Name: \qquad

Math 150 Practice Final B Spring 2010

1. Carry out the following conversions.
a. Write 126.2° in radians to the nearest 0.01 .
b. Write 1.23 radians in degrees, minutes, seconds, to the nearest second.
2. An arc of a circle of radius 10 cm has arclength 12 cm . What is the angle subtended in degrees to the nearest 0.1° ?

3. Suppose $\sin (\theta)=0.28$ and θ lies in the $2^{\text {nd }}$ quadrant. What are the values to the nearest 0.01 of
a. $\cos (\theta)$
b. $\tan (\theta)$
c. $\sec (\theta)$
d. $\csc (\theta)$
e. $\cot (\theta)$
4. Find the length of sides a and b to the nearest 0.1 in the given right triangle with angle 38° and given side of length 23 .

5. An antenna is located on top of a 12 foot tall garage. From a point on level ground 80 feet from the point directly below the base of the antenna, the antenna subtends an angle of 10°, as shown below. Approximate the length of the antenna to the nearest 0.1 feet.

Name:
6. Give exact values for the given functions at the given points.

θ	0	$\pi / 3$	$5 \pi / 6$	$-3 \pi / 4$
$\sin (\theta)$				
$\cos (\theta)$				
$\tan (\theta)$				

7. Find the solutions to $\sin (2 t+2)=0.7$ for $-\pi<t<\pi$. Report your answers to the nearest 0.01 .
8. Write a formula for the graph shown.

Name:
9. The average monthly high temperature for Paris (in France) is highest in July at $24^{\circ} \mathrm{C}$ and lowest in January at $6^{\circ} \mathrm{C}$. Write a sinusoidal function that models the average monthly high temperature reflecting this data. Your answer should be a function of t where t is the number of the month, with $t=1$ corresponding to January and $t=12$ corresponding to December.
10. A ball kicked from ground with initial velocity $50 \mathrm{ft} / \mathrm{sec}$ at an angle θ will travel $156.25 \sin (\theta) \cos (\theta)$ feet if there is no air resistance. What angle θ will result in the ball traveling the farthest and how far will it go (to the nearest foot)?

Name:
11. Suppose you have a signal of the form $\cos (30,000 t)$. You wish to add a signal of the form $\cos (\omega t)$ so that the sum can be written as a product involving a factor of the form $\cos (10,000 t)$. What value should you choose for ω ?

In the next two problems, solve for the missing parts of the triangle. Note that there may be 0,1 , or 2 solutions. Give values to the nearest 0.1 .
12. $\mathrm{A}=36^{\circ}, \mathrm{B}=49^{\circ}, c=5.3$

13. $\mathrm{A}=42^{\circ}, b=3.7, \mathrm{C}=55^{\circ}$
14. Find the area of a triangle with sides $4.5,5.3$, and 7.2 to the nearest 0.1 .
15. Given the diagram of the plane at the right, with the indicated angle of 148° and lengths of 10.7 m and 8.2 m , find the angle B to the nearest 0.1°. Be sure to show all your work and justify your choice for B.

Name:
16. What are the third roots of unity? Give exact answers in rectangular form.
17. Let $\boldsymbol{u}=<2,-2,5>$ and $\boldsymbol{v}=<3,-3,2>$. Find $2 \boldsymbol{u}-3 \boldsymbol{v}$.
18. What is the length of the projection of $<3,5>$ onto the vector $<1,7>$? Give your answer to the nearest 0.1.

Name:
19. For what values of B is $3 x^{2}+B x y-12 y^{2}=1$ an ellipse?
20. The vector $<3,-2>$ is rotated 30° counterclockwise. What is the resulting vector? Give your answer to the nearest 0.1 .
\qquad
21. Convert the following. Use radians and give your answers to the nearest 0.01 .
a. Write the polar coordinates for the rectangular coordinates $(-4,3)$ (with $r>0$).
b. Write the same point $(-4,3)$ in polar coordinates, but this time with $r<0$.
22. A robot arm has two segments, the first 7 meters and the second 5 meters (measurements taken to the pivot in the joint connecting them). The arm starts at the origin and the two segments from a straight line at an angle of 40° with the horizontal. The second segment is then rotated 20° counterclockwise as indicated. What is the coordinate of the tip of arm after the rotation (ignore the width of the pieces)? Give your answer to the nearest 0.1.

\qquad
23. Write a formula for the ellipse in the sketch with horizontal vertices at $(3,0)$ and $(-9,0)$ and vertical vertices at $(-3,2)$ and $(-3,-2)$.

24. A parabolic reflector for a flashlight is to have a diameter of 10 cm . For what range of depths will the focus be inside the flashlight (i.e. will the distance from the vertex to the focus be smaller than the depth)?

