\qquad
\qquad

Chem 1A Chapter 5 and 21 Practice Test Grosser (2013-2014)

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. The periodic law states that the properties of elements are periodic functions of their atomic numbers. What determines the position of each element in the periodic table?
a. mass number
c. number of protons
b. number of neutrons
d. number of isotopes
\qquad 2. Refer to the figure below. To which group does magnesium belong?

a. alkaline-earth metals
c. halogens
b. transition elements
d. actinides
\qquad 3. A horizontal row of blocks in the periodic table is called $a(n)$
a. group.
c. family.
b. period.
d. octet.
\qquad 4. The elements in Group 1 are also known as the
a. alkali metals.
c. Period 1 elements.
b. rare-earth series.
d. actinide series.
\qquad 5. In a row in the periodic table, as the atomic number increases, the atomic radius generally
a. decreases.
c. increases.
b. remains constant.
d. becomes immeasurable.
\qquad 6. In the alkaline-earth group, atoms with the smallest radii
a. are the most reactive.
b. have the largest volume.
c. are all gases.
d. have the highest ionization energies.
7. Which is the best reason that the atomic radius generally increases with atomic number in each group of elements?
a. The nuclear charge increases.
b. The number of neutrons increases.
c. The number of occupied energy levels increases.
d. A new octet forms.
\qquad 8. Hoe does the energy required to remove an electron from an atom changer as you move left to right in Period 4 from potassium through iron?
a. It generally increases.
c. It does not change.
b. It generally decreases.
d. It varies unpredictably.
\qquad 9. The number of valence electrons in Group 17 elements is
a. 7 .
c. 17 .
b. 8 .
d. equal to the period number.
\qquad 10. Among the d-block elements, as atomic radii decrease, electronegativity values
a. remain constant.
c. decrease.
b. increase.
d. drop to zero.
\qquad 11. Which of the following categories includes the majority of the elements?
a. metalloids
c. metals
b. liquids
d. nonmetals
12. Of the elements $\mathrm{Pt}, \mathrm{V}, \mathrm{Li}$, and Kr , which is a nonmetal?
a. Pt
c. Li
b. V
d. Kr
\qquad 13. In which of the following sets is the symbol of the element, the number of protons, and the number of electrons given correctly?
a. In, 49 protons, 49 electrons
c. Cs, 55 protons, 132.9 electrons
b. $\mathrm{Zn}, 30$ protons, 60 electrons
d. F, 19 protons, 19 electrons
\qquad 14. Which subatomic particle plays the greatest part in determining the properties of an element?
a. proton
c. neutron
b. electron
d. none of the above
\qquad 15. How does atomic radius change from left to right across a period in the periodic table?
a. It tends to decrease.
c. It first increases, then decreases.
b. It tends to increase.
d. It first decreases, then increases.
16. What element in the second period has the largest atomic radius?
a. carbon
c. potassium
b. lithium
d. neon
17. The metals in Groups 1A, 2A, and 3A \qquad .
a. gain electrons when they form ions
c. all have ions with a 1^{+}charge
b. all form ions with a negative charge
d. lose electrons when they form ions
18. What is the element with the highest electronegativity value?
a. cesium
c. calcium
b. helium
d. fluorine
19. Which of the following elements has the smallest ionic radius?
a. Li
c. O
b. K
d. S
20. Which of the following factors contributes to the decrease in ionization energy within a group in the periodic table as the atomic number increases?
a. increase in atomic size
b. increase in size of the nucleus
c. increase in number of protons
d. fewer electrons in the highest occupied energy level
\qquad 21. As you move from left to right across the second period of the periodic table \qquad .
a. ionization energy increases
c. electronegativity decreases
b. atomic radii increase
d. atomic mass decreases
\qquad 22. Which of the following is the correct relationship between mass and energy?
a. $E=m c^{2}$
b. $E=m c$
c. $E^{2}=m c$
d. $E=m^{2} c$
\qquad 23. Balance the following equation: ${ }_{92}^{238} \mathrm{U}+\ldots \longrightarrow{ }_{92}^{239} \mathrm{U}$
a. $\quad{ }_{2}^{4} \mathrm{He}$
b. ${ }_{0}^{1} n$
c. ${ }_{1}^{1} \mathrm{H}$
d. ${ }_{-1}^{0} e$
24. Balance the following equation: ${ }_{4}^{9} \mathrm{Be}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{12} \mathrm{C}+$ \qquad
a. $\quad{ }_{2}^{4} \mathrm{He}$
b. ${ }_{0}^{1} n$
c. ${ }_{1}^{1} \mathrm{H}$
d. ${ }_{-1}^{0} e$
\qquad 25. The spontaneous disintegration of a nucleus into a slightly lighter and more stable nucleus, accompanied by emission of particles, electromagnetic radiation, or both, is
a. nuclear fusion.
c. radioactive decay.
b. nuclear radiation.
d. nuclear fission.
\qquad 26. Which of the following particles has the same mass as an electron but a positive charge and is sometimes emitted from the nucleus during radioactive decay?
a. beta particle
c. positron
b. alpha particle
d. gamma ray
\qquad 27. Alpha particles are
a. electrons.
c. electromagnetic waves.
b. helium nuclei.
d. neutrons.
28. Beta particles are
a. electrons.
c. electromagnetic waves.
b. helium nuclei.
d. neutrons.
29. Gamma rays are
a. electrons.
c. electromagnetic waves.
b. helium nuclei.
d. neutrons.
30. What is the half-life of an isotope if 125 g of a 500 g sample of the isotope remain after 3.0 years?
a. 1.5 years
b. 2.5 years
c. 3.5 years
d. 4.5 years
31. According to the table below, if a ancient fabric contains 12.5% as much carbon- 14 as cotten being formed today, how old is the fabric?

Nuclide	Half-Life (years)
carbon-14	5.71×10^{3}
potassium-40	1.26×10^{9}
radium-226	1.60×10^{3}
thorium-230	7.54×10^{4}
uranium-235	7.04×10^{8}

a. 11,420 years
c. 22,890 years
b. 17,130 years
d. 44,897 years
32. Which of the following generally have the lowest penetrating ability?
a. alpha particles
c. gamma rays
b. beta particles
d. All have the same penetrating ability.
33. Which of the following processes produces nuclei of lower mass than the reactants?
a. fission
c. Both (a) and (b)
b. fusion
d. Neither (a) nor (b)
34. Which of the following is a fission reaction?
a. hydrogen -2 and hydrogen -3 combining to form a helium- 4 atom and a neutron
b. carbon- 12 and hydrogen -1 combining to form a nitrogen- 13 atom
c. uranium- 235 absorbing a neutron and breaking into barium-141, krypton-92, and three neutrons
d. a glucose molecule being metabolized with oxygen to form carbon dioxide and water
35. Which of the following is a fusion reaction?
a. uranium- 235 absorbing a neutron and splitting into xenon-140, strontium-94, and two neutrons
b. hydrochloric acid combining with sodium hydroxide to form NaCl and water
c. carbon-14 decaying into nitrogen-14 and a beta particle
d. curium- 246 combining with carbon- 12 to form nobelium- 254 and four neutrons
36. What is the function of shielding in a nuclear reactor?
a. to cool the reactor
c. to absorb free neutrons
b. to contain radiation
d. to slow neutrons
37. An unstable nucleus \qquad .
a. increases its nuclear mass by fission
c. emits energy when it decays
b. increases its half-life
d. expels all of its protons
38. What particle is emitted in alpha radiation?
a. electron
c. helium nucleus
b. photon
d. hydrogen nucleus
39. A beta particle is $a(n)$ \qquad .
a. photon
c. helium nucleus
b. electron
d. hydrogen nucleus
40. What is the change in atomic mass when an atom emits gamma radiation?
a. decreases by 2
c. remains the same
b. decreases by 1
d. increases by 1
\qquad 41. What is the change in atomic number when an atom emits a beta particle?
a. decreases by 2
c. increases by 2
b. decreases by 1
d. increases by 1
\qquad 42. Which symbol is used for an alpha particle?
a. ${ }_{1}^{2} \mathrm{He}$
b. $\quad{ }_{2}^{2} \mathrm{He}$
c. ${ }_{1}^{4} \mathrm{He}$
d. ${ }_{2}^{4} \mathrm{He}$
43. Which of the following materials is necessary to stop an alpha particle?
a. three feet of concrete
c. single sheet of aluminum foil
b. three inches of lead
d. single sheet of paper
44. What particle decomposes to produce the electron of beta radiation?
a. proton
c. electron
b. neutron
d. positron
45. Which of the following materials is necessary to stop a beta particle?
a. three feet of concrete
c. thin pieces of wood
b. three inches of lead
d. single sheet of paper
46. Which of the following is NOT a reason that water is used to store spent fuel rods from nuclear power plants?
a. Water cools the spent rods.
b. Water increases the speed of the chain reaction in the fuel rods.
c. Water acts as a radiation shield to reduce the radiation levels.
d. Water protects nuclear power plant workers from the high temperature and radiation of the fuel rods.
47. What is the change in atomic mass number when an atom emits an alpha particle?
a. decreases by 2
c. increases by 2
b. decreases by 4
d. increases by 4
48. To what element does polonium-208 (atomic number 84) decay when it emits an alpha particle?
a. ${ }_{82}^{210} \mathrm{~Pb}$
b. ${ }_{82}^{210} \mathrm{Po}$
c. ${ }_{82}^{204} \mathrm{~Pb}$
d. ${ }_{86}^{214} \mathrm{Rn}$
49. What happens in a chain reaction?
a. Products that start a new reaction are released.
b. Reactants that have two parts split.
c. Products that are radioactive are lost.
d. Radioactive reactants are deposited on control rods.
50. Controlled nuclear chain reactions \qquad _.
a. take place in nuclear reactors
b. are always fusion reactions
c. never produce radioactive by-products
d. are characteristic of atomic bombs
51. What is the main detector of a scintillation counter?
a. ionizable gas in a metal tube
c. plates of ionizable plastic
b. phosphor-covered surface
d. potassium metal surface
\qquad
52. Radiation therapy is used to \qquad .
a. study reaction mechanisms
c. treat cancer
b. detect elements
d. initiate neutron activation analysis

CONCEPT MASTERY

Use the diagrams to answer the questions or complete the statements.

Properties of X Group Elements				
Element	Atomic mass (amu)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Melting point $\left({ }^{\circ} \mathrm{C}\right)$	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
X	10	3		600
Y		4	200	800
Z	20		300	

Figure 5-1
53. In Figure 5-1, what is the approximate density of element Z ?
a. $2 \mathrm{~g} / \mathrm{cm}^{3}$
b. $5 \mathrm{~g} / \mathrm{cm}^{3}$
c. $\quad 10 \mathrm{~g} / \mathrm{cm}^{3}$
d. $12 \mathrm{~g} / \mathrm{cm}^{3}$
\qquad 54. In Figure $5-1$, what is the approximate melting point of element X ?
a. $\quad 100^{\circ} \mathrm{C}$
b. $190^{\circ} \mathrm{C}$
c. $250^{\circ} \mathrm{C}$
d. $400^{\circ} \mathrm{C}$

Figure 5-3
55. Which numbered region in Figure 5-3 represents the f-block of elements?
a. 1
b. 2
c. 3
d. 4
\qquad 56. Which numbered region in Figure 5-3 represents the d-block of elements?
a. 1
b. 2
c. 3
d. 4
\qquad 57. Which numbered region in Figure 5-3 represents the inner transition metals?
a. 1
b. 2
c. 3
d. 4
\qquad 58. Which lettered region in Figure 5-3 represents the semimetals?
a. a
c. c
b. b
d. none of the regions

Figure 5-4
59. Based on Figure 5-4, what general trend exists for first ionization energy down a group?
a. Ionization energy increases.
b. Ionization energy decreases.
c. Ionization energy remains fairly constant.
d. Ionization energy first increases, then decreases.

CONTENT REVIEW

60. The beta decay of ${ }_{36}^{87} \mathrm{Rb}$ produces
a. ${ }_{36}^{87} \mathrm{Kr}$.
b. ${ }_{38}^{87} \mathrm{Sr}$.
c. ${ }_{35}^{83} \mathrm{Br}$.
d. ${ }_{37}^{86} \mathrm{Rb}$.

CONCEPT MASTERY

Use the diagrams to answer the questions or complete the statements.

Figure 24-1 (Time in Minutes)
\qquad 61. At what time in Figure $24-1$ will there be 1.5 grams of the isotope remaining?
a. 11 minutes
b. 20 minutes
c. 40 minutes
d. 60 minutes
\qquad 62. What mass of the isotope in Figure 24-1 will remain after the end of one half-life period?
a. 0 grams
b. 6 grams
c. 12 grams
d. 24 grams
\qquad 63. How much of the isotope in Figure 24-1 remains at the end of two half-life periods?
a. 48 grams
b. 6 grams
c. 3 grams
d. 1.5 grams
\qquad 64. How much time will have passed at the end of six half-life periods in Figure 24-1?
a. 72 minutes
b. 80 minutes
c. 100 minutes
d. 120 minutes

Isotope	Type of Decay	Isotope produced	Half-life
${ }_{1}^{3} \mathrm{H}$	beta		12.3 years
${ }_{15}^{32} \mathrm{P}$		${ }_{16}^{32} \mathrm{~S}$	14.3 days
	alpha	${ }^{218} \mathrm{Po}$	3.8 days
${ }_{84}^{239} \mathrm{Pu}$	alpha		2.4×10^{4} years

Figure 24-2
65. In Figure 24-2, what isotope is produced by the decay of ${ }_{94}^{239} \mathrm{Pu}$?
a. $\quad{ }_{93}^{239} \mathrm{~Np}$
b. $\quad{ }_{94}^{240} \mathrm{Pu}$
c. ${ }_{90}^{237} \mathrm{Th}$
d. ${ }_{92}^{235} \mathrm{U}$
66. How much of an 8 -gram sample of ${ }_{1}^{3} \mathrm{H}$ in Figure 24 -2 would still be present after 12.3 years?
a. $\quad 6.65$ grams
b. 4 grams
c. 2 grams
d. 1 grams
\qquad 67. Use Figure 24-2 to determine how much of a 120 -gram sample of ${ }_{15}^{32} \mathrm{P}$ would still be present after three half-life periods.
a. 15 grams
b. 30 grams
c. 42.9 grams
d. 60 grams
\qquad 68. How much time is needed for a 48 -gram sample of ${ }_{94}^{239} \mathrm{Pu}$ in Figure $24-2$ to be reduced to a mass of 3 grams?
a. 2.4×10^{4} years
b. 4.8×10^{4} years
c. 7.2×10^{4} years
d. 9.6×10^{4} years

Figure 24-3
69. Which of the reactions in Figure 24-3 illustrates nuclear fission?
a. a
c. c
b. b
d. d

