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Abstract

Mortality rates are known to vary by geographical location and to depend

on socio-economic factors. Demographic, ethnic and socio-economic mortality

factors vary by geographical location. Regions that are in closer proximity are

expected to have similar mortality because of similar socio-economic factors and

demographic characteristics. In this paper the spatial variability of Australian

mortality is assessed using a spatial model along with explanatory risk factors

including age, income, labour force participation and unemployment rate. Geo-

graphical variation is based on statistical subdivisions, areas of similar social and

economic backgrounds. Logistic regressions are estimated using an hierarchical

Bayes model with Markov Chain Monte Carlo methods for mortality rates in

208 statistical subdivisions in Australia for census years 1996, 2001 and 2006.

Spatial models explain mortality variation by geographical location better than

non-spatial models when limited data is available for socio-economic factors.

Explanatory factors, which also vary spatially, reduce the need for spatial models

for mortality. The modeling has implications for pricing and risk management

in life insurance companies. Geographical variation in risks can be quantified

using spatial models especially if there is limited data for risk factors that gen-

erate mortality heterogeneity. Employment and workforce participation, ethnic

background as well as income are found to be significant in explaining mortality

variation by geographical location in Australia. Geographical location has been

used recently in the UK based on postcode in pricing and risk management of

mortality and longevity risk products. As demonstrated in this paper, spatial

geodemographic models should be of significant interest to insurers in assessing

mortality risk.

Keywords: Mortality, Logistic regression, Geodemographic, Spatial, Hierar-

chical Bayes

JEL Classifications: G22, C50
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1 Introduction

Spatial variability in mortality rates as well as the effect of socio-economic factors has
attracted increased attention recently. Life insurers issuing life and annuity products
allow for significant risk factors known to affect mortality rates including age, gender,
and smoking status. In life insurance adjustments are made to mortality rates used for
premiums based on health status. With the increase in sales of annuity products insurers
are offering impaired lives annuity rates. Postcode underwriting reflecting geographical
varication in mortality is increasingly used by insurers in the UK. Mortality risk has
traditionally been quantified using a life table of age-based survivor probabilities. These
life tables differ by risk factors including gender and, for life insurance purposes, smoking
status. There are other risk factors related to socio-economic status that also impact
mortality.

Spatial models have been developed and applied to modeling house prices, crime
levels and diseases amongst many others. Rosen (1974) [21] models house prices using
spatial covariates including environmental attributes and geographical characteristics.
Waller et al. (2007) [28] models geographic variation in alcohol distribution and violent
crime in Houston. Kandala and Madise (2004) [18] use spatial analysis to study
geographical variations in the impact of diarrhea and fever among infants in Africa.
Kazembe (2007) [16] examined spatial clustering of malaria risks in northern Malawi.

Geodemographic modeling, the spatial modeling of demographic data, is used in a
range of applications. Commercial applications include customer profiling for product
marketing and development. Grubesic, 2004 [14] applies geodemographic models to
assess broadband access. Richards (2008) [20] uses geodemographic profiles based on
postcodes to analyse life insurance and pension scheme mortality. Tuljapurkar and
Boe (1998) [24] outline mortality differentials by sex, education and socio-economic
variables. Richards and Jones (2004) [19] discuss the impact of socio-economic status
on mortality rates in the UK. For Australia, there is limited formal modeling and
analysis of mortality variation by geographical location using spatial models and limited
analysis of variation of mortality according to socio-economic risk factors. Jain, 1994
[2], Wilkinson et al., 2000 [30] and Turrell et al., 2004 [25] provide only a descriptive
analysis of Australian mortality from a spatial perspective.

Mortality is known to vary spatially and geographic regions in close proximity
have similar mortality because of similar socio-economic and demographic characteris-
tics. Significant geographical variation in mortality occurs in many countries including
Australia. In the United Kingdom, socio-economic factors were implicitly allowed in
insurance based on policy or annuity amounts. Individuals with larger annuity amounts
have lower mortality rates. Richards (2008) [20] shows that a mortality model using
geodemographic classifications better fits United Kingdom annuitant mortality than a
model using pension amount.

This paper assesses the geographical variation in mortality rates in Australia. Socio-
economic and demographic factors including unemployment rate, age, indigenous pro-
portion, income, occupation, birthplace and labour force participation rate. Spatial
models and covariate models are used to explain the geographical variation. The anal-
ysis covers the period 1993-2007 using Statistical Subdivisions. Statistical Subdivisions
(SSDs) are defined by the Australian Bureau of Statistics (ABS, 2008 [4]) to be “socially
and economically homogeneous regions characterized by identifiable links between the
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inhabitants” covering the whole of Australia. Logistic regression along with spatial
frailties and covariates are used. The methodology can be readily applied to studying
spatial variations of mortality in other countries and for more refined geographical
subdivisions.

Spatial models are found to explain mortality variation by geographical location
more effectively than non-spatial models when limited data is available. Spatial models
capture geographical variation in mortality. This is especially the case if there is limited
data for socio-economic factors that generate mortality heterogeneity. Explanatory
factors, which also vary spatially, reduce the need for spatial models and provide
information about causes of geographical variation in mortality.

Life insurance companies need to assess mortality heterogeneity for pricing and risk
management of insurance policies. Modeling geographical variation in mortality has the
potential to reduce the need to take socio-economic factors into account in both pricing
and risk management. At the same time identifying and quantifying the significant
socio-economic and demographic risk factors that impact mortality provides valuable
information that spatial modeling does not.

The next sections outline models used for covariates (risk factors) and spatial mod-
eling for mortality rates. The data used in the models is then summarized. Following
that the results are presented and discussed. Finally conclusions are summarized.

2 Modeling Geographical Variation in Mortality

Mortality can be modeled using survival (time to death) data or aggregate death rate
data. If data on individual characteristics including death dates are available then
hazard rates can be estimated using proportional hazards models to quantify the effect
of covariates. For aggregate data on deaths and exposures, the effect of covariates on
death rates can be estimated using logistic regressions. Both approaches to modeling
can be modified to include spatial variation. Frailty models are used for heterogeneity in
mortality rates to account for unobserved covariates (Vaupel et al. (1979) [26]). Frailty
models can also be used to capture spatial variation and unobserved heterogeneity.
Banerjee and Carlin (2003) [6] provide details of spatial frailty models in the hierarchical
Bayes model.

2.1 Proportional Hazards Models

A proportional hazards model including covariates for different geographic regions can
be written:

h(tij;xij) = h0(tij) exp(βTxij), (1)

where h0 is the baseline hazard, tij is the time to death or censoring and xij is
the individual-specific covariates for the jth individual in region i respectively, where
i = 1, ..., I and j = 1, ..., ni. The model assumes that the shape of the hazard functions
are similar for different regions. Region-specific frailties are incorporated by introducing
Wi = log wi, the frailty for region i, to obtain:
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h(tij;xij) = h0(tij) wi exp(βTxij)

= h0(tij) exp(βTxij + Wi), (2)

Simple i.i.d. specifications including the gamma distribution, the log-normal dis-
tribution and the normal distribution, have been assumed for Wi (McGilchrist and
Aisbett, 1991 [17] and Wienke, 2003 [29]).

Using the indicator variable γij =

{

1 if dead

0 if alive
, the likelihood of the model is:

L(β,W, t,x, γ) ∝
I

∏

i=1

ni
∏

j=1

{h0(tij;xij)}
γij exp{−H0(tij) exp(βTxij + Wi)}, (3)

where

H0(t) =

∫ t

0

h0(u)du,

is the integrated baseline hazard function (Banerjee and Carlin (2003) [6]).

2.2 Spatial Logistic Modelling

Proportional hazards models require data at the individual level including the time until
death. If data is only available at the aggregate level for death rates then the logistic
regression model can be used. The event time data tij is replaced with an indicator

Yij =

{

1 survived

0 otherwise.
and ρij = Pr(Yij = 1), has a logistic frailties model:

logit(ρij) = βTxij + Wi, (4)

where Wi is the frailty term for region i, β are the parameters and xij are the
individual-specific covariates for the jth subject in region i.

Ingram and Kleinman (1989) [15] and Doksum and Gasko (1990) [11] show that
the results for the β parameters can be quite similar in the two different models when
the probability of death is small or where there is no censoring. However, since the
proportional hazards model is based on more information than the logistic regression
model, Banerjee et al. (2003) [7] note that the proportional hazards model should be
more powerful in detecting significant covariate effects.

2.3 Geostatistical Modelling

Because of the assumption of independent frailties, the models do not account for spatial
correlations. Spatial effects can be modeled using continuous geostatistical models or
discrete lattice models.

The geostatistical approach uses the exact geographical location of a region (Cressie
(1993) [10]). Frailties W are indexed continuously throughout a geographical region D.
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A prior distribution given observations Wi for known locations i, i = 1, ..., I, is used for
the unobserved frailty values at other target locations t ∈ D by assuming:

W | θ ∼ NI(0, H(θ)), (5)

where H(θ)ij denotes the covariance structure between region i and region j. This
is usually assumed to be isotropic where the spatial correlation between regions depend
only on the Euclidean distance dij between region i and region j. Cressie (1993) [10] and
Stein (1999) [23], amongst others, discuss other isotropic specifications for H, including
the powered exponential given by:

H(θ)ij = σ2exp(−φ dκ
ij), σ2 > 0, φ > 0, κ ∈ (0, 2]. (6)

Zimmerman (1993) [31] discusses how the strength of spatial dependence may also
depend on the direction, referred to as anisotropy. Ecker and Gelfand (1999) [13], use
a combination of Bayesian and semivariogram estimation techniques for geostatistical
anistropic models.

2.4 Lattice Modelling

When W is defined only for discrete regions such that the regions form a partition of
the geographical study space D, then this is the lattice model. Banerjee and Carlin
(2002) [5] use the CAR conditionally autoregressive model for the prior distribution:

W | λ ∼ CAR(λ), (7)

introduced in Besag et al. (1991) [9]. Bernardinelli and Montomoli (1992) [8] refer
to the most common form of this prior having the following joint distribution:

W |λ ∝ λI/2 exp

[

λ

2

I
∑

i=1

ni
∑

j=1

αij Wi (Wi −
1

∑ni

j=1 αij

I
∑

j=1

αij Wj)

]

, (8)

where αij represents the weights between region i and region j. With spatial
correlation, higher weights should be assigned to regions in closer proximity to each

other. For example αij =

{

1 i adj j,

0 otherwise.
, in which case Equation (8) simplifies to:

W |λ ∝ λI/2exp

[

−
λ

2

I
∑

i=1

miWi(Wi − W̄j)

]

, (9)

where W̄i is the average of the frailties Wj 6=i that are adjacent to region i, and mi

is the number of these adjacencies. This then gives

Wi |Wj 6=i ∼ N(W̄i,
1

λmi

). (10)

The CAR model displaces each individual region-effect estimates towards the local
‘mean effect’ W̄i. Banerjee et al. (2003) [7] note that the lattice model is computation-
ally simpler compared to the geostatistical approach.
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2.5 Spatio-Temporal Modelling

Mortality rates evolve through time (Jain, 1994 [2]; Wilkinson et al., 2000 [30] and ABS,
2008 [1]) so that a model with both dependence in space and through time would be ideal
if sufficient data were available. Such a model is referred to as a spatio-temporal model.
Banerjee and Carlin (2003) [6] discuss models that incorporate temporal dependence
in an analysis of the survival of women diagnosed with breast cancer in Iowa. If tijk
denotes the time to death for the jth subject in region i in the year k with i = 1, 2, ..., I,
k = 1, 2, ..., K and j = 1, 2, ..., nik, xijk denotes the vector of covariates, Wik the spatio-
temporal frailties corresponding to the ith region in the kth year, then, Equation (2)
becomes:

h(tijk;xijk) = h0(tijk) exp(βTxijk + Wik). (11)

Assuming a lattice structure and a CAR(λk) model (see Besag et al., 1991 [9]) the
prior distribution is:

λ
I/2
k exp

[

−
λk

2

∑

i adj j

(Wik − Wjk)
2

]

∝ λ
I/2
k exp

[

−
λk

2

I
∑

i=1

mi Wik (Wik − W̄jk)

]

(12)

where i adj j denotes that region i and region j are adjacent to each other, and W̄ik

is the average of the frailties Wjk adjacent to region i for the kth year and mi represents
the number of these adjacencies. The conditional distribution of Wik becomes:

Wik |W(j 6=i)k ∼ N(W̄ik,
1

λk mi

), (13)

2.6 Non-Spatial Frailties

Waller et al. (1997) [27] include non-spatial frailties Vk to capture unexplained residuals.
Eberly and Carlin (2000) [12] and Banerjee and Carlin (2003) [6] proposed that Vik ∼
N(0, 1

τk
) and noted that the choice of priors for τk must be carefully defined. The joint

likelihood function becomes:

L(β,W,V; t,x, γ) ∝
K
∏

k=1

I
∏

i=1

nik
∏

j=1

{h0(tijk;xijk)}
γijk ·

exp{−H0(tijk)exp(βTxijk + Wik + Vik)}, (14)

where γijk is an indicator (0 for survive, 1 for dead) for the jth subject in region i

in the kth year.

3 Logistic Regression Models for Australian Geo-

graphical Regions

The ideal data for analysis of mortality risk is socio-economic, demographic and deaths
data at the individual level through time. This would allow the estimation of survival
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models with spatial data and proportional hazards models for risk factors. This data is
usually only available from longitudinal studies or possibly from census and deaths data
at the individual level. Only aggregate data was available for this study. As a result
a logistic regression (GLM) model is used along with allowance for spatial frailties.
Ingram and Kleinman (1989) [15], Doksum and Gasko (1990) [11] and Banerjee et al.
(2003) [7] compare proportional hazards and logistic models and find only marginal
differences in the efficiency of the covariate parameters of the two different models.

Models used are hierarchical Bayes. A prior distribution is assumed for the pa-
rameters, which along with the likelihood of the data given the parameters, is the
posterior distribution for the parameters given the data. Parameters were estimated
using Markov Chain Monte Carlo. The Conditionally Autoregressive (CAR) model for
spatial variation is used.

3.0.1 Logistic Regression

The generalized linear model with a logit link function has the following likelihood:

L(β;x) ∝
I

∏

i=1

{
e

∑m
j=1

βjxij

1 + e
∑m

j=1
βjxij

}, (15)

where m is the number of covariates, xi the vector of covariates respectively for
subdivision i, i = 1, 2, ..., I. The posterior distribution is:

p(β|x) ∝ L(β;x) p(β), (16)

where the first term on the right represents the logistic likelihood, and the second is
the prior distribution for the parameters. A vague uniform prior distribution is adopted
with small mean and large variance because of a lack of knowledge about the parameters
(Banerjee et al. (2003) [7]. This prior for β is used in all the models.

3.0.2 Non-Spatial Frailties Model

The model is extended to include frailties with likelihood:

L(β,W;x) ∝
I

∏

i=1

{
e

∑m
j=1

βjxij+Wi

1 + e
∑m

j=1
βjxij+Wi

}, (17)

where Wi is the frailty for subdivision i, which captures any remaining effects not
explained by the covariates. Under this non-spatial frailties setting, the frailties are
assumed to be identical and independently distributed with the following distribution:

Wi ∼ N(0, σ2). (18)

Equation (18) assumes no spatial dependence since frailties in one SSD are inde-
pendent of frailties in another. The hierarchical Bayes model is:

p(β,W, σ2|x) ∝ L(β,W;x)p(W|σ2)p(β)p(σ2), (19)

where the likelihood is given by Equation (17). As in Banerjee et al. (2003) [7], a
Gamma(0.001, 0.001) prior distribution is used for τ = 1

σ2 with mean 1 and variance
1000. A flat Uniform(−10000, 10000) prior was adopted for β.
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3.0.3 Spatial Frailties Model

Adjacent subdivisions are expected to share similar characteristics. To allow for spatial
correlations between nearby SSDs, a CAR specification is assumed with an adjacency
matrix to capture the geographical variations. In this adjacency matrix, the ijth entry
is assigned a value of 1 if subdivision i is adjacent to subdivision j and 0 otherwise.
The hierarchical Bayes model is:

p(β,W, λ|x) ∝ L(β,W;x) p(W|λ) p(β) p(λ), (20)

where the prior W |λ is given by:

λI/2 exp

[

λ

2

∑

i adj j

(Wi − Wj)
2

]

∝ λI/2 exp

[

λ

2

I
∑

i=1

mi Wi (Wi − W̄j)

]

, (21)

where i adj j denotes that subdivision i and subdivision j are adjacent to each other,
W̄i is the average of the frailties Wj, adjacent to subdivision i and mi represents the
number of these adjacencies (Bernardinelli and Montomoli (1992) [8]). A consequence
of the above prior is that:

Wi |Wj 6=i ∼ N(W̄i,
1

λ mi

). (22)

A higher value of λ indicates lower deviance from the mean of the frailties in
adjacent SSDs. The higher the value of λ, the higher the clustering between adjacent
subdivisions. The previous priors are used along with a prior distribution for the
smoothness parameter λ in the CAR specifications for the frailties Wi. To reflect a lack
of prior knowledge of a suitable value for λ, a vague Gamma(0.001, 0.001) specification
is chosen with mean 1 and variance 1000.

3.0.4 Assessing Model Choice

The Deviance Information Criterion (DIC), an extension of the Akaike Information
Criterion (AIC), is commonly used to compare the performance of different models
(Spiegelhalter et al. (2002) [22]). It is readily calculated using MCMC methods
(Banerjee and Carlin (2003) [6]). The DIC is defined as:

DIC = D̄ + pD, (23)

with closeness of fit to the data measured by D̄ = Eθ|y[D] and the effective number
of parameters measured by pD. pD is defined as

pD = Eθ|y[D] − D(Eθ|y[θ]) = D̄ − D(θ̄), (24)

which is the deviance of the posterior mean subtracted from the posterior mean at
the deviance. The deviance statistic is:

D(θ) = −2 log f(y|θ) + 2 log h(y), (25)

where f(y|θ) is the likelihood, y the data vector, θ the parameter vector, and h(y)
a standardising function of the data alone. It does not have any impact on model
selection.
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Small values of D̄ represent a good fit and small values of pD indicate a more
parsimonious model. Smaller values of DICs are preferred. DICs are only used to
compare models.

4 Data

4.1 Australian Standard Geographical Classification

Data used for the analysis consists of deaths data, population data and covariate
data from the Australian Bureau of Statistics (ABS) by geographical area using the
Australian Standard Geographical Classifications (ASGC) 2006 [4]. Under this classifi-
cation structure, Australia is split up into different hierarchical regions. The following
hierarchical spatial units are used: 9 States and Territories (S/T), 69 Statistical Divi-
sions (SD), 217 Statistical Subdivisions (SSD), 1,426 Statistical Local Areas (SLA) and
38,704 Census Collection Districts (CD), where the last spatial unit is used only during
Population Census years.

31020

31015

32001
31005

12005

12010

31510

31505

12505

13020

13015

35005

35010

34510

13510

15015

41015

42005
41510

42010

41020

4100541505

42505

41010

43515

43505

43520

43010
13010

11010
11005

13505
12510

54505

52510

42510

14005

14010

14505

81005

11510

15510

14510

14520

14515

11505

15505

62005

61505

61515

61510

61005

62015

62010

71025

51015

5200551005

51010

51020

52505

52010

53515

33010

33005

13515

71005

71010

34010

34005

34505

71030

53010

14015

1501015515

15520

16010

32005

32505

33015

33505

34515

35505

43005

43525

51505

51510

52515

53005

53505

53510

54005

54010

54510

71015

71020

71035

71040

Figure 1: Statistical Subdivisions Classification by ABS, 2006

The data used was for Statistical Subdivisions (SSDs). Individuals within each SSD
exhibit similar characteristics and therefore represent homogeneous risk profiles. Figure
1 shows the classification of SSDs for Australia. There are 8 SSDs within the Australian
Capital Territory, whereas only a slightly larger number of 12 SSDs exist in the vast
landmass of the Northern Territory. Over 200,000 males live in the SSD of Newcastle
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(SSD Code: 11005), whereas the SSD of Australian Capital Territory - Bal (SSD Code:
81005) has a total population of only 160 males in 2006.

Statistical Subdivisions (SSDs) are used because the number of 69 SDs is not refined
enough for insurance applications. Using the 1,426 Statistical Local Areas (SLAs) or
38,704 Census Collection Districts (CDs) involved confidentiality issues and provides
less data for each spatial area. Of the 217 SSDs in Australia, only 208 SSDs were
included because of data availability and confidentiality. Census data and deaths data
was collected for the 208 SSDs. The SSDs that were omitted in the analysis represent
regions which are off-shore with population sizes well under 1,000. The 9 SSDs that
were omitted were not critical to the analysis and were: Off-Shore Areas & Migratory
(NSW) - SSD Code: 18501; Off-Shore Areas & Migratory (VIC) - SSD Code: 28501;
Off-Shore Areas & Migratory (QLD) - SSD Code: 38501; Off-Shore Areas & Migratory
(SA) - SSD Code: 48501; Off-Shore Areas & Migratory (WA) - SSD Code: 58501;
Off-Shore Areas & Migratory (TAS) - SSD Code: 68501; Off-Shore Areas & Migratory
(NT) - SSD Code: 78501; Other Territories (OT) - SSD Code: 95001; and Off-Shore
Areas & Migratory (OT) - SSD Code: 98501.

4.2 Deaths Data

The number of deaths for five year periods for both males and females in each SSD
was obtained from the ABS. The 5-year periods used were: 1993-1997, 1998-2002 and
2003-2007 to match the classifications of ASGC (2006) [4] and the data for census years
1996, 2001 and 2006. Mortality rates were determined by dividing the total number of
deaths in the five year periods by five times the corresponding census population for
each SSD. They represent a 5 year level of mortality and the study considers a 15 year
period in total. The years 1996, 2001 and 2006 refer to mortality rates for the periods
1993-1997, 1998-2002 and 2003-2007 respectively.

Figure 2 shows the male mortality rates for 2006. Higher mortality rates occur in the
south eastern region of Australia and lower mortality rates occur in Western Australia,
South Australia and the capital cities. There are lower mortality rates in capital cities.
Figure 3 maps the female mortality rates for 2006. A similar geographical pattern is
evident in the female mortality rates. Lighter shades in the female map reflect the
lower overall magnitude of female mortality rates compared to male mortality rates
in Australia. Similar maps for 1996 and 2001 show that the geographical variation in
Australian mortality rates changed little over the period 1993-2006.

10



Figure 2: Males 2006 Mortality Rates

Figure 3: Females 2006 Mortality Rates
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4.3 Census Data

Census data for covariates reflecting socio-economic factors were obtained from the
ABS for males and females for 1996, 2001 and 2006. Census data dates back earlier,
but were not available for the current ASGC (2006) [4] classifications. The data series
obtained were selected to reflect the major factors expected to affect mortality. They
were:

• Unemployment rate

• Age structure of the population

• Median individual income levels

• Place of birth

• Occupation levels (according to the Australian and New Zealand Standard Clas-
sification of Occupations, 2006 [3])

• Number of people with indigenous origins

• Labour force participation rate

• Education levels

Some of the data series had a significant amount of data which was “inadequately
described” or “not stated” in the census. Only variables with less than 10% of inad-
equate data were selected for use to ensure a high level of accuracy. Unfortunately
education levels had approximately 25% of the data as inadequate and was excluded.
There are other factors included that are strongly correlated with education such as
median income and occupation.

Table 1 summarizes the notation and definitions of the covariates used for analysis.
Each covariate is standardized before being used in the models to provide clearer
interpretation of parameters in terms of variation of the factors.

Table 1: Notation and Definition of Covariates
Characteristics Covariates

Unemployment Unemployment Rate of SSD in %
Age Proportion of Population 65 or Above in %
Income Median Individual Income in AUD
Overseas Proportion of Population Born Overseas in %
Occupation Proportion of Low-Skilled Workers in %

(Machinery Operators, Drivers and Labourers) [3]
Indigenous Proportion of Population with Indigenous Origins in %
Labour Labour Force Participation Rate of SSD in %

In Appendix A Figures 23 - 36 plots of the standardized covariates by gender
and census years are provided. Only the Males 2006 and Females 2006 standardised
covariate plots are shown for space reasons. In the plots, red (lighter) indicates positive
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standardised data values and blue (darker) indicates negative standardised data values.
These plots show how all covariates are spatially correlated, with similar measures of
demographic and economic characteristics between nearby SSDs. There are similar
geographical variations between standardised covariates for males and females. Only
relatively small changes occur in the pattern of standardised data for the covariates
from 1996 to 2006.

High Unemployment, high Overseas and low Occupation (unskilled workers pro-
portion) variables concentrate in the urban and capital cities. Rural regions are often
associated with low Unemployment, low Overseas and high Occupation variables. A
lower than average Labour (workforce participation rate) variable is observed in the
coastal areas. Higher Income variables occur in capital cities around Australia. There
is also higher than national average Income variables in rural and less populated regions
in Western Australia and South Australia. Higher proportions of population with
indigenous origins occur in the Northern Territory. Victoria shows the lowest level
of indigenous proportion in Australia.

5 Results and Discussion

A generalised linear logistic regression model with the selected standardised covariates
was fitted to the mortality rates for Males 2006 and Females 2006. Table 2 provides the
parameter estimates and p-values of the covariates. All covariates are significant at the
5% level. Higher levels of Unemployment, Age, Indigenous and Labour variables have
higher mortality rates and higher levels of Income, Overseas and Occupation variables
have lower mortality rates.

Table 2: Results of Simple GLM for Males 2006 and Females 2006
Covariates Males 2006 Females 2006

β p-value β p-value

Intercept -4.941072 <2e-16 -5.079094 <2e-16
Unemployment 0.033225 <2e-16 0.021947 5.62e-09
Age 0.203857 <2e-16 0.331761 <2e-16
Income -0.097017 <2e-16 -0.041879 <2e-16
Overseas -0.044966 <2e-16 -0.011762 1.51e-06
Occupation -0.063694 <2e-16 -0.023508 1.48e-09
Indigenous 0.034164 3.45e-08 0.031776 3.72e-05
Labour 0.017509 0.00138 0.091902 <2e-16

Table 3 shows the fitted model including interaction terms. The effect of income is
seen to depend on Overseas, Occupation and Labour variables and the Overseas effect
depends on the Occupation and Labour variables.
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Table 3: GLM with Interaction Terms for Males 2006 and Females 2006
Covariates Males 2006 Females 2006

β p-value β p-value

Intercept -4.923961 <2e-16 -5.067186 <2e-16
Unemployment 0.057167 <2e-16 0.019644 4.65e-06
Age 0.260605 <2e-16 0.309064 <2e-16
Income -0.122080 <2e-16 -0.127572 <2e-16
Overseas -0.030401 <2e-16 -0.027687 <2e-16
Occupation -0.052651 <2e-16 -0.059814 <2e-16
Indigenous 0.085992 <2e-16 0.039646 1.73e-07
Labour 0.093241 <2e-16 0.096293 <2e-16
Income*Overseas 0.041217 <2e-16 0.045536 5.59e-15
Income*Occupation -0.020306 1.08e-13 -0.070073 <2e-16
Income*Labour -0.060051 <2e-16 -0.091559 <2e-16
Overseas*Occupation 0.016799 2.44e-09 0.014250 2.26e-08
Overseas*Labour -0.036501 <2e-16 -0.036109 <2e-16

These models do not include spatial frailties.

5.1 Model with Covariate Age and Spatial Frailties

In order to compare the use of spatial models with additional covariates, only the
Age covariate was used in the model for Australian mortality rates for Males 2006
and Females 2006. The non-spatial frailties model and the spatial frailties model were
then fitted and compared. While the former assumes that frailties in each SSD are
independent and identically distributed, the latter employs a CAR specification to
capture the spatial dependence between adjacent SSDs.

Table 4 shows the Deviance Information Criterion (DIC) for the three models.

Table 4: Goodness of Fit for Models with Covariate Age Only
Model pD DIC

Non-Spatial No-Frailties Model 1.998 8221.78
Non-Spatial Frailties Model 197.53 2224.03
Spatial Frailties Model 191.816 2222.94

Comparisons of DIC values show that the models with geo-spatial frailties are a
significant improvement over the no-frailties model, despite the increase in the num-
ber of effective parameters. Although the spatial frailties model and the non-spatial
frailties model have similar DICs, the spatial frailties model has a smaller pD value
demonstrating the importance of including spatial dependence.

14



Figure 4: Standardized Error Map for Non-Spatial Model with Covariate Age (Males
2006)

Figure 5: Standardized Error Map for Spatial Model with Covariate Age (Males 2006)

Figure 4 and Figure 5 map the standardized error plots for Males for 2006 under
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Figure 6: Standardized Error Map for Non-Spatial Model with Covariate Age (Females
2006)

the non-spatial model and the spatial model respectively. Figure 6 and Figure 7 are the
standardized error plots for Females for 2006. While the errors of the spatial-frailties
model appear random, a degree of spatial clustering is evident for the errors of the non-
spatial frailties model. This is seen for the Males 2006 error map where overestimation
occurs in Western Australia and South Australia, while death rates are underestimated
in the Northern Territory and the south eastern parts of Australia. Although less
apparent, similar observations can be made for the error plots for Females 2006.

Using only the Age covariate, the models show that spatial dependence is beneficial
in explaining geographical variation in Australian mortality rates. This spatial variation
has been captured in the spatial frailty terms. The non-spatial frailties model, although
accounting for the heterogeneity from the missing risk factors, has spatial dependence
in the model errors.

5.2 Models including all Covariates

All the covariates Unemployment, Age, Income, Overseas, Occupation, Indigenous,
Labour and five interaction terms including Income*Overseas, Income*Occupation,
Income*Labour, Overseas*Occupation and Overseas*Labour were fitted for both males
and females for the census years 1996, 2001 and 2006. Tables 5 - 8 provide the 2.5%,
50% and 97.5% posterior percentiles for each of the predictors and interaction terms
for both non-spatial and spatial models for Males 2006 and Females 2006. Bold text

indicates statistical significance.
Both the spatial and non-spatial models have the same significant covariates. Higher
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Figure 7: Standardized Error Map for Spatial Model with Covariate Age (Females 2006)

death rates in a SSD are associated with higher levels of Unemployment, Age, Indige-
nous and Labour covariates. Lower Overseas and Income covariates correspond to
higher mortality rates. The lower mortality rates for higher values of the Overseas
covariate is assumed to reflect selection of migrants to Australia as younger, healthier
and wealthier than the average population.

Not all the covariates and interaction terms are significant at the 5% level. For the
non-spatial frailties model for Males 2006, the covariates Overseas and Occupation are
not significant, while for the spatial frailties model, the covariates Income and Occu-
pation are not significant. The interaction terms of Income*Overseas, Income*Labour
and Overseas*Labour are significant in the non-spatial frailties model. The interaction
term Income and Labour is the only significant interaction term for the spatial frailties
model.

For the Females 2006, Income, Overseas and Occupation covariates are not signif-
icant at the 5% level for the non-spatial frailties model. Overseas, Occupation and
Labour are not significant in the spatial frailties model. The interactions between
Income*Overseas and Income*Labour are significant for the non-spatial model while
Income*Occupation and Income*Labour are significant for the spatial frailties model.
The negative parameter value for the interaction term Income*Labour shows that a
SSD with a higher proportion of people participating in the labour force reduces the
effect of changes in Income.

A summary of the significant parameters for the models for all the years including
the non-spatial (IID) and spatial frailties model for males and females is shown in Table
9. Age and Indigenous covariates and the interaction terms for Income*Overseas and
Income*Labour are significant across these census years. Occupation and other interac-
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Table 5: Posterior Summaries for Non-Spatial Frailties Model (Males 2006) bold font
indicates significant co-variate

Covariates 2.5% 50% 97.5%

Intercept -4.9740 -4.9480 -4.9190
Unemployment 0.0451 0.0741 0.1019
Age 0.2143 0.2556 0.2998
Income -0.1475 -0.1031 -0.0576
Overseas -0.0552 -0.0274 0.0016
Occupation -0.0503 -0.0157 0.0177
Indigenous 0.0421 0.0822 0.1230
Labour 0.0479 0.0898 0.1359
Income * Overseas 0.0238 0.0697 0.1123
Income * Occupation -0.0209 -0.0050 0.0112
Income * Labour -0.0628 -0.0379 -0.0139
Overseas * Occupation -0.0286 0.0045 0.0317
Overseas * Labour -0.0719 -0.0381 -0.0013
τ 41.81 52.76 66.11

Table 6: Posterior Summaries for Spatial Frailties Model (Males 2006)
Covariates 2.5% 50% 97.5%

Intercept -4.9440 -4.9250 -4.9050
Unemployment 0.0396 0.0748 0.1077
Age 0.2557 0.2961 0.3412
Income -0.0796 -0.0205 0.0313
Overseas -0.0853 -0.0490 -0.0100
Occupation -0.0403 -0.0081 0.0219
Indigenous 0.1049 0.1551 0.2042
Labour 0.0128 0.0587 0.1043
Income * Overseas -0.0016 0.0402 0.0885
Income * Occupation -0.0140 0.0009 0.0163
Income * Labour -0.0710 -0.0483 -0.0253
Overseas * Occupation -0.0136 0.0168 0.0448
Overseas * Labour -0.0671 -0.0333 0.0001
λ 15.48 19.80 25.04

tion terms including Income*Occupation, Overseas*Occupation and Overseas*Labour
are not significant for the majority of the models. Interestingly, Income, Overseas and
Labour covariates are not significant in earlier years but are more significant in recent
years. The impact of Unemployment on mortality rates has increased over this period.
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Table 7: Posterior Summaries for Non-Spatial Frailties Model (Females 2006)
Covariates 2.5% 50% 97.5%

Intercept -5.1050 -5.0730 -5.0370
Unemployment 0.0540 0.0895 0.1276
Age 0.3551 0.4019 0.4529
Income -0.0912 -0.0389 0.0146
Overseas -0.0243 0.0090 0.0423
Occupation -0.0243 0.0119 0.0488
Indigenous 0.0891 0.1331 0.1782
Labour 0.1001 0.1581 0.2123
Income * Overseas 0.0175 0.0847 0.1361
Income * Occupation -0.0457 -0.0221 0.0013
Income * Labour -0.1123 -0.0803 -0.0479
Overseas * Occupation -0.0188 0.0075 0.0344
Overseas * Labour -0.0692 -0.0244 0.0196
τ 34.88 44.37 56.00

Table 8: Posterior Summaries for Spatial Frailties Model (Females 2006)
Covariates 2.5% 50% 97.5%

Intercept -5.0680 -5.0460 -5.0240
Unemployment 0.0358 0.0727 0.1084
Age 0.3286 0.3777 0.4288
Income 0.0030 0.0523 0.0961
Overseas -0.0727 -0.0355 0.0045
Occupation -0.0482 -0.0143 0.0181
Indigenous 0.1414 0.1945 0.2463
Labour -0.0066 0.0542 0.1156
Income * Overseas -0.0163 0.0305 0.0792
Income * Occupation -0.0480 -0.0286 -0.0080
Income * Labour -0.1283 -0.0998 -0.0717
Overseas * Occupation -0.0069 0.0175 0.0402
Overseas * Labour -0.0463 -0.0045 0.0316
λ 15.25 19.52 24.88

Table 9: Significance of Covariates for Different Models
Males Males Females Females Males Males Females Females Males Males Females Females

Covariates 2006 2006 2006 2006 2001 2001 2001 2001 1996 1996 1996 1996
(Spatial) (IID) (Spatial) (IID) (Spatial) (IID) (Spatial) (IID) (Spatial) (IID) (Spatial) (IID)

Unemployment X X X X X X

Age X X X X X X X X X X X X

Income X X X X

Overseas X X X

Occupation
Indigenous X X X X X X X X X X

Labour X X X

Income * Overseas X X X X X X X X X X

Income * Occupation X X X

Income * Labour X X X X X X X X X X X X

Overseas * Occupation X X

Overseas * Labour X X
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5.2.1 Unemployment

Figure 8 plots the confidence intervals of the estimated Unemployment parameters for
the spatial and non-spatial models. While the covariate is not significant in earlier years,
a positive relationship between the unemployment and mortality rates is observed in
2006 for both males and females. SSDs with higher unemployment rates exhibit higher
mortality levels.
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Figure 8: Boxplot of Unemployment Covariate

5.2.2 Age

The boxplots in Figure 9 show that the higher the proportion of people aged 65 or
above, the higher the mortality rates within a SSD. The proportion of females 65+ has
a greater impact on mortality levels than the proportion of males 65+.
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Figure 9: Boxplot of Age Covariate
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5.2.3 Income

Income is not significant for many of the models. Figure 10 shows a statistically
significant inverse relationship between Income and mortality rates for most of the non-
spatial IID models. Spatial frailties models reduce the effect of income on mortality
within a SSD.
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Figure 10: Boxplot of Income Covariate

Non-spatial (IID) frailties models show a more negative relationship between mor-
tality rates and Income. Differences in parameter values for the spatial and non-spatial
models are statistically significant for most of the models. The impact of Income on
mortality rates are less significant when the frailties are assumed to be correlated with
adjacent SSDs. Not including spatial dependence affects the significance and magnitude
of estimated parameters.

5.2.4 Indigenous Population

Figure 11 shows that the proportion of individuals with indigenous origins is an im-
portant factor in explaining geographical variation in mortality. A positive coefficient
shows that the higher the indigenous proportion in a SSD, the higher the mortality
rate, consistent with previous observations of Wilkinson et al. (2000) [30]. Also most
indigenous populations live away from urban centres and health facilities. Spatial mod-
els generally produce higher positive parameter values, so that when spatial dependence
is allowed in the frailties specifications, the effect of the Indigenous covariate is greater.
The impact of the Indigenous covariate has been increasing, indicating that differentials
between indigenous and non-indigenous population in Australia are widening.
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Figure 11: Boxplot of Indigenous Covariate

5.2.5 Interaction Terms

For males and females in 1996, 2001 and 2006, two interaction terms were found to
be significant for the majority of the models: Income*Overseas and Income*Labour.
Figure 12 reveals a positive coefficient for the interaction term Income*Overseas, so that
the effect of Income on Australia mortality is higher for SSDs with a high proportion
of people born overseas. Examination of the geographical variations in the proportion
of people born overseas in Australia shows that SSDs with a high overseas proportion
are generally located in major urban centres around Australia. The effect of income is
greater in these major cities than in more rural regions. A downward trend shows this
effect is diminishing over the past 10 years.
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Figure 12: Boxplot of Income*Overseas Interaction Term

The interaction between income levels and labour force participation rate is also
significant, as shown in Figure 13. Income has an effect that depends on labour force
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participation rate. Higher labour force participation rates reduce the effect of income.

Income*Labour
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Figure 13: Boxplot of Income*Labour Interaction Term

5.2.6 Other Covariates

The covariate Overseas has had an increased impact on mortality rates of Australia
in more recent years. While it was largely insignificant in 1996, there is a statistically
significant inverse relationship between the Overseas covariate and mortality rates in
recent years. This is assumed to be from the selection process where those who migrate
into Australia have to meet age, health and wealth requirements.
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Figure 14: Boxplot of Overseas Covariate
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Labour
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Figure 15: Boxplot of Labour Covariate

Although insignificant in the early years, the Labour covariate shows a positive
relationship with mortality rates in 2006. A SSD with a higher labour force participation
rate has a higher mortality rate than a SSD with a lower participation rate.
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Figure 16: Boxplot of Occupation Covariate

Figure 16 shows that occupation is not significant when frailties are included in the
models.

5.2.7 Prior Distribution Parameters: λ and τ

Under the spatial frailties model, a CAR specification was chosen to describe the
dependence between frailties in adjacent SSDs. A high value of λ indicates smaller
deviance from the average adjacent frailties W̄i. This means a higher degree of clustering
and spatial correlation between frailties of adjacent SSDs. The boxplot in Figure 17
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shows a slight increase in the estimated value of λ. There is increased spatial clustering
evident in more recent years.
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Figure 17: Boxplot of Parameter λ

Under the non-spatial model, the frailties are assumed to be independent and
identically distributed with Wi ∼ N(0, σ2) and τ = 1

σ2 . An increasing trend for the
value of τ is shown in Figure 18. This indicates that there is less need for frailty terms
in more recent years.
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Figure 18: Boxplot of Parameter τ

5.2.8 Goodness of Fit

Table 10 shows that the frailties models have very similar DIC values. All the pD

values for the spatial frailties model are smaller than the corresponding values in the
non-spatial frailties model showing that spatial frailties model reduce the effective model
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size pD and thus the complexity of the model by including spatial correlation between
adjacent SSDs.

Table 10: Goodness of Fit of Models
Model Males 2006 Males 2001 Males 1996

pD DIC pD DIC pD DIC

Spatial Model 189.499 2217.37 190.974 2213.25 194.708 2226.74
IID Model 191.586 2214.71 194.314 2211.22 196.264 2217.17

Model Females 2006 Females 2001 Females 1996

pD DIC pD DIC pD DIC

Spatial Model 185.355 2178.8 190.47 2184.97 188.897 2160.16
IID Model 190.285 2183.58 193.478 2177.61 193.743 2161.49

The spatial frailties and the non-spatial frailties model are similar when spatially
correlated covariates are included. In the circumstances of limited data, spatial models
provide substantial advantages over non-spatial models. There is less need for spatial
models as additional factors are incorporated into the modeling. Geographical vari-
ations in mortality rates are captured by the covariates since they are also spatially
correlated and capture the heterogeneity in mortality rates.

5.2.9 Model Errors

Figures 19-22 show the model error terms for the state of New South Wales to more
clearly illustrate the effect of the spatial models. Although differences are small between
the error terms of the spatial and non-spatial models, they show more randomness in
the spatial models and are more clustered in the non-spatial models.

Figure 19: NSW Errors Plot Males 2001
(IID) Figure 20: Errors Plot Males 2001 (Spatial)
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Figure 21: NSW Errors Plot Females 2001
(IID)

Figure 22: Errors Plot Females 2001
(Spatial)

Figures 19 and 21 show the error terms for a non-spatial specification for males
and females mortality data in 2001. Clustering of underestimation of mortality rates in
parts of the State are evident, while overestimation of mortality rates are concentrated
along the coastal line of New South Wales. The error plots for the spatial models show
randomness, indicating that spatially correlated covariates relevant to mortality rates
in Australia have been omitted. For Australia there is evidence of the clustering of
underestimation of mortality rates in New South Wales and to some extent, inland
Australia. Clustering of overestimation in mortality rates occurs in the coastal regions
of Queensland and Western Australia.

6 Conclusions

This paper has considered geographical variation of mortality and the effect of explana-
tory factors using Australian data. Logistic regressions in an hierarchical Bayes model
were used to estimate the impact of covariates extracted from ABS deaths and census
data on mortality rates. Models included spatial frailties to account for geographical
variation.

Socio-economic variables are known to affect mortality rates. Despite this, in
insurance and pensions the main risk factors taken into account are age, smoking status
and certain diseases with known impact on mortality. Increasingly geo-spatial data is
being considered for insurance risks and postcode underwriting is being used in the UK
for life annuities. Socio-economic factors are known to vary spatially, as does observed
mortality rates. Modeling a wider range of risk factors as well as spatial variation for
mortality rates should be of significant practical interest to the life insurance industry.

In existing insurer pricing and risk management, where spatially-correlated risk
factors are often overlooked, spatial models allow a more accurate assessment of pricing
and reserving strategies in practice. The implementation of spatial frailties models pro-
vides improved mortality risk estimation. Incorporating additional spatially-correlated
risk factors reduces the need for spatial models since these additional factors also vary
geographically. Even so, including spatial dependence improves the models even with
covariates.
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More detailed data at an individual level would allow better assessment of mortality
risk including the application of proportional hazards models. The models can be
applied in wider insurance risk applications and to assess more detailed data. Although
the focus has been on Australian mortality, the methodologies and framework covered
are readily applied in analyzing spatial variations of mortality and insurance risk factors
in other countries.
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8 Appendix A - Spatial Distribution of Covariates

Figure 23: Males 2006 Unemployment Figure 24: Males 2006 Age

Figure 25: Males 2006 Income Figure 26: Males 2006 Overseas
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Figure 27: Males 2006 Occupation Figure 28: Males 2006 Indigenous

Figure 29: Males 2006 Labour Figure 30: Females 2006 Unemployment

Figure 31: Females 2006 Age Figure 32: Females 2006 Income
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Figure 33: Females 2006 Overseas Figure 34: Females 2006 Occupation

Figure 35: Females 2006 Indigenous Figure 36: Females 2006 Labour
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