1. Fill in the following table. Each line corresponds to a point on the unit circle:

Degrees	Radians	X-coordinate	Y-coordinate
0°	0 or 2π	1	0
30°			
45°			
60°			
90°			

State the exact value (in simplified form) of the following trig functions and given angle.

State the exact value (in simplified form) of the following trig functions and given angle.		
2. cos 45°	3. $\tan \frac{\pi}{6}$	
4. $\csc \frac{\pi}{3}$	5. sec 60°	

Find the exact value (in simplified form) of each expression.

$6. \cot\frac{\pi}{2} + \cos\frac{\pi}{6}$	7. $\tan^2 60^\circ \times \sec^2 60^\circ$

Use the symmetry of the unit circle and reference angles as needed to state the *exact value* (in simplified form) of the following trig functions for the given angle. Show all work.

implified form) of the following trig functions for the given trigle. Show the work.		
8. tan 1050°	9. $\sec \frac{23\pi}{6}$	

10. Convert degrees from DMS to decimal or decimal to DMS: 32°47'50" (Round to four decimal places.)

- 11. Convert degrees from decimal to DMS: 112.762°
- 12. Find the area and length of the perimeter of a piece of pie if the central angle is 45° and the radius is 3 inches.

13. Find the ordered pair of the point in the unit circle that is on the terminal side of $\theta = \frac{7\pi}{6}$.

14. Write the equation of the sine function with amplitude 3, period π center line -1 and horizontal shift $\frac{\pi}{2}$.

15. Triangle ABC has a right angle at C if $\csc B = 5/2$, what is the $\cot B$?

Give the amplitude, period, horizontal shift, and vertical shift, of each function.

16. $y = -2\cos 2t$

Amplitude _____

Period

Horizontal Shift _____

Vertical Shift

Reflection? Yes or No

17. $y = 3 + 5\sin 2x$

Amplitude _____

Period _____

Horizontal Shift _____

Vertical Shift ____

Reflection? Yes or No

18. $y = 6\sin\left(\frac{\pi}{4}x + \frac{\pi}{2}\right) - 3$

Amplitude _____

Period _____

Horizontal Shift _____

Vertical Shift ____

Reflection? Yes or No

Give the amplitude, period, horizontal shift, vertical shift and whether or not each function is reflected across the x-axis. Write the equation for each curve in terms of cosine.

19.

Amplitude _____

Period _____

Horizontal Shift _____

Vertical Shift ____

Reflection? Yes or No

Equation _____

Give the amplitude, period, horizontal shift, and vertical shift of each function. Write the equation for each curve in terms of sine.

20.

Amplitude _____ Period _____

Horizontal Shift _____ Vertical Shift ____

Reflection? Yes or No

Equation _____

Identify the period, asymptotes, horizontal shift, vertical shift, and any other transformation of each function.

21.
$$y = 3 \tan \frac{\pi}{3} (x+1) - 4$$

Period _____ Horizontal Shift _____

Vertical Shift ____ Asymptotes _____

Reflection? Yes or No

22.
$$y = 2\csc\left(\frac{\pi}{6}x + \frac{\pi}{2}\right) + 1$$

Period _____ Horizontal Shift _____

Vertical Shift ____ Asymptotes _____

Other Transformations?

Reflection? Yes or No

Identify the period, asymptotes, horizontal shift, vertical shift, and any other transformation of each function. Write the equation for each curve.

23.

A=

Period

Horizontal Shift _____

Vertical Shift ____

Reflection? Yes or No

Equation _____

24.

A= _____ Period _____

Horizontal Shift _____Vertical Shift _____

Reflection? Yes or No

Equation _____

Rewrite each function; find the amplitude, period, horizontal shift, and vertical shift (write this as an equation y = center line). Graph each function

25.

$$y = -\cos\left(x + \frac{\pi}{2}\right) + 1$$

- A) Center line _____
- B) Amplitude _____
- C) Period _____
- D) Range _____
- E) Horizontal shift _____

Give a complete analysis and sketch one period of the graph of each equation.

26.

$$y = -2\cot\frac{\pi}{3}(x)$$

Period _____ Horizontal Shift ____

Vertical Shift ____

Asymptotes _____

Reflection? Yes or No

Domain

Range

Give a complete analysis and sketch one period of the graph of each equation.

$$y = -\csc(\frac{1}{2}x) + 1$$

Period Horizontal Shift

Vertical Shift ____

Asymptotes _____

Reflection? Yes or No

Domain

Range

28. In Vancouver, British Columbia, the number of hours of daylight reaches a low of 8.3 hours in January, and a high of nearly 16.2 hours in July. (a) Find a cosine equation model for the number of daylight hours each month; (b) sketch the graph; and (c) approximate the number of days each year there are more than 15 hours of daylight. Use 1month ≈ 30.5 days. Assume t = 0 corresponds to January 1.

29. Observing wildlife: From her elevated observation post 300ft away a naturalist spots a troop of baboons high up in a tree. Using the small transit attached to her telescope, she finds the angle of depression to the bottom of this tree is 14°, while the angle of elevation to the top of the tree is 25°. The angle of elevation to the troop of baboons is 21°. Use this information to find (a) the height of the observation post, (b) the height of the baboons' tree, and (c) the height of the baboons above ground.