Non-normal form of abstract evolution equations of hyperbolic type

Noboru OKAZAWA and Kentarou YOSHII
Department of Mathematics, Tokyo University of Science

Set $I:=[0, T]$. Let $\{A(t) ; t \in I\}$ be a family of closed linear operators in a complex Hilbert space X and $\{B(t) ; t \in I\}$ a family of positive-definite selfadjoint operators in X. Then we consider the abstract Cauchy problem for linear evolution equations of the form

$$
\left\{\begin{array}{l}
B(t)(d / d t) u(t)+A(t) u(t)=f(t), \quad t \in I \tag{ACP}\\
u(0)=u_{0}
\end{array}\right.
$$

Here the initial value u_{0} is selected as in Theorem 2 (see below).
First we introduce our assumption on $\{B(t) ; t \in I\}$.
Assumption on $\{B(t)\}$. The family $\{B(t)\}$ satisfies the following three conditions:
(B1) For $t \in I, B(t)$ is positive-definite selfadjoint in X with

$$
\|w\|_{X_{t}}:=\|B(t) w\| \geq\|w\| \quad \text { for } w \in X_{t}:=D(B(t)), t \in I .
$$

(B2) For $t \in I, X_{0}=X_{t}$ and $B(\cdot) \in C_{*}\left(I ; L\left(X_{0}, X\right)\right)$, where the subscript ${ }_{*}$ is used to refer the strong operator topology in $L\left(X_{0}, X\right)$. (for this notation see Kato [3]).
(B3) There exists a nonnegative function $\gamma \in L^{1}(I)$ such that

$$
\left|\|w\|_{X_{t}}-\|w\|_{X_{s}}\right| \leq\left|\int_{s}^{t} \gamma(r) d r\right|\|w\|_{X_{s}}, \quad w \in X_{0}, t, s \in I .
$$

To introduce our assumption on $\{A(t) ; t \in I\}$ we need one more family $\{S(t) ; t \in I\}$ of auxiliary operators in X.
Assumption on $\{S(t)\}$. Let $\{S(t)\}$ be a family of closed linear operators satisfying the following four conditions:
(S1) For $t \in I, B(t) S(t)$ is also positive-definite selfadjoint in X with

$$
\operatorname{Re}\left(B_{n}(t) u, S(t) u\right) \geq\left\|B_{n}(t) u\right\|^{2}, \quad u \in D(S(t)), t \in I, n \in \mathbb{N},
$$

where $B_{n}(t):=B(t)\left(1+n^{-1} B(t)\right)^{-1}(n \in \mathbb{N})$ is the Yosida approximation to $B(t)$.
Then $Y_{t}:=D\left((B(t) S(t))^{1 / 2}\right)$ forms a Hilbert space with norm

$$
\|u\|_{Y_{t}}:=\left\|(B(t) S(t))^{1 / 2} u\right\| .
$$

It should be noted that conditions (B1) and (S1) yield that

$$
D(B(t) S(t)) \subset D(S(t)) \subset Y_{t}=D\left((B(t) S(t))^{1 / 2}\right) \subset X_{t}=D(B(t))
$$

and

$$
(B(t) u, S(t) u) \geq\|B(t) u\|^{2}, \quad u \in D(S(t)) \subset D(B(t)), t \in I .
$$

(S2) Let $t \in I$ and $g \in X$. Then for any $\varepsilon \in(0,1]$ there exists $u_{\varepsilon}(t) \in D(S(t))$ such that

$$
\begin{equation*}
B(t) u_{\varepsilon}(t)+\varepsilon S(t) u_{\varepsilon}(t)=g . \tag{1}
\end{equation*}
$$

It follows from conditions (B1), (S1) and (S2) that $\{B(t)+\varepsilon S(t) ; \varepsilon \in(0,1]\}$ is a family of semi-Fredholm operators in X (see Kato [2, Section IV.5]). Namely, $B(t)+\varepsilon S(t)$ is closed and invertible with closed range. Thus the index of $B(t)+\varepsilon S(t)$ is constant for $\varepsilon \in(0,1]$. Therefore it suffices to assume that (1) holds for some $\varepsilon_{0} \in(0,1]$.
(S3) For $t \in I, Y_{0}=Y_{t}$ and $(B(\cdot) S(\cdot))^{1 / 2} \in C_{*}\left(I ; L\left(Y_{0}, X\right)\right)$.
(S4) There exists a nonnegative function $\sigma \in L^{1}(I)$ such that $\sigma \geq \gamma$ and

$$
\left|\|v\|_{Y_{t}}-\|v\|_{Y_{s}}\right| \leq\left|\int_{s}^{t} \sigma(r) d r\right|\|v\|_{Y_{s}}, \quad v \in Y_{0}, t, s \in I .
$$

Remark 1. The condition (B3) and (S4) imply that $\|w\|_{t}$ and $\|u\|_{Y_{t}}$ are (uniformly) absolute continuous in $t \in I$, respectively. These conditions are equivalent to the following conditions
(B3) ${ }^{\prime}$ There exists a nonnegative function $\gamma^{\prime} \in L^{1}(I)$ such that

$$
\|w\|_{X_{t}} \leq \exp \left(\left|\int_{s}^{t} \gamma^{\prime}(r) d r\right|\right)\|w\|_{X_{s}}, \quad w \in X_{0}, t, s \in I
$$

$(\mathbf{S} 4)^{\prime}$ There exists a nonnegative function $\sigma^{\prime} \in L^{1}(I)$ such that $\sigma^{\prime} \geq \gamma^{\prime}$ and

$$
\|v\|_{Y_{t}} \leq \exp \left(\left|\int_{s}^{t} \sigma^{\prime}(r) d r\right|\right)\|v\|_{Y_{s}}, \quad v \in Y_{0}, t, s \in I
$$

This type of expression are found in Kato [3].
Let $\{B(t)\}$ and $\{S(t)\}$ be as defined above. Then we may introduce the following
Assumption on $\{A(t)\}$. The family $\{A(t)\}$ satisfies the following four conditions:
$\left(\right.$ A1) $Y_{t} \subset D(A(t)) \subset X_{t}, t \in I$.
(A2) There exists a constant $\alpha \geq 0$ such that

$$
|\operatorname{Re}(A(t) v, B(t) v)| \leq \alpha\|B(t) v\|^{2}, \quad v \in D(A(t)), t \in I
$$

(A3) There exists a constant $\beta \geq \alpha$ such that for $u \in D(S(t)) \subset D\left((B(t) S(t))^{1 / 2}\right)$,

$$
|\operatorname{Re}(A(t) u, S(t) u)| \leq \beta(B(t) u, S(t) u)=\beta\left\|(B(t) S(t))^{1 / 2} u\right\|^{2}, \quad t \in I
$$

(A4) $A(\cdot) \in C_{*}\left(I ; L\left(Y_{0}, X\right)\right)$.
If $\{A(t)\}$ satisfies conditions (A1)-(A4), then $\{-A(t)\}$ also does. This is the reason why we employ the term, hyperbolic type, when we refer our evolution equations.

Theorem 1. Suppose that Assumptions on $\{B(t)\},\{A(t)\}$ and $\{S(t)\}$ are satisfied. Then there exists a unique evolution operator $\left\{U(t, s) ;(t, s) \in \Delta_{+}\right\}$for (ACP), where $\Delta_{+}:=$ $\{(t, s) ; 0 \leq s \leq t \leq T\}$, having the following properties:
(i) $U(t, s) X_{0} \subset X_{0}$ and $U(\cdot, \cdot)$ is strongly continuous on Δ_{+}to $L\left(X_{0}\right)$, with

$$
\begin{aligned}
&\|U(t, s)\|_{L\left(X s, X_{t}\right)} \leq \exp \left(\int_{s}^{t} \widetilde{\alpha}(r) d r\right), \quad(t, s) \in \Delta_{+} \\
&\|U(t, s)\|_{L\left(X_{0}\right)} \leq \exp \left(2 \int_{0}^{s} \gamma(r) d r\right) \exp \left(\int_{s}^{t}(\widetilde{\alpha}(r)+\gamma(r)) d r\right), \quad(t, s) \in \Delta_{+}
\end{aligned}
$$

where $\widetilde{\alpha}(r):=\alpha+\gamma(r)$.
(ii) $U(t, r) U(r, s)=U(t, s)$ on Δ_{+}and $U(s, s)=1$ (the identity on $\left.X_{0}\right)$.
(iii) $U(t, s) Y_{0} \subset Y_{0}$ and $U(\cdot, \cdot)$ is strongly continuous on Δ_{+}to $L\left(Y_{0}\right)$, with

$$
\begin{aligned}
\|U(t, s)\|_{L\left(Y_{s}, Y_{t}\right)} & \leq \exp \left(\int_{s}^{t} \widetilde{\beta}(r) d r\right), \quad(t, s) \in \Delta_{+} \\
\|U(t, s)\|_{L\left(Y_{0}\right)} & \leq \exp \left(2 \int_{0}^{s} \sigma(r) d r\right) \exp \left(\int_{s}^{t}(\widetilde{\beta}(r)+\sigma(r)) d r\right), \quad(t, s) \in \Delta_{+}
\end{aligned}
$$

where $\widetilde{\beta}(r):=\beta+\sigma(r)$.
Furthermore, let $v \in Y_{0}$. Then $U(\cdot, \cdot) v \in C^{1}\left(\Delta_{+} ; X_{0}\right)$, with
(iv) $B(t)(\partial / \partial t) U(t, s) v=-A(t) U(t, s) v, \quad(t, s) \in \Delta_{+}$, and
(v) $(\partial / \partial s) U(t, s) v=U(t, s) B(s)^{-1} A(s) v, \quad(t, s) \in \Delta_{+}$.

The equation in (ACP) is naturally interpreted if the solution has an additional property $u(\cdot) \in C\left(I ; Y_{0}\right)$. In fact, it is guaranteed by condition (A1) that $u(t) \in Y_{0} \subset D(A(t))$ for every $t \in I$.

Theorem 2. Let $\{U(t, s)\}$ be the evolution operator for (ACP) as in Theorem 1 above. For $u_{0} \in Y_{0}$ and $f(\cdot) \in C(I ; X)$ satisfying $B(\cdot)^{-1} f(\cdot) \in L^{1}\left(I ; Y_{0}\right)$, define $u(\cdot)$ as

$$
u(t):=U(t, 0) u_{0}+\int_{0}^{t} U(t, s) B(s)^{-1} f(s) d s
$$

Then (ACP) has a unique (classical) solution

$$
u(\cdot) \in C^{1}\left(I ; X_{0}\right) \cap C\left(I ; Y_{0}\right) .
$$

Remark 2. Theorems 1 and 2 are nothing but generalizations of the corresponding theorems in [4].

References

[1] H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations", Springer, New York, 2011.
[2] T. Kato, "Perturbation Theory for Linear Operators", Grundlehren der mathematischen Wissenschaften 132, Springer-Verlag, Berlin and New York, 1966; 2nd ed., 1976.
[3] T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane [Fermi Lectures], Accad. Naz. Lincei, Scuola Normale Superiore, Pisa, 1985.
[4] N. Okazawa and K. Yoshii, Linear Schrödinger evolution equations with moving Coulomb singularities, J. Differential Equations 254 (2013), 2964-2999.

