
A Middleware Framework for Dynamically Reconfigurable MPI Applications

Kaoutar ElMaghraoui, Carlos A. Varela, Boleslaw K. Szymanski, and Joseph E. Flaherty

Department of Computer Science

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA

{elmagk, cvarela, szymansk, flaherje}@cs.rpi.edu

James D. Teresco

Department of Computer Science

Williams College, 47 Lab Campus Drive, Williamstown, MA 01267, USA

terescoj@cs.williams.edu

Abstract

Computational grids are characterized by their dy-

namic, non-dedicated, and heterogeneous nature. Novel

application-level and middleware-level techniques are

needed to allow applications to reconfigure themselves and

adapt automatically to their underlying execution environ-

ments to be able to benefit from computational grids’ re-

sources. In this paper, we introduce a new software frame-

work that enhances the Message Passing Interface (MPI)

performance through process checkpointing, migration, and

an adaptive middleware for load balancing. Fields as di-

verse as fluid dynamics, material science, biomechanics,

and ecology make use of parallel adaptive computation

where target architectures have traditionally been super-

computers and tightly coupled clusters. This framework is

a first step in allowing these computations to use computa-

tional grids efficiently. Preliminary results demonstrate that

application reconfiguration through middleware-triggered

process migration achieved performance improvement in

the range of 33% to 79%.

1 Introduction

Computational grids [16] have become very attractive

platforms for high performance distributed applications due

to their high availability, scalability, and computational

power. However, nodes in grid environments, such as in-

dividual processors or symmetric multiprocessors (SMPs),

are not necessarily dedicated to a single parallel or dis-

tributed application. They experience constantly changing

loads and communication demands. Achieving the desired

high performance, requires augmenting applications with

appropriate support for reconfiguration and adaptability to

the dynamic nature of computational grids.

Scientific and engineering distributed and parallel appli-

cations have a complex nature. They are computationally

demanding, involve solving or simulating multi-scale prob-

lems with dynamic behavior, and often require sophisticated

adaptive methods and dynamic load balancing techniques to

achieve high performance. In particular, engineering appli-

cations that arise extensively in diverse disciplines such as

fluid dynamics, material science, biomechanics, and ecol-

ogy require a continuous adaptation of meshes and numer-

ical methods to achieve specified levels of solution accu-

racy [7]. These challenges have been addressed by complex

application-level load balancing algorithms and adaptive re-

finement techniques [9] . However, most existing solutions

assume either a static number of cooperating processes or

dedicated resources. Running such applications on compu-

tational grids introduces additional challenges that cannot

be addressed sufficiently by application-level load balanc-

ing.

MPI [20] has been widely adopted as the de-facto stan-

dard to implement parallel and distributed applications that

harness several processors. However, the issues of scalabil-

ity, adaptability and load balancing still remain a challenge.

Most existing MPI implementations assume a static net-

work environment. MPI implementations that support the

MPI-2 standard [17, 21] provide partial support for dynamic

process management, but still require complex application

development from end-users: process management needs to

be handled explicitly at the application level, which requires

the developer to deal with issues such as resource discovery

and allocation, scheduling, load balancing, etc. Additional

middleware-support is therefore needed to relieve applica-

tion developers from non-functional concerns such as load

balancing through application reconfiguration.

In this paper, we introduce MPI/IOS, a middleware in-



frastructure that permits the automatic reconfiguration of

MPI applications in a dynamic setting. The Internet Operat-

ing System (IOS) [8, 10] is a distributed middleware frame-

work that provides opportunistic load balancing capabili-

ties through resource-level profiling and application-level

profiling. MPI/IOS adopts a semi-transparent checkpoint-

ing mechanism, where the user needs only specify the data

structures to save and restore to facilitate process migration.

This approach does not require extensive code modifica-

tions and allows legacy MPI applications to benefit from

load balancing features by just inserting a small number of

API calls. In shared environments where many applications

are running, having application-level resource management

is not enough to efficiently balance the load of the entire

system. A middleware layer is the natural location where to

place OS-like resource management of several applications

running simultaneously.

We believe that providing simple APIs and delegating

most of the load distribution and balancing to middleware

will allow smooth and easy migration of MPI applications

from static and dedicated clusters to highly dynamic com-

putational grids. Our framework is more beneficial for long

running applications involving large numbers of machines,

where the probability of load fluctuations is high. In such

situations, it will be helpful for the running application

to have means by which to evaluate continuously its per-

formance, discover new resources, and be able to migrate

whole or parts of the application to better nodes. We target

initially highly synchronized iterative applications that have

the unfortunate property of running as slow as the slowest

process. Eliminating the slowest processor from the com-

putation results in many cases, in an overall improved per-

formance.

The remainder of the paper is organized as follows. Sec-

tion 2 presents related work. In Section 3, we describe the

approach of MPI/IOS. Section 4 details the architecture of

the framework. In Section 5, we present experimental re-

sults. We conclude with discussion and future work in Sec-

tion 6.

2 Related Work

There are a number of conditions that can introduce

computational load imbalances during the lifetime of an

application: 1) the application may have irregular or un-

predictable workloads from, e.g., adaptive refinement, 2)

the execution environment may be shared among multiple

users and applications, and/or 3) the execution environment

may be heterogeneous, providing a wide range of proces-

sor speeds, network bandwidth and latencies, and memory

capacity. Dynamic load balancing (DLB) is necessary to

achieve a good parallel performance when such imbalances

occur. Most DLB research has targeted the application level

(e.g., [9, 12, 15]), where the application itself continuously

measures and detects load imbalances and tries to correct

them by redistributing the data, or changing the granular-

ity of the problem through domain repartitioning. Although

such approaches have proved beneficial, they suffer from

several limitations. First they are not transparent to appli-

cation programmers. They require complex programming

and are domain specific. Second, they require applications

to be amenable to data partitioning, and therefore will not

be applicable in areas that require rigid data partitioning.

Lastly, when these applications are run on the more dy-

namic grid, application-level techniques which have been

applied successfully to heterogeneous clusters [12, 14] may

fall short in coping with the high fluctuations in resource

availability and usage. Our research targets middleware-

level DLB which allows a separation of concerns: load

balancing and resource management are transparently dealt

with by the middleware, while application programmers

deal with higher level domain specific issues.

Several recent efforts have focused on middleware-level

technologies for the emerging computational grids. Adap-

tive MPI (AMPI) [4, 18] is an implementation of MPI on

top of light-weight threads that balances the load transpar-

ently based on a parallel object-oriented language with ob-

ject migration support. Load balancing in AMPI is done

through migrating user-level threads that MPI processes are

executed on. This approach limits the portability of pro-

cess migration across different architectures since it relies

on thread migration. Process swapping [22] is an enhance-

ment to MPI that uses over-allocation of resources and im-

proves performance of MPI applications by allowing them

to execute on the best performing nodes. Our approach is

different in that we do not need to over-allocate resources

initially. Such a strategy, though potentially very useful,

may be impractical in grid environments where resources

join and leave and where an initial over-allocation may not

be possible. We allow new nodes that become available to

join the computational grid to improve the performance of

running applications during their execution.

Other efforts have focused on process checkpointing and

restart as a mechanism to allow applications to adapt to

changing environments. Examples include CoCheck [23],

starFish [1], and the SRS library [24]. Both CoCheck and

starFish support checkpointing for fault-tolerance, while we

provide this feature to allow process migration and hence

load balancing. SRS supports this feature to allow appli-

cation stop and restart. Our work differs in the sense that

we support migration at a finer granularity. Process check-

pointing is a non-functional concern that is needed to allow

dynamic reconfiguration. To be able to migrate MPI pro-

cesses to better performing nodes, processes need to save

their state, migrate, and restart from where they left off.

Application-transparent process checkpointing is not a triv-

2



ial task and can be very expensive, as it requires saving the

entire process state. Semi-transparent checkpointing pro-

vides a simple solution that has been proved useful for it-

erative applications [22, 24]. API calls are inserted in the

MPI program that informs the middleware of the important

data structures to save. This is an attractive solution that

can benefit a wide range of applications and does not incur

significant overhead since only relevant state is saved.

3 An Approach for Dynamically Reconfigur-

ing MPI Applications

Traditional MPI programs are designed with dedicated

resources in mind. Developers need to know initially what

resources are available and how to assign them to MPI pro-

cesses. To permit a smooth migration of existing MPI ap-

plications to dynamic grid environments, MPI runtime envi-

ronments should be augmented with middleware tools that

free application developers from concerns about what re-

sources are available and when to use them. Simply ac-

quiring the resources is not enough to achieve peak MPI

performance. Effective scheduling and load balancing deci-

sions need to be performed continuously during the lifetime

of a parallel application. This requires the ability to pro-

file application behavior, monitor the underlying resources,

and perform appropriate load balancing of MPI processes

through process migration.

Process migration is a key requirement to enable mal-

leable applications. We describe in what follows how we

achieve MPI process migration. We then introduce our

middleware-level support.

3.1 MPI Process Migration

MPI processes periodically get notified by the middle-

ware of migration or reconfiguration requests. When a

process receives a migration notification, it initiates check-

pointing of its local data in the next synchronization point.

Checkpointing is achieved through library calls that are in-

serted by the programmer in specific places in the applica-

tion code. We currently support iterative applications since

their iterative structure exhibits natural locations (at the be-

ginning of each iteration) to place polling, checkpointing

and resumption calls. When the process is first started, it

checks whether it is a fresh process or it has been migrated.

In the second case, it proceeds to data and process intercon-

nectivity restoration.

In MPI, any communication between processes needs to

be done as part of a communicator. An MPI communica-

tor is an opaque object with a number of attributes, together

with simple functions that govern its creation, use and de-

struction. An intracommunicator delineates a communica-

tion domain which can be used for point-to-point commu-

Figure 1. Steps involved in communicator handling to

achieve MPI process migration.

nications as well as collective communication among the

members of the domain. While an intercommunicator al-

lows communication between processes belonging to dis-

joint intracommunicators. MPI process migration requires

careful update of any communicator that involves the mi-

grating process. A migration request forces all running MPI

processes to enter a reconfiguration phase where they all

cooperate to update their shared communicators. The mi-

grating process spawns a new process in the target location

and sends it its local checkpointed data. Figure 1 describes

the steps involved in managing the MPI communicators for

a sample process migration. In the original communicator,

(Communicator 1), P7 has received a migration request. P7

cooperates with the processes of communicator 1 to spawn

the new process, P0 in communicator 2, which will replace

it. The intercommunicator that results from this spawning

is merged into one global communicator. Later, the migrat-

ing process is removed from the old communicator and the

new process is assigned rank 7. The new process restores

the checkpointed data from its local daemon and regains the

same state of the migrating process. All processes then get

a handle to the new communicator and the application re-

sumes its normal execution.

3.2 Middleware­triggered Reconfiguration

Although MPI processes are augmented with the abil-

ity to migrate, middleware support is still needed to guide

the application as to when it is appropriate to migrate pro-

cesses and where to migrate them. IOS middleware ana-

lyzes both the underlying physical network resources and

the application communication patterns to decide how ap-

plications should be reconfigured to accomplish load bal-

3



Figure 2. Architecture of a node in the Internet Operat-

ing System middleware (IOS). An agent collects profiling

information and makes decisions on how to reconfigure the

application based on its decisions, protocol, and profiling

information.

ancing through process migration and other non-functional

concerns such as fault tolerance through process replica-

tion. Resource profiling and reconfiguration decisions are

embodied into middleware agents whose behavior can be

modularly modified to implement different resource man-

agement models. Figure 2 shows the architecture of an IOS

agent and how it interacts with applications. Every agent

has a profiling component that gathers both application and

resource profiled information, a decision component that

predicts based on the profiled information when and where

to migrate application entities, and a protocol component

that allows inter-agent communication. Application entities

refer to application components. In the case of MPI appli-

cations, they refer to MPI processes.

The middleware agents form a virtual network. When

new nodes join the network or existing nodes become idle,

their corresponding agents contact peers to steal work [5].

In previous work [8], we have shown that considering the

application topology in the load balancing decision proce-

dures dramatically improves throughput over purely ran-

dom work stealing. IOS supports two load-balancing pro-

tocols: 1) application topology sensitive load balancing and

2) network topology sensitive load balancing [8, 10].

Applications communicate with the IOS middleware

through clearly defined interfaces that permit the exchange

of profiled information and reconfiguration requests. Appli-

cations need to support migration to react to IOS reconfigu-

ration requests.

4 MPI/IOS Runtime Architecture

MPI/IOS is implemented as a set of middleware ser-

vices that interact with running applications through an MPI

wrapper. The MPI wrapper contains a Process Checkpoint-

ing and Migration (PCM) library [11]. The MPI/IOS run-

time architecture consists of the following components (see

Figure 3): 1) the PCM-enabled MPI applications, 2) the

wrapped MPI that includes the PCM API, the PCM library,

and wrappers for all MPI native calls, 3) the MPI library,

and 4) the IOS runtime components.

4.1 Process Checkpointing and Migration API

PCM is a user-level process checkpointing and migra-

tion library that acts on top of native MPI implementations

and hides several of the issues involved in handling MPI

communicators and updating them when new nodes join or

leave the computation. This work does not alter existing

MPI implementations and hence, allows MPI applications

to continue to benefit from the various implementations and

optimizations while being able to adapt to changing loads

when triggered by IOS middleware load balancing agents.

MPI/IOS improves performance by allowing running

processes to migrate to the processors with the best perfor-

mance and collocating frequently communicating processes

within small network latencies. The MPI-1 standard does

not allow dynamic addition and removal of processes from

MPI communicators. MPI-2 supports this feature; however

existing applications need extensive modification to benefit

from dynamic process management. In addition, applica-

tion developers need to explicitly handle load balancing is-

sues or interact with existing schedulers. The PCM runtime

system utilizes MPI-2 dynamic features, however it hides

how and when reconfiguration is done. We provide a semi-

transparent solution to MPI applications in the sense that

developers need to include only a few calls to the PCM API

to guide the underlying middleware in performing process

migration.

Existing MPI applications interact with the PCM library

and the native MPI implementation through a wrapper as

shown in Figure 3. The wrapper MPI functions are provided

to perform MPI-level profiling of process communication

patterns. This profiled information is sent periodically to the

IOS middleware agent through the PCM runtime daemon.

4.2 The PCM Library

Figure 4 shows an MPI/IOS computational node running

MPI processes. A PCM daemon (PCMD) interacts with the

IOS middleware and MPI applications. A PCMD is started

in every node that actively participates in an application. A

PCM dispatcher is used to start PCMDs in various nodes

4



Figure 3. The layered design of MPI/IOS which includes the MPI wrapper, the PCM runtime layer, and the IOS runtime layer.

Figure 4. Architecture of a node running MPI/IOS enabled applications.

5



and used to discover existing ones. The application ini-

tially registers all MPI processes with their local daemons.

The port number of a daemon is passed as an argument to

mpiexec or read from a configuration file that resides in

the same host.

Every PCMD has a corresponding IOS agent. There can

be more than one MPI process in each node. The daemon

consists of various services used to achieve process commu-

nication profiling, checkpointing and migration. The MPI

wrapper calls record information pertaining to how many

messages have been sent and received and their source and

target process ranks. The profiled communication informa-

tion is passed to the IOS profiling component. IOS agents

keep monitoring their underlying resources and exchanging

information about their respective loads.

When a node’s available resources fall below a prede-

fined threshold or a new idle node joins the computation,

a work steal packet is propagated among the actively run-

ning nodes. The IOS agent of a node responds to work

stealing requests if it becomes overloaded and its decision

component decides according to the resource management

model which process(es) need(s) to be migrated. Other-

wise, it forwards the request to an IOS agent in its set of

peers. The decision component then notifies the reconfigu-

ration service in the PCMD, which then sends a migration

request to the desired process(es). At this point, all active

PCMDs in the system are notified about the event of a re-

configuration. This causes all processes to cooperate in the

next iteration until migration is completed and application

communicators have been properly updated. Although this

mechanism imposes some synchronization delay, it ensures

that no messages are being exchanged while process migra-

tion is taking place and avoids incorrect behaviors of MPI

communicators.

5 Experimental Results

We have used an MPI program that computes a two-

dimensional heat distribution matrix to evaluate the per-

formance of process migration. This application models

iterative parallel applications that are highly synchronized

and therefore require frequent communication between the

boundaries of the MPI processes. The original MPI code

was manually instrumented by inserting PCM API calls to

enable PCM checkpointing. It took 10 lines of PCM library

calls to instrument this application, which consists origi-

nally of 350 lines of code.

The experimental test-bed consists of a multi-user clus-

ter that consists of a heterogeneous collection of Sun com-

puters running Solaris. We used a cluster of 20 nodes that

consist of 4 dual-processor SUN Blade 1000 machines with

750 MHz per processor and 2 GB of memory, and 16 single-

processor SUN Ultra 10 machines with 400MHz and 256

MB of memory. We used MPICH2 [2], a freely available

implementation of the MPI-2 standard.

The goal of the first experiment was to determine the

overhead incurred by the PCM API. The heat distribution

program was executed using both MPICH2 and MPI/IOS

with several numbers of nodes. We run both tests under a

controlled load environment to make sure that the machine

load is somehow balanced and no migration will be trig-

gered by the middleware. Both implementations demon-

strated similar performance. Figure 5 shows that the over-

head of the PCM library is negligible.

The second experiment aims at evaluating the impact of

process migration. The cluster of 4 dual-processor nodes

was used. Figures 6 and 7 show the breakdown of the itera-

tions execution time of the heat application using MPICH2

and MPI/IOS respectively. The load of the participating

nodes was controlled to provide a similar execution environ-

ment for both runs. The application was allowed to run for

a few minutes, after which the load of one of the nodes was

artificially increased substantially. In Figure 6, the overall

execution time of the application iterations increased. The

highly synchronized nature of this application forces all the

processes to become as slow as the one assigned to the slow-

est processor. The application took 203.97 seconds to fin-

ish. Figure 7 shows the behavior of the same application

under the same load conditions using MPI/IOS. At iteration

260, a new node joined the computation. This resulted in

migration of an MPI process from the overloaded node to

the available new node. The figure shows how migration

corrected the load imbalance. The application took 115.27

seconds to finish in this case, which is almost a 43% im-

provement over the non-adaptive MPICH2 run.

In a third experiment, we evaluated the adaptation of

the heat application to changing loads. Figure 8 shows

the behavior of the application’s throughput during its life-

time.The total number of iterations per second gives a good

estimate of how good the application is performing for the

class of highly synchronized applications. We run the heat

program using the 4 dual-processor cluster and increased

the load in one of the participating nodes. MPI/IOS helped

the application to adapt by migrating the process from the

slow node to one of the cooperating nodes. The application

was using only 3 nodes after migration; however, its overall

throughput improved substantially. The application execu-

tion time improved with 33% compared to MPICH2 under

the same load conditions. In Figure 9, we evaluated the im-

pact of migration when a new node joins the computation.

In this experiment, we used 3 fast machines and a slow ma-

chine. We increased the load of the slow machine while the

application was running. The throughput of the application

increased dramatically when the slow process migrated to

a fast machine that joined the IOS network. The perfor-

mance of the program improved with 79% compared with

6



Figure 5. Overhead of the PCM library: Execution time

of the heat application using different numbers of nodes

with and without the PCM layer.

Figure 6. Breakdown of execution time of 2D heat appli-

cation iterations on a 4 node cluster using MPICH2.

MPICH2.

6 Discussion and Future Work

This paper introduced several enhancements to MPI

to allow for application reconfiguration and middleware-

triggered dynamic load balancing. MPI/IOS improves MPI

runtime systems with a library that allows process-level

checkpointing and migration. This library is integrated

with an adaptive middleware that triggers dynamic recon-

figuration based on profiled resource usage and availability.

The PCM library has been initially introduced in previous

work [11]. We have made major redesign and improve-

ments over the previous work, where the PCM architecture

was centralized and supported only application-level migra-

tion. The new results show major improvements in scalabil-

ity and performance. Our approach is portable and suitable

for grid environments with no need to modify existing MPI

implementations. Application developers need only insert a

Figure 7. Breakdown of execution time of 2D heat appli-

cation iterations on a 4 node cluster using MPI/IOS proto-

type.

Figure 8. Measured throughput of the 2D heat application

using MPICH2 and MPI/IOS. The applications adapted to

the load change by migrating the affected process to one of

the participating nodes in the case of MPI/IOS.

small number of API calls in MPI applications.

Our preliminary version of MPI/IOS has shown that pro-

cess migration and middleware support are necessary to

improve application performance over dynamic networks.

MPI/IOS is a first step in improving MPI runtime environ-

ments with the support of dynamic reconfiguration. Our im-

plementation of MPI process migration can be used on top

of any implementation that supports the MPI-2 standard. It

could also be easily integrated with grid-enabled implemen-

tations such as MPICH-G2 [19] once they become MPI-2

compliant. Our load balancing middleware could be com-

bined with several advanced checkpointing techniques (e.g.,

[3, 6, 13, 23]) to provide a better integrated software support

for MPI application reconfiguration.

MPI/IOS is still a work in progress. Future work

includes: 1) using the MPI profiling interface to dis-

7



Figure 9. Measured throughput of the 2D heat applica-

tion using MPICH2 and MPI/IOS. The applications adapted

to the load change by migrating the affected process to

a fast machine that joined the computation in the case of

MPI/IOS.

cover communication patterns in order to provide a bet-

ter mapping between application topologies and environ-

ment topologies, 2) evaluating different resource manage-

ment models and load balancing decision procedures, 3)

extending our approach to support non-iterative applica-

tions, 4) changing the granularity of reconfiguration units

through middleware-triggered splitting and merging of ex-

ecuting processes, and 5) targeting more complex applica-

tions.

References

[1] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dy-

namic MPI programs on clusters of workstations. In Pro-

ceedings of the The Eighth IEEE International Sympo-

sium on High Performance Distributed Computing, page 31.

IEEE Computer Society, 1999.

[2] Argone National Laboratory. MPICH2,http:
//www-unix.mcs.anl.gov/mpi/mpich2.

[3] R. Batchu, A. Skjellum, Z. Cui, M. Beddhu, J. P. Nee-

lamegam, Y. Dandass, and M. Apte. MPI/FTTM: Archi-

tecture and taxonomies for fault-tolerant, message-passing

middleware for performance-portable parallel computing. In

Proceedings of the 1st International Symposium on Cluster

Computing and the Grid, page 26. IEEE Computer Society,

2001.

[4] M. A. Bhandarkar, L. V. Kale;, E. de Sturler, and J. Hoe-

flinger. Adaptive load balancing for MPI programs. In Pro-

ceedings of the International Conference on Computational

Science-Part II, pages 108–117. Springer-Verlag, 2001.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling Multi-

threaded Computations by Work Stealing. In Proceedings

of the 35th Annual Symposium on Foundations of Computer

Science (FOCS ’94), pages 356–368, Santa Fe, New Mex-

ico, November 1994.

[6] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,

C. Germain, T. Herault, P. Lemarinier, O. Lodygensky,

F. Magniette, V. Neri, and A. Selikhov. MPICH-V: toward

a scalable fault tolerant mpi for volatile nodes. In Proceed-

ings of the 2002 ACM/IEEE conference on Supercomputing,

pages 1–18. IEEE Computer Society Press, 2002.

[7] K. Clark, J. E. Flaherty, and M. S. Shephard. Appl. Numer.

Math., special ed. on Adaptive Methods for Partial Differen-

tial Equations, 14, 1994.

[8] T. Desell, K. ElMaghraoui, and C. Varela. Load balancing

of autonomous actors over dynamic networks. In Hawaii In-

ternational Conference on System Sciences, HICSS-37 Soft-

ware Technology Track, Hawaii, January 2004.

[9] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrick-

son, J. D. Teresco, J. Faik, J. E. Flaherty, and L. G. Gervasio.

New challenges in dynamic load balancing. Technical Re-

port Technical Report CS-04-02, Williams College Depart-

ment of Computer Science, 2004. To appear, Appl. Numer.

Math.

[10] K. ElMaghraoui, T. Desell, and C. Varela. Network sensitive

reconfiguration of distributed applications. In Submitted to

the 25th international conference on distributed computing

systems, 2005.

[11] K. ElMaghraoui, J. E. Flaherty, B. K. Szymanski, J. D.

Teresco, and C. Varela. Adaptive computation over dy-

namic and heterogeneous networks. In R. Wyrzykowski,

J. Dongarra, M. Paprzycki, and J. Wasniewski, editors, Proc.

Fifth International Conference on Parallel Processing and

Applied Mathematics (PPAM 2003), volume 3019 of Lec-

ture Notes in Computer Science, pages 1083–1090, Czesto-

chowa, 2004. Springer Verlag.

[12] R. Elsasser, B. Monien, and R. Preis. Diffusive load balanc-

ing schemes on heterogeneous networks. In Proceedings of

the twelfth annual ACM symposium on Parallel algorithms

and architectures, pages 30–38. ACM Press, 2000.

[13] G. E. Fagg and J. Dongarra. FT-MPI: Fault tolerant MPI,

supporting dynamic applications in a dynamic world. In

Proceedings of the 7th European PVM/MPI Users’ Group

Meeting on Recent Advances in Parallel Virtual Machine

and Message Passing Interface, pages 346–353. Springer-

Verlag, 2000.

[14] J. Faik, L. G. Gervasio, J. E. Flaherty, J. Chang, J. D.

Teresco, E. G. Boman, and K. D. Devine. A model for

resource-aware load balancing on heterogeneous clusters.

Technical Report CS-04-03, Williams College Department

of Computer Science, 2004. Presented at Cluster ’04.

[15] J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard, B. K.

Szymanski, J. D. Teresco, and L. H. Ziantz. Parallel struc-

tures and dynamic load balancing for adaptive finite element

computation. Applied Numerical Mathematics, 26:241–263,

1998.

[16] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the

grid: Enabling scalable virtual organizations. International

J. Supercomputer Applications, 15, 2001.

[17] W. Gropp and E. Lusk. Dynamic process management in

an MPI setting. In Proceedings of the 7th IEEE Symposium

on Parallel and Distributeed Processing, page 530. IEEE

Computer Society, 1995.

8



[18] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI. In Pro-

ceedings of the 16th International Workshop on Languages

and Compilers for Parallel Computing (LCPC 03), College

Station, Texas, October 2003.

[19] N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2: a grid-

enabled implementation of the Message Passing Interface.

J. Parallel Distrib. Comput., 63(5):551–563, 2003.

[20] Message Passing Interface Forum. MPI: A message-passing

interface standard. The International Journal of Super-

computer Applications and High Performance Computing,

8(3/4):159–416, Fall/Winter 1994.

[21] Message Passing Interface Forum. MPI-2: Extensions to the

Message-Passing Interface, 1996.

[22] O. Sievert and H. Casanova. A simple MPI process

swapping architecture for iterative applications. Interna-

tional Journal of High Performance Computing Applica-

tions, 18(3):341–352, 2004.

[23] G. Stellner. Cocheck: Checkpointing and process migration

for MPI. In Proceedings of the 10th International Paral-

lel Processing Symposium, pages 526–531. IEEE Computer

Society, 1996.

[24] S. S. Vadhiyar and J. J. Dongarra. SRS - a framework for

developing malleable and migratable parallel applications

for distributed systems. In Parallel Processing Letters, vol-

ume 13, pages 291–312, June 2003.

9


