
Semantically-Based Active Document Collection Templates for

Web Information Management Systems

In-Young Ko, Robert Neches, and Ke-Thia Yao
*

Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292, USA

E-mail: {iko, rneches, kyao}@isi.edu

Abstract. Representing and processing semantic
information regarding individual documents is desirable but
not sufficient. To improve the efficiency and reusability of
users’ work with Web-based information management
systems, it is essential to handle document collections. We
describe techniques for representing semantics both of
collections and of information management services that
operate upon them. These techniques help users set up
complex analyses and structurings of information
collections, adapt their work for other analyses or for
different collections, and obtain automatic refreshing and
updating for collections with content that changes over time.
Our semantic representation helps identify and sequence
appropriate analysis and visualization services for a given
task. Templates capture these sequences in terms of active
semantic relations between document collections created
and manipulated during those tasks. Templates can be
dynamically modified and instantiated to generate document
collections for similar tasks, or to refresh an information
space with time-varying document membership. They can
also be exchanged, allowing others to reapply them.

Keywords: document collection semantics, active document
collection templates, Web information management
systems, component-based architecture

1 Introduction

When searching, analyzing, or structuring information from
the Web, users deal with large document collections

composed of multiple Web documents retrieved from
various Web resources. Although some Web resources (e.g.,
Web directory services like Yahoo) return structured
information such as categorized document collections,
document collections retrieved from the Web are usually
unorganized and too big to easily browse. Information
analysis and visualization functions are needed to operate
upon the document collections in order to characterize, sort,
partition and filter them. This paper explains how the
semantic modeling and reasoning mechanisms at the
document collection level can help improve the efficiency
and reusability of users’ work with Web-based information
management systems.

Web-based information management systems such as
GeoWorlds [3] provide useful tools for doing so, and offer
an environment to help users create task-oriented
information spaces from raw collections. Fig. 1 illustrates
the process of using GeoWorlds to organize an information
space on “High-Speed Internet Coverage Areas in the
United States.” An initial collection obtained by merging
string searches is analyzed in various ways (e.g., grouping
by frequently occurring phrases, plotting location references
on maps) to help identify and populate a topic hierarchy that
organizes the collection. Four major types of functions are
illustrated: information gathering, information analysis,
information visualization, and information organization.
Each type operates on a collection of documents and
produces a collection. Using the information gathering
functions, GeoWorlds users can extract relevant documents
from sources such as Web search engines, Web directory
services, on-line yellow pages, news video archive
databases, etc. They can get help characterizing the resulting
initial document collection using a rich set of information
analysis functions such as noun-phrase extraction, document
clustering, category comparisons, language translation, etc.
Information visualization components applied to the
analysis results help users make sense of those results and
identify important parts of the document collections to
assimilate into the users’ information collections.
Information organization tools then help identify or impose
structure on the results. These organized information spaces
can be maintained in persistent storage. Fully organizing a
body of information is an iterative process on collections
and sub-collections, which repeats until the information
space meets its users' needs.

* Effort sponsored by the Defense Advanced Research Projects

Agency (DARPA) and Air Force Research Laboratory, Air Force

Material Command, USAF, under agreements F30602-00-2-0610

and F30602-00-2-0576. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon.

 The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied,

of the DARPA, the Air Force Research Laboratory, or the U.S.

Government.

2 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

Research on the “Semantic Web” [2] has focused on
representing machine-processable semantics of Web
resources. RDF (Resource Description Framework) [14],
SHOE [6] and Ontobroker [4] are among the efforts that
provide semantic models, languages, and inference
mechanisms for representing and processing Web document
semantics. These approaches, however, are limited to
individual documents. To make full use of document
semantics to augment information management systems like
GeoWorlds, it is essential to provide separate models and
inference mechanisms for semantics of document
collections. These are the units of information processing
for information management systems.

Based on the document collections' semantics (content
types and organization structures), semantically
interoperable (not just syntactically matched) analytic and
visual services can be selected to perform context-sensitive
information analyses. For example, although underlying
data structures for all document collections might be the
same, only document collections that have been clustered
based on geographic location references can be plotted on a
map.

Steps taken to organize document collections in an
information space can be scripted by describing active
semantic relations between document collections. For
example, a document collection plotted on a map can be
described as the result of plotting a document collection that
contains “place-name-based document clusters.” That, in
turn, is the result of applying a geographic place-name
extraction function to an unorganized document collection
retrieved from the Web, which itself is the result of some set
of actions on objects (e.g., string searches). We call these
descriptions active because they describe how a document
collection is generated from another. We consider them

semantic level descriptions because they do not include any
syntactic details such as the data types within the document
collections or the specific analysis functions used.

By providing mechanisms to represent and process the
active semantic relations between document collections, we
can support active document collection templates. The
advantage is that these can be composed by users in advance
without getting bogged down in the syntactic details.
Reasoning about the semantics of available tools and data,
the system can dynamically instantiate templates on behalf
of a user, and execute them to generate completed document
collections based on local resources. Not just results, but
the methods used to produce them, can be exchanged among
users.

Thus, semantically-based service selection and active
document collection templates are features that improve the
efficiency of information management systems and make it
easier for users to develop large scale, task-oriented
information spaces. To enable these features, the following
techniques have been developed:

• Explicit semantic representation: provide the semantic
model and language to represent semantic information
of document collections and services

• Active document collection template composition
mechanism: provide the mechanisms and tools to
compose information management templates by
describing active semantic relations between document
collections

• Reasoning mechanism on the semantics: match
semantically interoperable services against a document
collection or another service by comparing the semantic
information of the components

Web

Information Analysis Information Visualization

Information Organization

Information
Spaces

Document
Collections

Information Gathering

Fig. 1. Overview of the information management cycle for organizing the information space “High-Speed Internet Coverage

Areas in US” by using GeoWorlds

3 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

The sections following next (from Section 2 to 4) focus
in turn on these three enabling techniques. Section 5
describes the status of the current prototype implementation.
Related work is reviewed in Section 6 and planned
extensions are discussed in Section 7. The benefits and
shortcomings are summarized in Section 8.

2 Explicit semantic representation

Sowa motivates that the same physical entity can be
described by different forms to emphasize its content and
physical structure [13]. Semantics of a document collection
also can be described by using those two independent forms.
The content description represents the contextual meaning
of the collection (e.g., a document collection in which the
documents are classified by the major noun phrases). The
structure description characterizes the organization structure
(e.g., a document collection organized in an acyclic graph
structure). By dividing the semantic description about a
document collection into these two types, the complexity of
the semantic representation can be reduced and reasoning
performance can be improved [15]. One more component in
the document collection semantics is the active relation with
other document collections, which describes the action of
transforming a document collection from one semantics to
another (e.g., an initial document collection that is a flat list
of documents can be transformed to a hierarchically
organized document collection by performing a document
clustering service).

Domain-specific ontologies are used to discriminate and
classify the document collection content types and
organization structures, and service functionalities.
Appendix A shows the ontology hierarchies of content
types, organization structures, and service types in the
current prototype system.

A schema model has been developed to represent the
document collection semantics in terms of its content,
organization structure, and active relations between other
document collections. Fig. 2 illustrates this schema model as
an ER (Entity-Relationship) diagram. Content,
Organization Structure, and Service are the top-level
ontology schemas that describe the top concepts in the

ontology hierarchies of the semantic components. Since a
service may require multiple inputs and generate multiple
outputs, the input or output semantics is specified by a set
(Collection Set) of document collections. Therefore, the
active relations can be formed between the document
collections in the input data set and the document collections
in the output data set. analysisResultOf relation is
explicitly added between the input and output document-
collection sets.

A document collection can be a member of multiple I/O
data sets and multiple relations with other document
collections can be represented. For example, consider a
document collection composed of Spanish documents and a
document collection categorized based on place names cited
in the document contents. These document collections are
the results of an English-to-Spanish translation service and a
place name extraction service performed on an initial
document collection.

The next section explains how this semantic
representation is used to provide a model for representing
active document collection templates.

3 Active document collection templates composition
mechanism

For some types of information analysis tasks, the
information spaces resulting from a sequence of information
management cycles might be time-dependent. For example,
if the user performed the same information management
steps several months apart, an information space on “High-
Speed Internet Coverage Areas in US” would show more
coverage areas on the map, a different coverage ratio
between cable and DSL modems, and a different set of
highly cited cable and DSL companies. Such time-sensitive
information spaces need to be regenerated (refreshed)
regularly to maintain the latest information.

Often, a sequence of analysis steps is repeated many
times to organize an information space. For example, to get
more detailed information about each high-speed internet
coverage area, the same set of information management
steps (retrieve relevant documents from the Web, extract
company names, classify the companies based on

Collection
Set

Organization

Structure

inputData
0/1

outputData 0/1

dataElement+
Content

Document
Collection

content 0/1

structure 0/1

Service schemasDocument Collection schemas

Literal URI

comment 1 uri 1

Literal URI

comment 1 uri 1

Literal URI

comment 1 uri 1

propertyName
: Property

Cardinality: + : one or more

 1 : exactly one

 0/1: zero or oneSchema : Ontology schema

Schema : Schema

Analytic

Service

Data

Converter

Visual

Service

Input

Service

subClassOf
+

subClassOf
+

subClassOf
+

subClassOf
+analysisResultOf 0/1

Service

Fig. 2. Schema model for representing document collection semantics

4 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

connection types, etc.) need to be repeated for each area.
Without scripting the information management steps,

these information space refreshing and detailing processes
will be inefficient and may generate inconsistent results. To
meet this need, we provide mechanisms to compose and run
active document collection templates. These are semantic-
level scripts of information management steps. In an active
document collection template, semantic requirements for
document collections and management functions for
organizing an information space are described. Also, the
active relations between document collections can be
described by specifying the analysis functions that
transform a document collection into another with different
content and/or structure semantics.

Once an active document collection template is
composed, it can be modified and used to quickly generate
information spaces for other similar tasks. Many
information management tasks are similar in their major
analysis steps. For example, the steps for organizing the
information space on “High-Speed Internet Coverage Areas
in US” can be reused to generate similar document
collections for other countries. Only the initial query and the
place name set need to be modified to include the
geographical information for a different country. Templates
can also be modified to support other similar business
analyses instead of creating new templates.

Active document collection templates enable users to
exchange their information management scripts with other
users. The templates can be dynamically instantiated based
on the locally available resources, and will organize the
task-oriented information spaces locally.

The following sub-sections explain the details of
mechanisms to compose, instantiate and execute active
document collection templates.

3.1 Model for representing active document collection
templates

In our approach, an active document collection template can
be represented as a graph in which document-collection sets
and functional services are the vertices, and relationships
between them are the edges. Fig. 3 illustrates a graphic
representation of an active document collection template. By
performing semantic measurement between the set of initial
document collections (t0) and the input data set semantics of
available services, semantically interoperable functions can
be matched.1 When the user selects one of the matched
functions (f1), a new input set (t1) is created that is composed
of document collections (d2 and d3) that are required by the
function. Then, the output document-collection set (t2) is
formed that points to the semantic description of the output
document collections and contains the placeholders for the
output objects. The same sequence of composition steps can
be repeated on all the available document collections (d1 ~
d5) at the stage to add more functions to the template.

When the system records a template, it adds
analysisResultOf relations between the input and output

1 . See Section 4.2 for details.

document-collection sets. This helps it efficiently generate
and offer to users extended templates with additional
services. For example, consider the following case. Say that
the semantics of d1 and d2 are the same, i.e., s(d1)=s(d2)=D
(e.g. both are a flat document list).2 Say that d5 (a noun-
phrase list) is one of the resulting data elements of the
function f1 (a noun-phrase extraction function), which has
been applied to the input data set that contains d2. Assume
the system was considering extending the template of Fig. 3
by inserting a new function such as a document clusterer.
Such a function might require a flat document list (such as
D) and a noun-phrase list extracted from the document
collection (such as the semantics of d2 or d5) for its input
data. Without additional information in such cases, it would
not be clear where to put it. However, the analysisResultOf
relation enables the system to see that applying the
document clusterer to d2 is preferable because d5 is the
noun-phrase list which is generated by processing d2, and d2

(not d1) should be provided along with d5 to the document
clusterer to get the correct result.

The graphic representation of an active document
collection template, shown in Fig. 3 can be serialized (the
current prototype generates XML data). This can be stored
in a template repository or exchanged with other users.

3.2 Instantiation of an active document collection template

An active document collection template can be instantiated
by allocating local resources to the template components. In
a local system, semantic descriptions about the local
resource instances are kept as metadata in a repository.
Metadata about a resource instance also includes some
syntactic information such as data types, job request entries,
and I/O parameter ordering3. The semantic compatibility
measurements that will be explained at Section 4.4 are
performed to select semantically compatible local resources
for each component in the template. The process of
instantiating a template may require human interaction to

2 s is the function that returns the semantic descriptions of a

document collection.
3 In the current prototype, Java class names are used to describe

the internal data types of document collections. A job request

entry is a directive to request for a service.

analysisResultOf

analysisResultOf

d2

d3

d4

d5

f1

output
Data

t1
t2

input
Data

t3

d6

d7

f2

input
Data

t4

output
Data

t5

d8f3

input

Data

t6

output
Data

analysisResultOf

d1 ~ d3 : Initial document collections
t0 : Initial set of document collections
t1, t3, t5 : Input document collection sets
d4 ~ d8 : Output document collections
t2, t4, t6 : Output document collection sets
f1 ~ f3 : Functional components

d1

t0

Fig. 3. Graphic representation of an active document collection

template

5 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

resolve multiple matches of resource instances and syntactic
mismatches between instantiated components4.

As the result of an instantiation, component proxies are
created to act as clients to invoke the specific services that
are selected to instantiate the template, and to receive the
results of these service instances. Each proxy delegates a
resource instance (a document collection or a service) and
keeps information for accessing the local resource. Fig. 4
illustrates the proxies and relationships between them
instantiated for a template. For each functional semantics, a
service proxy is created and for each document-collection
set, an ordered-list (ordered based on the I/O parameters of
the corresponding service instance) of document collection
proxies is created. A service proxy keeps precedence
relationship between predecessor and successor proxies
and pointer (proxyOf) to the corresponding semantic
description in the template. A document collection proxy
maintains a pointer to a document collection object.

3.3 Template execution

The instantiated template can be executed by running the
service proxies in a sequence governed by the precedence
relations. An activated service proxy submits a service
request to the system interface, monitors the job status, and
receives the result. In the current prototype implementation,
this service access mechanism is implemented based on the
GeoWorlds' asynchronous service invocation architecture
which is described in [15].

Multiple service proxies can be run in parallel and the
proxies can be synchronized by using the precedence
relations. When a proxy receives the result from its service
instance, it updates the object pointer fields in its output
document collection proxies to point to the result objects.
Then, it invokes all the successor service proxies. A service
proxy will not be activated unless it receives signals from all
the predecessors. Usually the terminal services are
visualization services that have no successor components.

4 The current prototype resolves some syntactic mismatches

automatically by finding and inserting syntactic converters. See

Section 5 for details.

3.4 Template update

Active document collection templates for complex
information management tasks can be developed
incrementally by repeating the composition, instantiation
and execution steps. After/while executing a template, the
user can modify the template by adding new components or
removing unnecessary components or replacing certain
components with other semantically compatible ones (to
specialize, generalize or alter the functionality). When a
template component is modified, only the proxies that are
affected are regenerated (usually from the modification
point to the terminals). Therefore, when the template is re-
executed, the unaffected proxies will not be rerun and all the
intermediate data can be reused for the newly initiated
services.

This incremental development of active document
collection templates is especially effective when the
information management task has to deal with large
document collections and is composed of many analysis
steps.

The next section describes how the semantics of
document collections can be compared to select and
combine semantically interoperable services. This is a key to
composing an active document collection template.

4 Semantic reasoning mechanisms

A service can be applied to a document collection if the
semantics of the document collection is equivalent to, or
subsumed by, that service's input parameter semantics. For
example, a category comparison service, which can compare
two document collections that are categorized by a set of
keywords, can also compare two document collections
categorized by a set of place names because the place name-
based categorization is a specialization of the keyword-
based categorization.

The semantic inclusion relation is defined to compare
such relationships between document collections or
document-collection sets. This relation is the basis for
matching services against document collections and
measuring semantic interoperability and compatibility
among services.

To explain the reasoning mechanism, the following
formal representation is defined:

• Document collection semantics: D = (c, s), where c is
the content ontology and s is the structure ontology

• Semantics of a document-collection set: T = { D1, D2,
…, Dn }, where D1=(c1,s1), D2=(c2,s2), …, Dn=(cn,sn)

• Functional semantics of a service: F=(O,TI,TO), where
O is the functional ontology, TI is the semantics of the
input data set, and TO is the semantics of the output data
set

analysisResultOf analysisResultOf

d1

d2

d3

d4

f1

output
Data

t1 t2

input
Data

t3

Service

Proxy of

f1

proxyOf

successor

predecessor

d5

d6

f2

input
Data

t4

output
Data

proxyOf

Service

Proxy of

f2

Template Layer

Proxy Layer

Service

Request
Service Status &

Result

Proxy Layer

Interface Layer

Service

Request

Service Status &

Result

δ2

δ1

l1

δ3

δ4

l2

l3
δ5

δ6

l4

Instantiation

δ1 ~ δ6 : Document collection proxies

l1 ~ l4 : Ordered-lists of document
 collection proxies

Fig. 4. Instantiation of a template by creating proxies

6 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

4.1 Semantic inclusion relation

Semantic comparison between two document collections is
done by comparing their content and structure semantics.
Let D1=(c1,s1) and D2=(c2,s2) be the document collections
to compare. If both the content and structure semantics of
D1 subsumes the content and structure semantics of D2 (i.e.,
c1 ≥ c2 and s1 ≥ s2), we say that the document collection D1

semantically includes the document collection D2 and denote
the relation by

D1 ⊕ D2

The semantic inclusion relation is reflexive and
transitive:

D ⊕ D
D1 ⊕ D2 ∧ D2 ⊕ D3 ⇒ D1 ⊕ D3

Semantic inclusion relations between document-
collection sets are measured by comparing each pair of
related document collections from both sets. Let T = { D1,
D2, …, Dn } and T' = { D1', D2', …, Dm' } be the two
document-collection sets to compare. Then,

T ⊕ T' iff (∀Dx∈T) (∃Dy∈T') Dx ⊕ Dy

If there exists any element in T that semantically
includes multiple document collection semantics in T' (i.e.,
the semantic inclusion relation between T and T' is not a
function), the semantic inclusion relation is map ambiguous.

4.2 Semantically-based service selection

Given a set of document collections with semantics Td, a
service F with input parameter semantics TI is selectable if
TI semantically includes Td (i.e., TI ⊕ Td). If the semantic
inclusion relation between TI and Td is map ambiguous (i.e.,
there exist multiple mappings between the data sets), human
interaction is required to resolve the ambiguity by explicitly
specifying the mapping between TI and Td.

4.3 Semantic interoperability

Semantic interoperability characterizes the requirements for
two services in an active document collection template to be
composable, F'• F (output of F is the input of F'). Let the
functional semantics of F be (O,TI,TO) and the functional
semantics be F' be (O',TI',TO'). Then,

F' is semantically interoperable with F iff TI' ⊕ TO

i.e., if the output document-collection set of F can be
accepted by F', F' can be combined with F.

4.4 Semantic compatibility

Semantic compatibility in an active document collection

template characterizes the requirements for one service
component to replace another service component.

Let F=(O,TI,TO) be the functional semantics of the
original service and F'=(O',TI',TO') be the functional
semantics of the replacement service. The most conservative
way to check the semantic compatibility is to compare the
I/O data semantics of the two functions as follows:

F' is semantically compatible with F iff TI'⊕TI ∧ TO⊕TO'

This rule ensures that the replacement function accepts all
input data semantics accepted by the original function, and
only generate output data semantics generated by the
original function.

However, by looking at the neighboring services
(predecessors and successors) in the active document
collection template we can derive a less restrictive context-
dependent semantic compatibility rule. Suppose that Tx is
the least upper bound (least general generalization) of the
semantics that the predecessors of F can generate, and Ty is
the greatest lower bound (most general specialization) of the
semantics the successors of F can accept, and
F''=(O'',TI'',TO'') is the replacement service then

F'' is context-dependent semantically compatible with F
iff TI'' ⊕ Tx ∧ Ty ⊕ TO''

Notice with the above definitions, the following is true
TI' ⊕ TI'' ⊕ Tx and Ty ⊕ TO'' ⊕ TO'. This implies that
context-dependent semantic compatibility is less restrictive
than semantic compatibility, i.e., the set of services that
accept TI'' and generate TO'' is a superset of the set of
services that accept TI' and generate TO'.

The act of replacing a service in a template with another
compatible component can be classified into three cases,
based on the relationship between the functional ontologies
of the existing and the replacement services:

Generalization:
F' is a generalization of F if F' semantically compatible with
F and O' ≥ O.

Specialization:
F' is a specialization of F if F' semantically compatible with
F and O ≥ O'.

Alteration:
F' is an alteration of F if F' semantically compatible with F
and there is no subsumption relations between O and O'. A
service component with the functional semantics F can be
replaced by a service component with function F' to perform
an alternative functionality with preserving the data flow
semantics in the template.

Using these relationships, we can build a system that
helps in a number of ways. It can create and serialize
templates or scripts. It can automatically select services and
collections to instantiate a template, and can even make
some repairs and substitutions to overcome some
mismatches.

7 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

5 Prototype

A prototype system that embodies the capabilities outlined
above has been implemented in Java. Persistence of resource
descriptions and active document collection templates is
provided via XML serialization. The major components in
the prototype are the inference engine, metadata editor, and
active document collection template composer.

The inference engine implements the mechanisms
required to retrieve, compare, select and substitute among
collections and among services, along the formal lines
described in Section 4. It also provides consistency checking
functions by which the system can ensure that only valid
semantic descriptions can be added and appropriate resource
instances can be classified.

When the inference engine is generating or testing
candidates for use in a template, it can bridge across some
semantic mismatches by adding additional components. For
example, it can add a user input component if a data
component is required by a service but is not available at the
stage of editing the template5. Similarly, a structure
converter (if available) can be inserted between components
to convert between data formats when they are matched in
content semantics but not matched in structure semantics.

The metadata editor is the system’s GUI for registering
and modifying semantic descriptions of document
collections and services. By using this tool, local resource
instances can be classified under the ontology hierarchies
and their syntactic descriptions can be edited. Fig. 5 (a)
shows a screen shot of the metadata editor. The upper part
of the window is for editing service components (analytic,
visual, user input, and data conversion services). The lower
part is for editing content and structure semantics of
document collections. In both cases, the left side displays

5 Examples of the data that can be provided by user input

services: a query string, a set of place names to be extracted from

a document collection.

the ontology hierarchy and the right side provides forms to
edit schema property values6.

The active document collection template composer
provides GUI-based tools to help users set up analysis and
structuring activities by composing, instantiating and
executing templates. Fig. 5 (b) shows the template composer
window. The upper part displays the currently included
components and connections between them. The lower part
shows the ontology hierarchies and a selected schema of
available services that are composable with the ones already
included in the template. This lets users see what options are
available to them for adding steps to their analysis.

As described in Section 3, the composer creates proxies
and proxy connections (a directed acyclic graph of control
and data flow between proxies) when a template is
instantiated. This enables the system to invoke, monitor and
synchronize the services. Also, with the help of the
inference engine, it automatically finds and inserts syntactic
converters (e.g., data type converters) between syntactically
mismatched proxies if appropriate converters are available.
When a template is executed, each proxy node in the graph
displays the status (progress bar and messages) of the
service.

The example template shown in Fig. 5 (b) is a script to
extract most frequently cited noun-phrases from a document
collection, display the noun-phrases extracted, cluster the
documents based on how many noun-phrases they have in
common, and display a cluster map that shows the relation
between adjacent clusters. This is a very frequently used
script when we try to identify the major topics implicit in a

6 In the example shown, the upper-left part currently shows the

ontology hierarchy of analytic services. The upper-right part

shows the schema for one of these services: “Company Name

Based Classification.” The lower part displays the outputs

currently being edited in that service schema, in this case, the

ontology hierarchy for the document collection contents, and the

schema for “Company Name Based Category.”

 (a) (b)

Fig. 5. Prototype implementation - (a) metadata editor, (b) active document collection template composer

8 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

large number of documents retrieved from the Web, and
want to understand the relationships between those topics.
By using this template, we avoid the tedious job of
repeatedly selecting and invoking the same sequence of
services for every information management task. We can
quickly extend the script to develop more complex analyses
that require extracting noun-phrases and generating
document clusters.

6 Related work

As networked resources such as the Web have become
available, digital library collections increasingly need to be
specified by description in the form of criteria for selecting
resources or tools for resource discovery, rather than being
defined by enumeration in physical document collections
[9]. Our active document collection templates are an
implementation mechanism for such descriptively specified,
Web-based digital library collections. The semantic
descriptions of document collections and the active relations
between them are the criteria and tools to organize and
manipulate document collections for information
management tasks.

Sheth pointed out in [12] that the focus of information
system interoperability research is changing from
system/syntactic level to semantic level. As heterogeneity of
digital data, operations and computations is increased, users'
demands upon information systems are shifting from the
mere data level to information and knowledge levels.
Sheth's observation is consistent with our experience with
GeoWorlds. As more information types are available from
the Web and as we add more analytic and visual services to
the system, users want to specify their information
management requirements at a high level (instead of
spending their energy figuring out which services can be
applied to a certain type of document collection). Our
semantically-based service selection and the active
document collection template composition mechanisms
were developed to satisfy this need.

A significant discussion of issues of semantic
interoperability in large object systems appears in [7]. They
argue that explicit representation and run-time manipulation
of semantic information can reduce the time and effort to
build large software systems composed of COTS and legacy
components. Our semantic representation scheme and active
document collection templates extend this into the domain
of information management, by suggesting that semantics-
based mechanisms enable efficient and rapid organization of
large-scale, task-oriented information spaces.

The approach of using explicit semantic information for
integrating heterogeneous information sources have been
used by various information mediation projects such as
SIMS [1], InfoSleuth™ [11], and GINF [10], which
characterize the information sources by extracting the
semantic information (domain ontologies and relationships
between components) and expressing it using high-level
representation languages. Semantics-based query processing
and context-sensitive provision of analysis functions are

closely related to our active document collection templates
and the semantically-based service selection mechanism.
However, their queries are for retrieving initial document
collections and cannot specify the full information
management cycles. Also, their analysis functions are
mostly limited to information integration functions that are
tightly bound with particular information sources.

There are similarities between our semantic inclusion
relation and the semantic proximity measurement in the
Semantics-Based Information Brokering system [8]. The
semantic proximity represents semantic similarities between
database objects based on their context. Similar to the
semantic description of a document collection (or a
document-collection set), the context of a database object is
represented by referring to pre-existing ontologies. Also, the
semantic similarity between database objects is measured by
comparing corresponding ontologies.

7 Future work

The current template model has some limitations on its
representational power (e.g., looping and dynamic behaviors
between components cannot be specified). We are
investigating information management cases and analysis
functions that require more representation power. We plan
to enhance the model based on that investigation’s results.

By applying semantic distance measurements such as [5]
to the semantic inclusion decision, some cases involving
semantic ambiguity and multiple matching services can be
resolved automatically. Instead of a binary decision, our
inference engine can measure the semantic distance between
document collections or between document-collection sets,
i.e., measure how much a component semantically includes
another one. Based on this distance measure, the system can
select the most semantically close components.

USC ISI's TBASSCO (Template-Based Assurance of
Semantic interoperability in Software COmposition) project
addresses concerns about quality in adaptive composition of
component-based software. We are developing semantically-
based software gauges that measure the level of semantic
interoperability between components. These help system
engineers evaluate components' functional and data
equivalence compatibility, find pertinent data conversion
mappings, and predict performance (time, space, network)
of a component architecture. The semantic measurement and
the active document collection template composition
mechanisms described in this paper are being generalized
and extended for the TBASSCO semantic gauges.

We are currently developing an automatic template
generator that returns active document collection templates
based on users' high-level specification. It will generate all
possible scripts that can achieve a user’s information
analysis goal. It will allow users to select and modify the
template(s) to be instantiated for their tasks. We believe this
will make their information management tasks go much
easier and faster.

Persistence both of semantic description about document
collections and services, and of active document collection

9 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

templates, is being implemented using RDF (Resource
Description Framework) [14]. Our schema model for
representing semantics maps directly to RDF's graph-based
model, and our active document collection templates can be
represented in a more structured way using RDF syntax.
RDF will also enable remote schema referencing, an
attractive alternative to copying entire domain-specific
ontology descriptions when active document collection
templates are exchanged between users.

8 Conclusion

Our goal is to fully utilize semantic information about
collections retrieved from Web resources and to support
large-scale, task-oriented information management systems.
To this end, we have developed an initial set of semantic
representation and processing mechanisms for document
collections. We have complemented this with mechanisms
to compose and run active document collection templates.
These facilitate scripting complex information management
steps at a semantic level. Our system is able to instantiate
them dynamically and repeatedly based on locally available
resources.

Our semantically-based component description and
selection mechanism facilitates component-based
information management software architectures. It provides
an infrastructure in which data and service components can
be added dynamically without requiring major changes to
the system or to existing components. It improves software
component reusability and enhances flexibility in choosing
and using information management components.
Complexity of component specification and reasoning is
reduced by dividing the document collection semantics into
two independent types: content and organization structure.

We believe the active document collection template
composition and execution mechanisms serve to improve
information management performance. By using the
templates, expired document collections can be quickly
refreshed. Development of new information analysis plans
can be speeded up by reusing and modifying existing
templates. Also, by exchanging relevant information
management templates, users can collaborate with each
other on organizing task-oriented information spaces.

The Semantic Web will make task-oriented information
management systems more effective by providing
infrastructure and tools to retrieve and manipulate more
accurate and rich document semantics. Web information
management systems that provide ways to manipulate
document collection semantics and active relations between
document collections, will make the Semantic Web much
more usable and productive for its users.

Information and questions

For more information about GeoWorlds and TBASSCO
projects:

http://www.isi.edu/geoworlds
http://www.isi.edu/tbassco

References

1. Yigal Arens, Craig A. Knoblock and Chun-Nan Hsu.
Query Processing in the SIMS Information Mediator,
Advanced Planning Technology, editor, Austin Tate,
AAAI Press, Menlo Park, CA, 1996.

2. Tim Berners-Lee. Semantic Web Roadmap. World
Wide Web Consortium (W3C), 1998.
http://www.w3.org/DesignIssues/Semantic.html

3. Murilo Coutinho, Robert Neches, Alejandro Bugacov,
Ke-Thia Yao, Vished Kumar, In-Young Ko, Ragy
Eleish, and Sameer Abhinkar. GeoWorlds: A
Geographically Based Information System for Situation
Understanding and Management. In Proceedings of the
First International Workshop on TeleGeoProcessing
(TeleGeo ’99), Lyon, France, May 1999.

4. Stefan Decker, Michael Erdmann, Dieter Fensel, and
Rudi Studer. Ontobroker: Ontology Based Access to
Distributed and Semi-Structured Information. In R.
Meersman et al. (eds.), Semantic Issues in Multimedia
Systems, Proceedings of DS-8, pp. 351-369, Kluwer
Academic Publisher, Boston, 1999.

5. Harry S. Delugach. An Exploration Into Semantic
Distance. Lecture notes in artificial intelligence,
No.754, pp. 119-124, Springer-Verlag, Berlin, 1993.

6. Jeff Heflin, James Hendler, and Sean Luke. SHOE: A
Knowledge Representation Language for Internet
Applications. Technical Report CS-TR-4078 (UMIACS
TR-99-71). 1999.

7. Sandra Heiler, Renée J. Miller, and Vincent Ventrone.
Using Metadata to Address Problems of Semantic
Interoperability in Large Object Systems. First IEEE
Metadata Conference, Silver Spring, Maryland, April,
1996.

8. Vipul Kashyap and Amit Sheth. Semantics-Based
Information Brokering. In Proceedings of the Third
International Conference on Information and
Knowledge Management (CIKM), Gaithersburg, MD,
November, 1994.

9. Carl Lagoze and David Fielding. Defining Collections
in Distributed Digital Libraries. D-Lib Magazine,
November 1998, ISSN 1082-9873.
http://www.dlib.org/dlib/november98/lagoze/11lagoze.
html

10. Sergey Melnik et al. Generic Interoperability
Framework, Working Paper, Department of Computer
Science, Stanford University. http://www-
diglib.stanford.edu/diglib/ginf/WD/ginf-overview/

11. Marian Nodine, William Bohrer, Anne Hee Hiong Ngu.
Semantic Brokering over Dynamic Heterogeneous Data
Sources in InfoSleuth™. 15th International Conference
on Data Engineering, March, 1999, Sydney, Australia.

12. Amit P. Sheth. Changing Focus on Interoperability in

10 In-Young Ko, Robert Neches, and Ke-Thia Yao: Semantically-Based Active Document Collection Templates for Web Information Management Systems

Information Systems: From System, Syntax, Structure
to Semantics, Interoperating Geographic Information
Systems. M. F. Goodchild, M. J. Egenhofer, R. Fegeas,
and C. A. Kottman (eds.), Kluwer, 1998.

13. John F. Sowa, Knowledge Representation: Logical,
Philosophical, and Computational Foundations, Brooks
Cole Publishing Co., Pacific Grove, CA, ©2000.

14. Resource Description Framework (RDF) Model and

Syntax, World Wide Web Consortium (W3C)
Recommendation, February 22, 1999.
http://www.w3.org/TR/REC-rdf-syntax/

15. Ke-Thia Yao, In-Young Ko, Ragy Eleish, and Robert
Neches. Asynchronous Information Space Analysis
Architecture Using Content and Structure Based
Service Brokering. In Proceedings of Fifth ACM
Conference on Digital Libraries (DL 2000), San
Antonio, Texas, June 2000.

Appendix A: Ontology hierarchies of document collection semantics (content and structure types), and service types
in the prototype system

CCoonntteenntt

DDooccuummeenntt

CCoolllleeccttiioonn

CCaatteeggoorriizzeedd

DDooccuummeenntt CCoolllleeccttiioonn

NNoouunn PPhhrraassee--bbaasseedd CCaatteeggoorriieess
KKeeyywwoorrdd--bbaasseedd

CCaatteeggoorriieess CCoommppaannyy NNaammee--bbaasseedd CCaatteeggoorriieess

YYaahhoooo DDooccuummeenntt

CCoolllleeccttiioonn

PPllaaccee NNaammee--bbaasseedd CCaatteeggoorriieess

DDooccuummeenntt CCoolllleeccttiioonn

wwiitthh SSuummmmaarriieess

DDooccuummeenntt CCoolllleeccttiioonn wwiitthh

LLaanngguuaaggee IIddeennttiiffiiccaattiioonn

SSeeaarrcchh EEnnggiinnee

RReessuulltt LLiisstt
SSeeaarrcchh EEnnggiinnee RReessuulltt LLiisstt

CCllaassssiiffiieedd bbyy SSoouurrcceess
DDooccuummeenntt CCoolllleeccttiioonn

wwiitthh RRaannkkss

OOrrggaanniizzaattiioonn

SSttrruuccttuurree

CCaatteeggoorryy

GGrraapphh
AAccyycclliicc CCaatteeggoorryy

HHiieerraarrcchhyy

VVeeccttoorr ooff DDaattaa IItteemmss

LLiisstt ooff

DDaattaa IItteemmss OOrrddeerreedd SSeett ooff DDaattaa IItteemmssSSeett ooff DDaattaa IItteemmss

FFllaatt CCaatteeggoorryy LLiisstt

CCaatteeggoorryy CCoommppaarriissoonn DDaattaa

AArrrraayy ooff DDaattaa IItteemmss

NNaammee

DDooccuummeenntt CClluusstteerrss DDooccuummeenntt CClluusstteerr MMaapp DDaattaa

KKeeyy PPhhrraassee

LLiisstt

PPllaaccee NNaammee LLiisstt

NNoouunn PPhhrraassee LLiisstt

PPllaaccee NNaammee LLiisstt wwiitthh LLaatt--LLoonngg

PPllaaccee NNaammee LLiisstt wwiitthh AAddddrreessss

CCoommppaannyy NNaammee LLiisstt CCoommppaannyy NNaammee LLiisstt WWiitthh FFrreeqquueennccyy

RReeggiioonn NNaammeePPllaaccee NNaammee

SSiinnggllee IItteemm

: Basic schemas

: Schemas without instances

: Schemas with instances

SSeerrvviiccee

AAnnaallyyssiiss

SSeerrvviiccee

KKeeyywwoorrdd EExxttrraaccttiioonn
CCoommppaannyy NNaammee EExxttrraaccttiioonn

NNoouunn PPhhrraassee

PPllaaccee NNaammee BBaasseedd

CCllaassssiiffiiccaattiioonnDDooccuummeenntt CCllaassssiiffiiccaattiioonn

DDooccuummeenntt CClluusstteerriinngg

KKeeyywwoorrdd--bbaasseedd

CCllaassssiiffiiccaattiioonn

DDooccuummeenntt SSuummmmaarriizzaattiioonn

LLaanngguuaaggee IIddeennttiiffiiccaattiioonn

LLaanngguuaaggee TTrraannssllaattiioonn

VViissuuaalliizzaattiioonn

SSeerrvviiccee

CCaatteeggoorryy TTrreeee VViieewweerr

HHiieerraarrcchhiiccaall CCaatteeggoorryy EEddiittoorr

CCaatteeggoorryy TTrreeee EExxpplloorreerr

DDooccuummeenntt LLiisstt

FFrreeqquueennccyy LLiisstt

CCoolloorr--ccooddeedd CCllaassssiiffiieerr

NNoouunn PPhhrraassee LLiisstt

DDaattaa CCoonnvveerrtteerr

CCaatteeggoorryy CCoommppaarriissoonn

CCaatteeggoorryy FFaann--oouutt

33DD BBaarr CChhaarrtt

DDooccuummeenntt CClluusstteerr GGeeooggrraapphhiiccaall MMaappppiinngg

YYaahhoooo CCaatteeggoorryy FFaann--oouutt

CCaatteeggoorryy OOrrggaanniizzeerr

NNoouunn PPhhrraassee BBaasseedd

CCllaassssiiffiiccaattiioonn

CCoommppaannyy NNaammee

BBaasseedd CCllaassssiiffiiccaattiioonn

RReeggiioonn BBaasseedd

CCllaassssiiffiiccaattiioonn

DDooccuummeenntt CClluusstteerr MMaapp

DDooccuummeenntt CCoolllleeccttiioonn

CCoonnvveerrtteerr

NNoouunn PPhhrraassee LLiisstt CCoonnvveerrtteerr

DDooccuummeenntt CClluusstteerr DDaattaa CCoonnvveerrtteerr

CCaatteeggoorriizzeedd DDooccuummeenntt CCoolllleeccttiioonn CCoonnvveerrtteerr

FFllaatttteenn DDooccuummeenntt CCoolllleeccttiioonn SSttrruuccttuurree

UUsseerr IInnppuutt

SSeerrvviiccee
PPllaaccee NNaammee LLiisstt IInnppuutt PPllaaccee NNaammee WWiitthh LLaatt--LLoonngg IInnppuutt

