))^{-1}$ $(n \in \mathbb{N})$ is the Yosida approximation to B(t).

Then $Y_t := D((B(t)S(t))^{1/2})$ forms a Hilbert space with norm

$$||u||_{Y_t} := ||(B(t)S(t))^{1/2}u||.$$

It should be noted that conditions (B1) and (S1) yield that

$$D(B(t)S(t)) \subset D(S(t)) \subset Y_t = D((B(t)S(t))^{1/2}) \subset X_t = D(B(t))$$

and

$$(B(t)u, S(t)u) \ge ||B(t)u||^2, \quad u \in D(S(t)) \subset D(B(t)), \ t \in I.$$

(S2) Let $t \in I$ and $g \in X$. Then for any $\varepsilon \in (0,1]$ there exists $u_{\varepsilon}(t) \in D(S(t))$ such that

(1)
$$B(t)u_{\varepsilon}(t) + \varepsilon S(t)u_{\varepsilon}(t) = g.$$

It follows from conditions (**B1**), (**S1**) and (**S2**) that $\{B(t)+\varepsilon S(t); \varepsilon \in (0,1]\}$ is a family of **semi-Fredholm operators** in X (see Kato [2, Section IV.5]). Namely, $B(t) + \varepsilon S(t)$ is closed and invertible with closed range. Thus the index of $B(t) + \varepsilon S(t)$ is constant for $\varepsilon \in (0,1]$. Therefore it suffices to assume that (1) holds for some $\varepsilon_0 \in (0,1]$.

(S3) For $t \in I$, $Y_0 = Y_t$ and $(B(\cdot)S(\cdot))^{1/2} \in C_*(I; L(Y_0, X))$.

(S4) There exists a nonnegative function $\sigma \in L^1(I)$ such that $\sigma \geq \gamma$ and

$$\left| \|v\|_{Y_t} - \|v\|_{Y_s} \right| \le \left| \int_s^t \sigma(r) \, dr \right| \|v\|_{Y_s}, \quad v \in Y_0, \ t, s \in I.$$

Remark 1. The condition (**B3**) and (**S4**) imply that $||w||_t$ and $||u||_{Y_t}$ are (uniformly) absolute continuous in $t \in I$, respectively. These conditions are equivalent to the following conditions

(B3)' There exists a nonnegative function $\gamma' \in L^1(I)$ such that

$$||w||_{X_t} \le \exp\left(\left|\int_s^t \gamma'(r) \, dr\right|\right) ||w||_{X_s}, \quad w \in X_0, \ t, s \in I.$$

 $(\mathbf{S4})'$ There exists a nonnegative function $\sigma' \in L^1(I)$ such that $\sigma' \geq \gamma'$ and

$$\|v\|_{Y_t} \le \exp\left(\left|\int_s^t \sigma'(r) \, dr\right|\right) \|v\|_{Y_s}, \quad v \in Y_0, \ t, s \in I.$$

This type of expression are found in Kato [3].

Let $\{B(t)\}$ and $\{S(t)\}$ be as defined above. Then we may introduce the following **Assumption on** $\{A(t)\}$. The family $\{A(t)\}$ satisfies the following four conditions: (A1) $Y_t \subset D(A(t)) \subset X_t, t \in I$.

(A2) There exists a constant $\alpha \geq 0$ such that

$$\left|\operatorname{Re}\left(A(t)v, B(t)v\right)\right| \le \alpha \|B(t)v\|^2, \quad v \in D(A(t)), \ t \in I.$$

(A3) There exists a constant $\beta \geq \alpha$ such that for $u \in D(S(t)) \subset D((B(t)S(t))^{1/2})$,

$$|\operatorname{Re}(A(t)u, S(t)u)| \le \beta(B(t)u, S(t)u) = \beta ||(B(t)S(t))^{1/2}u||^2, \quad t \in I$$

(A4) $A(\cdot) \in C_*(I; L(Y_0, X)).$

If $\{A(t)\}$ satisfies conditions (A1)–(A4), then $\{-A(t)\}$ also does. This is the reason why we employ the term, hyperbolic type, when we refer our evolution equations.

Theorem 1. Suppose that Assumptions on $\{B(t)\}$, $\{A(t)\}$ and $\{S(t)\}$ are satisfied. Then there exists a unique evolution operator $\{U(t,s); (t,s) \in \Delta_+\}$ for (ACP), where $\Delta_+ :=$ $\{(t,s); 0 \le s \le t \le T\}$, having the following properties: (i) $U(t,s)X_0 \subset X_0$ and $U(\cdot,\cdot)$ is strongly continuous on Δ_+ to $L(X_0)$, with

$$\|U(t,s)\|_{L(X_s,X_t)} \le \exp\left(\int_s^t \widetilde{\alpha}(r) \, dr\right), \quad (t,s) \in \Delta_+, \\\|U(t,s)\|_{L(X_0)} \le \exp\left(2\int_0^s \gamma(r) \, dr\right) \exp\left(\int_s^t \left(\widetilde{\alpha}(r) + \gamma(r)\right) \, dr\right), \quad (t,s) \in \Delta_+,$$

where $\widetilde{\alpha}(r) := \alpha + \gamma(r)$.

(ii) U(t,r)U(r,s) = U(t,s) on Δ_+ and U(s,s) = 1 (the identity on X_0).

(iii) $U(t,s)Y_0 \subset Y_0$ and $U(\cdot, \cdot)$ is strongly continuous on Δ_+ to $L(Y_0)$, with

$$\|U(t,s)\|_{L(Y_s,Y_t)} \le \exp\left(\int_s^t \widetilde{\beta}(r) \, dr\right), \quad (t,s) \in \Delta_+, \\\|U(t,s)\|_{L(Y_0)} \le \exp\left(2\int_0^s \sigma(r) \, dr\right) \exp\left(\int_s^t \left(\widetilde{\beta}(r) + \sigma(r)\right) \, dr\right), \quad (t,s) \in \Delta_+,$$

where $\widetilde{\beta}(r) := \beta + \sigma(r)$.

Furthermore, let $v \in Y_0$. Then $U(\cdot, \cdot)v \in C^1(\Delta_+; X_0)$, with $(\mathbf{iv}) \quad B(t)(\partial/\partial t)U(t,s)v = -A(t)U(t,s)v, \quad (t,s) \in \Delta_+, and$ $(\mathbf{v}) \quad (\partial/\partial s)U(t,s)v = U(t,s)B(s)^{-1}A(s)v, \quad (t,s) \in \Delta_+.$

The equation in (ACP) is naturally interpreted if the solution has an additional property $u(\cdot) \in C(I; Y_0)$. In fact, it is guaranteed by condition (A1) that $u(t) \in Y_0 \subset D(A(t))$ for every $t \in I$.

Theorem 2. Let $\{U(t,s)\}$ be the evolution operator for (ACP) as in Theorem 1 above. For $u_0 \in Y_0$ and $f(\cdot) \in C(I; X)$ satisfying $B(\cdot)^{-1}f(\cdot) \in L^1(I; Y_0)$, define $u(\cdot)$ as

$$u(t) := U(t,0)u_0 + \int_0^t U(t,s)B(s)^{-1}f(s)\,ds.$$

Then (ACP) has a unique (classical) solution

$$u(\cdot) \in C^1(I; X_0) \cap C(I; Y_0).$$

Remark 2. Theorems 1 and 2 are nothing but generalizations of the corresponding theorems in [4].

References

- H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations", Springer, New York, 2011.
- [2] T. Kato, "Perturbation Theory for Linear Operators", Grundlehren der mathematischen Wissenschaften 132, Springer-Verlag, Berlin and New York, 1966; 2nd ed., 1976.
- [3] T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane [Fermi Lectures], Accad. Naz. Lincei, Scuola Normale Superiore, Pisa, 1985.
- [4] N. Okazawa and K. Yoshii, Linear Schrödinger evolution equations with moving Coulomb singularities, J. Differential Equations 254 (2013), 2964–2999.