Name \qquad Date \qquad

Powers and Exponents

A power is a product of repeated factors. The base of a power is the common factor. The exponent of a power indicates the number of times the base is used as a factor.

Example 1 Write each product using exponents.

a. $(-9) \cdot(-9) \cdot(-9) \cdot(-9) \cdot(-9)$

Because -9 is used as a factor 5 times, its exponent is 5 .

$$
\text { So, }(-9) \cdot(-9) \cdot(-9) \cdot(-9) \cdot(-9)=(-9)^{5}
$$

b. $\pi \cdot \pi \cdot h \cdot h \cdot h$

Because π is used as a factor 2 times, its exponent is 2 . Because h is used as a factor 3 times, its exponent is 3 .
$>\mathrm{So}, \pi \cdot \pi \cdot h \cdot h \cdot h=\pi^{2} h^{3}$.

Example 2 Evaluate each expression.

a. $(-5)^{4}$

$$
\begin{aligned}
(-5)^{4} & =(-5) \cdot(-5) \cdot(-5) \cdot(-5) & & \text { Write as repeated multiplication. } \\
& =625 & & \text { Simplify. }
\end{aligned}
$$

b. -5^{4}

$$
\begin{aligned}
-5^{4} & =-(5 \cdot 5 \cdot 5 \cdot 5) & & \text { Write as repeated multiplication. } \\
& =-625 & & \text { Simplify. }
\end{aligned}
$$

Practice

Write the product using exponents.

1. $7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 77^{6}$
2. $\left(-\frac{1}{3}\right) \cdot\left(-\frac{1}{3}\right) \cdot\left(-\frac{1}{3}\right)\left(-\frac{1}{3}\right)^{3}$
3. $x \cdot x \cdot y \cdot y \cdot y \cdot y \cdot y \quad x^{2} y^{5}$
4. $2.5 \cdot 2.5 \cdot b \cdot b \cdot b \cdot b \quad 2.5^{2} b^{4}$
5. $(-n) \cdot(-n) \cdot(-n) \cdot(-n)(-n)^{4}$
6. $(-12) \cdot(-12) \cdot v \cdot v \cdot v(-12)^{2} v^{3}$

Evaluate the expression.

7. $10^{4} 10,000$
8. $-15^{2}-225$
9. $\left(\frac{3}{4}\right)^{3} \quad \frac{27}{64}$
10. $\left(-\frac{1}{2}\right)^{5}-\frac{1}{32}$
11. VOLUME Write an expression involving a power that represents the volume (in cubic centimeters) of the die shown. Then find the volume.
$\left(1 \frac{3}{5}\right)^{3} ; 4.096 \mathrm{~cm}^{3}$

