Answer key

Answer key

Section 1: Number and algebra
Now you practise it
Topic: Sequences and series - arithmetic
May 1999
(a) $\$ 500$
(b) $\$ 5100$

November 2003
(a) $u_{1}+3 d=12$

$$
u_{1}+9 d=42
$$

(b) $d=5, u_{1}=-3$

Topic: Sequences and series - geometric Specimen 2005 Paper 1
(a) $r=2$
(b) 114681

May 2000
(a) 42000
(b) 32908

Topic: Number sets
November 2002 Paper 1

	\mathbb{N}	\mathbb{R}	\mathbb{Q}
5	\checkmark	\checkmark	\checkmark
0.5	\times	\checkmark	\checkmark
$\sqrt{5}$	\times	\checkmark	\times
-5	\times	\checkmark	\checkmark

Specimen 2005 Paper 1

(a) For example, 2, -3 etc.
(b) For example, $\frac{3}{5}\left(\operatorname{not} \frac{6}{1}\right)$
(c) For example, 2, π
(d) U

[^0]Topic: Approximation, significant figures, percentage errors, estimation
November 2003 Paper 1
(a) 412.1994123
(b) 412.20
(c) 410

May 2004 Paper 1
(a) 730
(b) 500
(c) 31.5% (3sf)

Topic: Scientific notation and the SI (metric) system November 2000 Paper 1
(a) 2.79×10^{-6}
(b) 1.024×10^{-2}

May 2005 Paper 1
(a) 2 ml
(b) 5460410000 joules
(c) $\mathrm{kg} \mathrm{ms}^{-1}$

Topic: Word problems and systems of linear equations May 2002 Paper 1
(a) $r=200$ AUD
(b) $s=525$ AUD

May 1998 Paper 1
(a) $\frac{x}{5}$
(b) $\frac{7 x}{125}$ (housekeeping fees included) or $\frac{7 x}{100}$ (housekeeping not included)
(c) $£ 200$

Topic: Quadratic equations
November 1999 Paper 1
(a) $\quad W=110-x$
(b) Area $=x(110-x)$
(c) $2800 \mathrm{~m}^{2}$

May 2002 Paper 1
(a) $x=8, x=-3$
(b) $a=3$

Additional practice problems

1 (a) $(5 k-2)-(2 k+3)=(10 k-15)-(15 k-2)$

$$
\begin{aligned}
& 3 k-5=5 k-13 \\
& 8=2 k \\
& 4=k
\end{aligned}
$$

(b) $11,18,25$
(c) 7
(d) 144
(e) 900

2 (a) $x=400, y=60$
(b) 61 months

Answer key

3 (i) (a) $u_{1}=d=1$
(b) $\frac{1}{2} n\left(2 u_{1}+d(n-1)\right)=\frac{1}{2} n(2+n-1)=$ $\frac{1}{2} n(n+1)$
(c) 20100
(ii) (a) $n=10$
(b) $r=\frac{1}{3}$
(c) 1.50
(d) Both $1.5\left(\frac{1}{3}\right)^{10}$ and $1.5\left(\frac{1}{3}\right)^{1000}$ are 0 when corrected to 3sf, so they make no difference to the final answer. (e) 29525.5

4 (a) $I=2 x+5$
(b) Area of frame, $A=(2 x+5)^{2}-5^{2}$
(c) $x=1$

Section 2: Sets, logic and probability
Now you practise it
Topic: Set theory and Venn diagrams
November 2004 Paper 1
(a)

(b)

(c)

(d)

November 2007 Paper 1

(a) $A=8,10,12,14,16$
(b) $B=3,6,9,12,15,18$
(c) $A \cup B=3,6,8,9,10,12,14,15,16,18$
(d) $A \cap B=8,10,14,16$

Topic: Logic symbols and statements May 2002 Paper 1
(a) (i) If a figure is a rhombus, then it is a square.
(ii) If a figure is not a square, then it is not a rhombus.
(iii) If a figure is not a rhombus, then it is not a square.
(b) Statement (iii) is true.

November 2006 Paper 1

(a) Dany either goes to the cinema or studies for the test but not both.
(b) (i) $p \Rightarrow \neg q$
(ii) $q \Rightarrow \neg p$

Topic: Truth tables
May 2006 Paper 1
(a) If I am wearing my hat then the sun is not shining.
(b)

p	q	$\neg p$	$q \Rightarrow \neg p$
T	T	\mathbf{F}	\mathbf{F}
T	F	\mathbf{F}	\mathbf{T}
F	T	\mathbf{T}	\mathbf{T}
F	F	\mathbf{T}	\mathbf{T}

(c) $\neg p \Rightarrow q$

November 2005 Paper 1

p	q	$\neg q$	$(p \wedge \neg q)$	$(p \vee q)$	$(p \vee \neg q) \Rightarrow(p \vee q)$
T	T	F	F	T	T
T	F	T	T	T	T
F	T	F	F	T	T
F	F	T	F	F	T

Topic: Probability: simple problems
May 1996 Paper 1
(a) $\frac{4}{5}$
(b) $\frac{5}{9}$

May 2000 Paper 1
(a) 10 combinations
(b) $\frac{1}{10}$

Topic: Probability: harder problems (compound and conditional probability)
November 2005 Paper 1
(a)

(b) 0.551

November 1999 Paper 1

(a) $\frac{4}{9}$
(b) $\frac{2}{9}$

Additional practice problems

1 (i) (a) (i) p (green) $=\frac{5}{10}$
(ii) p (not green) $)^{10}=\frac{5}{10}$
(b) (i) $\frac{4}{9}$ or 0.444 (3sf)
(ii) $\frac{2}{9}$ or 0.222 (3sf)
(iii) $\frac{5}{9}$ or 0.556 (3sf)
(c) (i) $\frac{1}{12}$ or 0.0833 (3sf)
(ii) $\frac{5}{12}$ or 0.417 (3sf)
(iii) $\frac{11}{12}$ or 0.917 (3sf)
(ii) (a) 0.0135 (3sf)
(b) 0.185 (3sf)

2 (i) (a) 11 students
(b) 74 students
(c) 2 students
(d) 77 students
(ii) (a) (i) If you do not watch the music TV channel, then you do not like music.
(ii) If you like music, then you watch the music TV channel.
(b)

p	q	$\neg p$	$\neg q$	$p \Rightarrow q$	$\neg p \Rightarrow \neg q$	$p \vee \neg q$	$\neg p \wedge q$
T	T	F	F	T	T	T	F
T	F	F	T	F	T	T	F
F	T	T	F	T	F	F	T
F	F	T	T	T	T	T	F

(c) $\neg p \Rightarrow \neg q$ and $p \vee \neg q$ are logically equivalent.
3 (a) (i) 4 students
(ii) A is the set of students who study maths but do not study history or science.
(iii) 2 students
(b)

(c) 13
(d) (i) $\frac{1}{10}$ or 0.1
(ii) $\frac{7}{10}$ or 0.7
(e) (i) $\frac{1}{95}$ or 0.0105
(ii) $\frac{6}{95}$ or 0.0632
(iii) $\frac{8}{19}$ or 0.421

Section 3: Functions
Now you practise it
Topic: Definition of a function, mapping diagrams, domain and range
Specimen 2005 Paper 1
(a)

(b) $x \in\{-2,-1,0,1,2,3\}$
(c) $y \in\{-5,-3,3,13\}$

November 2004 Paper 1

(a) domain: $x<3$, range: $y \leq 2$
(b) domain: $\{-3,-2,-1,0,1,2,3\}$, range: $\{1,2,3,4\}$

Topic: Linear functions and graphs

 May 2005 Paper 1(a)

(b) $3 x+y=-6$

May 2007 Paper 1

(a) $2 b+3 m=7.80$
(b) $b=\$ 1.80, m=\$ 1.40$
(c)

Topic: Quadratic functions and graphs November 2004 Paper 1
(a) $(x-3)(x+1)$
(b) $\mathrm{A}(-1,0), \mathrm{B}(3,0)$
(c) $x=1$
(d) $\quad C(1,-4)$

May 2003 Paper 1

(a) $c=6$
(b) $a=-2$
(c) $y=-2(x-3)(x+1)$

Topic: Exponential functions and graphs

 November 2006 Paper 1(a) (i) 32000 USD
(ii) $r=0.85$
(b) $t=$ years

November 2001 Paper 1

$$
c=-10, k=5
$$

Topic: Trigonometric functions and graphs November 2007 Paper 1

(b) period $=180^{\circ}$
(c) amplitude $=\frac{1}{2}$

May 2007 Paper 1
(a) (i) period $=180^{\circ}$
(ii) amplitude $=2$
(b) $a=2, c=1$
(c) -15°

Topic: Unfamiliar functions and graphs
Specimen 2005 Paper 1
(a)

(b) horizontal asymptote $y=1$, vertical asymptote $x=-2$

November 2006 Paper 1

(a) $\mathrm{A}(-1.79,0.789), \mathrm{B}(1.14,2.70)$
(b) $-1.79<x<1.14$

Additional practice problems

1 (a) $a=15000, b=5500, c=2000$
(b)

(c) (i) 4.4 secs
(ii) 2700 bacteria
(iii) No. Theoretically, the curve never touches the horizontal axis.
2 (a) $A=(5+2 x)(7-2 x)$

$$
=35-10 x+14 x-4 x^{2}=35+4 x-4 x^{2}
$$

(b) (i) $p=11, q=35, r=27, s=-13$
(ii)

(c) (i) axis of symmetry is $x=\frac{1}{2}$
(ii) $x=2$
(iii) $3 \mathrm{~m} \times 9 \mathrm{~m}$
(d) (i) See line on graph shown above.
(ii) $x=1$ or $x=-1.25$
(a) (i) 1.75 m
(ii) $01: 38$ and 06:22
(b) $2<t<6$
(c) $a=1.5, b=45$
(d) 1.94 m
(e) 12 noon

Section 4: Geometry and trigonometry

Now you practise it
Topic: Coordinates, midpoint and distance formulae May 2004 Paper 2 (modified)
(a)

(b) $\mathrm{PQ}=\sqrt{80}=8.94$ (3sf)
(c) $a=-6$
(d) Area $=60$

Answer key

Topic: Equation of a line: forms, slope/gradient, perpendicular and parallel lines
November 2001 Paper 1
(a), (d)

(b) I_{1} is parallel to I_{2}
(c) $y=\frac{1}{2} x+3$

May 2001 Paper 1
(a) $m=3$
(b) $m=-\frac{1}{3}$
(c) $b=6$

Topic: Right-angled triangle trigonometry (SOHCAHTOA) November 2001 Paper 1
(a) 37.5 cm
(b) 46.8°

May 2001 Paper 1

$$
8.17 \mathrm{~cm} \text { (3sf) }
$$

Topic: Sine rule and area of a triangle
May 2001 Paper 1
(a) $52.6 \mathrm{~m}^{2}$ (3sf)
(b) 24.7°

May 1999 Paper 1
(a) 134°
(b) 8.15 cm (3sf)

Topic: Cosine rule November 2007 Paper 1
(a) 1270 m
(b) 49.3°

May 2003 Paper 1
(a) 120°
(b) $6.93 \mathrm{~cm}^{2}$
(c) $41.6 \mathrm{~cm}^{2}$

Topic: Geometry of 3-D shapes
In the style of Paper 1
(a) $25.1 \mathrm{~cm}^{3}$ (3sf)
(b) $6.28 \mathrm{~cm}^{2}$ (3sf)
(c) $182 \mathrm{~cm}^{2}$ (3sf)

Specimen 2005 Paper 1
(a) $3125 \mathrm{~m}^{3}$
(b) 56.0 m (3sf)
(c) $87.4^{\circ}(3 \mathrm{sf})$

Additional practice problems

1 (i) (a) $1294.14 \mathrm{~cm}^{3}$
(b) 6 balls
(c) (i) $431 \mathrm{~cm}^{3}$
(ii) $4.31 \times 10^{-4} \mathrm{~m}^{3}$
(ii) (a) (i) 73.5°
(ii) 55.8 m (3sf)
(b) 55.0 m (3sf)
(c) 217 m (3sf)

2 (a) $C A=\sqrt{ }\left(500^{2}+800^{2}\right)=943$
(b) angle $\mathrm{BCA}=\tan ^{-1}\left(\frac{800}{500}\right)=58.0^{\circ}$
(c) (i) 78°
(ii) 1600 m (3sf)
(d) $892000 \mathrm{~m}^{2}$
(e) 18.3 minutes

3 (a) 11.3 cm
(b) 68.9°
(c) $A B=6 \mathrm{~cm}$. Area $=2 \times(8 \times 8)+4 \times(6 \times 8)=$ $320 \mathrm{~cm}^{2}$
(d) $192 \mathrm{~cm}^{3}$

Section 5: Statistics

Now you practise it
Topic: Classification of data, frequency tables and polygons November 2005 Paper 1 (modified)
(a) $a=2, b=4$
(b) $14<x \leq 16$
(c) 15.7 (3sf)

Topic: Grouped data, histograms, stem-and-leaf plots November 2003 Paper 1 (modified)
(a) 15 students
(b) 25 students
(c)

Topic: Cumulative frequencies, box-and-whisker plots May 2004 Paper 1
(a) $m=168, n=200$
(b) 137 students
(c) 18 years

Answer key

May 2005 Paper 1
(a) $\quad w=43$
(b)

(c) median $=63$ cars

Topic: 1-variable statistical calculations November 2004 Paper 1
(a) mode $=6$ hours
(b) mean $=6.1$ hours

May 2004 Paper 1
(a) 6
(b) 11.7 m

Topic: Linear regression (line of best fit)
November 2007 Paper 1
(a) $y=20.9-0.134 x$
(b) 17 objects
(c) $r=-0.756$
(d) negative and moderately strong

November 2006 Paper 2 (modified)
(a), (c)

(b) $y=1.83 x+22.7$

Topic: Chi-squared (${ }^{2}$) independence test

 November 2001 Paper 2 (modified)(a) $p=25.2, q=16.8, r=12.4$
(b) (i) H_{0} : There is no connection between gender and the subject taken.
(ii) $\mathrm{df}=(3-1)(2-1)=2$
(iii) $\chi^{2}(2)=5.99$
(c) Accept H_{0} since $1.78<5.99$

May 2006 Paper 2 (modified)

(a) H_{0} : Level of stress is independent of travel time.
H_{1} : Level of stress is not independent of travel time.
(b)

12	5	15
20	9	24
12	5	14

(c) $\quad \mathrm{df}=(r-1)(c-1)=(3-1)(3-1)=4$
(d) $x^{2}=9.28$
(e) Accept H_{0} (Level of stress is not independent of travel time.)

Additional practice problems

1 (i) (a) mode: $45 \leq t<60$
(b) mean: 42.4 minutes, standard deviation: 21.6 minutes
(c)

(ii) (a)

	Drama	Comedy	Film	News
Males	58	119	157	52
Females	86	98	120	61

(b) H_{0} : Favourite TV programme is independent of gender.
H_{1} : Favourite TV programme is dependent on gender.
(c) 105
(d) 12.6
(e) (i) 3
(ii) 7.815
(iii) Reject H_{0}

2 (a) mean of $x=72.25$, standard deviation of $x=4.41$ mean of $y=139.7$, standard deviation of $y=5.99$
(b) $r=-0.940$
(c) strong, negative correlation
(d) $y=232-1.28 x$
(e) 136 seconds

3 (a) (i) $c=97$
(ii) (not drawn to scale)

(iii) (see line on graph)
(b) (i) 13 fish
(ii) 0.79 kg
(c) (i) minimum: 0.855 kg , maximum: 1.045 kg
(ii) 42 fish

Section 6: Introductory differential calculus
Now you practise it
Topic: Differentiation and the derivative of a polynomial May 2006 Paper 2 (modified)
(a) $g(2)=8$
(b) $g^{\prime}(2)=\frac{1}{2} x^{3}+\frac{9}{2} x-5$

Topic: Equations of tangent lines, values of x when $f^{\prime}(x)$ is given
Specimen 2005 Paper 1 (extra question bank)
(a) $f^{\prime}(x)=2+25 x^{-2}$
(b) $x= \pm 2.5$

November 2004 Paper 2

(a) $2 a x+b$
(b) $2=12 a+b$
(c) $-7=3 a+b$

Topic: Increasing and decreasing functions, max/min problems (optimisation problems)
November 2004 Paper 2 (modified)
(a) $\mathrm{B} \rightarrow \mathrm{D}, \mathrm{G} \rightarrow \mathrm{L}($ or $\mathrm{G} \rightarrow \mathrm{K}$ and $\mathrm{K} \rightarrow \mathrm{L})($ or $\mathrm{C}, \mathrm{H}, \mathrm{L})$
(b) $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{D} \rightarrow \mathrm{G}($ or $\mathrm{A}, \mathrm{E}, \mathrm{F})$
(c) D
(d) B or G

November 2001 Paper 2 (modified)
(a) $B=x(24-2 x)(9-2 x)=4 x^{3}-66 x^{2}+216 x$
(b) $12 x^{2}-132 x+216$
(c) (i) $x=2 \mathrm{~cm}$
(ii) $200 \mathrm{~cm}^{3}$

Additional practice problems

1 (i) (a) $g^{\prime}(x)=4 x^{3}+9 x^{2}+4 x+1$
(b) $g^{\prime}(1)=18$
(ii) (a) $x-15$
(b) Profit $=(x-15)(100000-4000 x)$
$=100000 x-4000 x^{2}-1500000+60000 x$
(c) (i) $160000-8000 x$
(ii) $x=20$
(d) 20000 books

2 (a) 38.4 cm
(b) (i) $24-4.8 w$
(ii) 3.5 weeks
(iii) 5 weeks, 60 cm
(c) 70 days $=10$ weeks; $h(10)=24(10)-2.4(10)^{2}=0$ (height of zero means daffodil is lying on the ground)
3
(a) (i) $3 x^{2}-8 x-3$
(ii) $\max \left(-\frac{1}{3}, 18.5\right), \min (3,0)$
(b) $a=0, b=18$
(c)

(d) (i) $-\frac{1}{3}<x<3$
(ii) $-3 \leq x<-\frac{1}{3}$ or $3<x \leq 5$

Section 7: Financial mathematics

Now you practise it
Topic: Currency conversions

May 2003 Paper 1

(a) 1413.16 USD
(b) 1288.34 MD

November 2002 Paper 1

(a) 325 CHF
(b) $\quad s=2.5(b-3)$
(c) 175 GBP

Topic: Simple and compound interest May 2000 Paper 1
(a) 14000 CHF
(b) 29 201.29 CHF

November 2000 Paper 1

(a) $X(1.005)^{12}$
(b) 6.17%

Topic: Loan and savings tables Specimen 2000 Paper 1
(a) 95.07 AUD
(b) 12 547.20 AUD

Additional practice problems

1 (i) (a) $p=0.159, q=17.5$
(b) (i) 1390 FFR (3sf)
(ii) 137 GBP (3sf)

Answer key

(c) (i) 1600 FFR
(ii) 304 USD (3sf)
(iii) Paul
(iv) Jean: 1600 FFR. $\frac{1600}{6.289}=254.41$ or 254 USD (3sf); Paul: 304 USD (3sf)
(ii) Takaya: $1000+1000(0.063)(15)=1945 \mathrm{JPY}$ Morimi: 900(1.063) ${ }^{15}=2250$ JPY; Morimi had more.
(a) (i) $\$ 507.30$
(ii) 12.7% (3sf)
(b) (i) $\$ 1000$
(ii) $\$ 450.00$
(c) (i) Option A. Because she doesn't need a deposit.
(ii) Option B. Because it is cheaper by $\$ 57.30$.

3 (a) end January: $600 \times 1.0075=604.50$ begin February: $604.50+1300=1904.50$ end February: $1904.50 \times 1.0075=1918.78$
(b) 2896.46 AUD
(c) 3074.88 AUD
(d) 3 years

4 (a) Choice A: $\$ 1200$ Choice B: \$1239.51
Choice C: \$1230
Choice D: \$1273.37
(b) Choice D because the total allowance is the highest.
(c) 10%

Answer key - Practice exam 1

Answer key - Practice exam 1

Paper 1

1 (a) 11.6725 watts
(b) 10 watts
(c) 1.17×10^{1} watts

2 (a) 3
(b) 105
(c) 15150

3 (a) 58
(b) 36
(c)

4 (a) 0
(b) $(x+3)(x-2)$
(c) $(-3,0),(2,0)$

5 (a) 5.57 cm (3sf)
(b) $\quad 8.04 \mathrm{~cm}^{2}$ (3sf)

6 (a) $\$ 15503.96$
(b) $\$ 7751.98$

7 (a) $p \Rightarrow q$
(b) If I slap you, you will insult me one more time.
(c) $p \Rightarrow q$ but q does not $\Rightarrow p$

8 (a) vertical: $x=-1$, horizontal: $y=0$
(b) $(6.41,0.41)$ and ($-1.41,-7.41$)

9 (a) The length of the extended essay is not dependent on the number of hours of sleep the night before it is due.
(b) 11.8 (3sf)
(c) The chi-squared statistic is less than the chisquared critical value of 5.99 at 5% significance level, so we accept the null hypothesis.
Therefore, the length of the essay is not dependent on the hours of sleep.

10 (a) \$1831.78
(b) $\$ 125.24$
(c) $\$ 676$ (3sf)

11 (a)

(b)

(c)

(d)

12 (a) $a=2$
(b) $b=4$
(c) $\mathrm{c}=-1$

13 (a) $x=4$
(b) $y=1$

14 (a) It is not true that Katie has brown hair if and only if she is good at mathematics.
(b)

p	q	$p \Leftrightarrow q$	$\neg(p \Leftrightarrow q)$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	T	F

(c) The statement is not a tautology because it is not always true.

15 (a) $(-5,-1)$
(b) 671 m
(c) Sarah lives about 808 m from school, so Salome is closer.

Paper 2

1 (i) $\frac{1}{10}$
(ii) $\frac{4}{9}$
(iii) $\frac{1}{1000}$
(iv) $\frac{72}{1000}$
(v) $\frac{927}{1000}$
(vi) 0.139 (3sf)

Answer key - Practice exam 1

2 (a) $2 x-2$
(b) (i) -2
(ii) $y=-2 x-2$
(c) vertex: $(1,-3)$, gradient: 0
(d) (i) $x>1$
(ii) $x<1$

3 (a) (i)

t	0	1	2	3	4	5	10	12
A	$\mathbf{3}$	4.2	5.88	8.23	$\mathbf{1 1 . 5}$	$\mathbf{1 6 . 1}$	$\mathbf{8 6 . 8}$	$\mathbf{1 7 0}$

(ii)

(b) approximately $30 \mathrm{~m}^{2}\left(31.6 \mathrm{~m}^{2}\right)$
(c) between 10 and 11 days (10.4 days)
(d)

(e) 14.4 days, or between 14 and 15 days

4 (a) (i) $170 \mathrm{~cm}^{2}$ (3sf)
(ii) $198 \mathrm{~cm}^{2}$ (3sf)
(iii) $C=\frac{0.03 b}{12}+\frac{0.04 w}{15}$
(iv) $\$ 0.95$
(v) Yes: it costs $\$ 0.98$.
(b) (i) 10 cm
(ii) 53.1°
(iii) 67.0°

5 (a) mean: 51.3 sec , st. dev. 3.20 sec
(b)

Year	1935	1954	1961	1972	1976	1985	2000	2008
x	0	$\mathbf{1 9}$	$\mathbf{2 6}$	$\mathbf{3 7}$	$\mathbf{4 1}$	$\mathbf{5 0}$	$\mathbf{6 5}$	$\mathbf{7 3}$

(c) (i) -0.988
(ii) $t=-0.140 x+56.8$
(iii) 50.48 sec
(d) This would involve extrapolation that would extend toofar from the given data so there is no guarantee a linear relationship would still hold.

Answer key - Practice exam 2

Answer key - Practice exam 2

Paper 1

1 (a) 3
(b) 8th term: 2187, 18th term: 129140163
(c) 7144929

2 (a) 60.3° (3sf)
(b) 10.8 cm
(c) 11.1%

3 (a) ($\left.\frac{4}{3}, 0\right)$
(b) $-\frac{1}{5}$
(c) $\left(\frac{7}{4}, \frac{5}{4}\right)$

4 (a) $2 x^{2}-9 x+4$
(b) $\left(4, \frac{46}{3}\right)$

5 (a)

(b) 0.15
(c) 0.667 (3sf)

6 (a) 13.9 cm (3sf)
(b) 67.8° (3sf)
(c) $295 \mathrm{~cm}^{2}$ (3sf)

7 (a) $\bar{x}=4.8 \mathrm{~cm}, \bar{s}=35.6 \mathrm{ppt}$ (3sf)
(b) $s=7.9 x-2.4$
(c)

8 (a)

	Balance	Payment	Interest Paid from payment	Principal Paid from payment
Dec. 1, 2008	$€ 15000$	$€ 0$	$€ 0$	$€ 0$
Jan. 1, 2009	$€ 14550$	$€ 600$	$€ 150$	$€ 450$
Feb. 1, 2009	$€ 14095.50$	$€ 600$	$€ 145.50$	$€ 454.50$

(b) $£ 11475.24$

9
(a) $4 \rightarrow \frac{12}{7}$
$-1 \rightarrow \frac{3}{8}$
$0 \rightarrow 0$
$5 \times 10^{-1} \rightarrow \frac{-6}{35}$
(b) $y \in \mathbb{R}$
(c) $(2.32,-1.94)$ or $(-0.668,0.234)$

10 (a) 35 years
(b) 11550 AUD

11 (a) $\frac{1}{36}$
(b) $\frac{1}{4}$

12 (a) $a=100$
(b) $b=0.912$ (3sf)
(c) $25.3^{\circ} \mathrm{C}$

13 (a) 7.62 cm (3sf)
(b) $\left(-\frac{3}{2}, \frac{19}{2}\right)$
(c) $44.1 \mathrm{~cm}^{2}$ (3sf)

14 (a) Machine 4
(b) Machine 1
(c) Machine 2
(d) Machine 2

15 (a) $\$ 31646$
(b) $\$ 9738$

Paper 2

1 (a)(i), (ii)

Answer key - Practice Exam 2

(b) If Cuan has a score over 90% and Richard does not have a score over 90% then Hani has a score over 90% or Richard has a score over 90\%.
(c) (i)

p	q	r	$\neg r$	$p \wedge \neg r$	$q \vee r$	$(p \wedge \neg r) \Rightarrow(q \vee r)$
T	T	T	F	F	T	T
T	T	F	T	T	T	T
T	F	T	F	F	T	T
T	F	F	T	T	F	F
F	T	T	F	F	T	T
F	T	F	T	F	T	T
F	F	T	F	F	T	T
F	F	F	T	F	F	T

(ii) It is not a tautology because there is one false case.
(d) (i) If Cuan does not have a score over 90%, then Richard does not have a score over 90%.
(ii) Yes, they are logically equivalent.

2 (a)

time t	0	1	2	3	4
height h	0	16.1	22.4	18.9	5.6

(b) and (e)

(c) $(2.14,22.5)$
(d) $x=2.14$
(f) 1.30 seconds (3sf)

3 (a) Null hypothesis: The time to finish the course is not dependent on riding conditions.
Alternate hypothesis: The time to finish the course is dependent on riding conditions.
(b)

	clear weather	cloudy	rain
less than 2 minutes	8.09	$\mathbf{7 . 8 0}$	10.11
between 2 and 3 minutes	9.96	9.60	$\mathbf{1 2 . 4 4}$
greater than 3 minutes	9.96	9.60	12.44

(c) $\mathrm{df}=4$
(d) The p-value is greater than 0.05 so we accept the null hypothesis.
(e) (i) Discrete - Lauren has categorised the weather into distinct categories.
(ii) Continuous - time is ongoing.

4 (a) $\mathrm{AB}=303 \mathrm{~cm}$ (3sf), $\mathrm{AC}=213 \mathrm{~cm}$ (3sf)
$B C=200 \mathrm{~cm}$
(b) (i) $1.08 \times 10^{9} \mathrm{~km} / \mathrm{hr}$
(ii) $1 \times 10^{-8} \mathrm{sec}$
(c) 41.2°
(d) $\quad C=3.2 t+20$
(e) 9 hours

5 (a) mean: 22.6 cm (3sf),
standard deviation: 12.25 cm (3sf)
(b)

(c) (i) 25 cm
(ii) 26 cm
(iii) 38 cm
(d) period: 30 seconds, amplitude: 10 cm
(e) $a=-10, b=12, c=15$
(f) 23.1 cm (3sf)

Answer key - Practice exam 3

Answer key - Practice exam 3

Paper 1

1 (a) $a=-14, b=33$
(b) -12

2 (a) $r=\frac{2}{3}$
(b) $x=24, y=16$
(c) 106 (3sf)

3 (a) $a=3, b=5$ or $a=5, b=3$
(b) 5

4 (a) 0.4167927589
(b) 4.17×10^{-1}
(c) 0.4168
(d) 0.00174%

5 (a) $(p \wedge q) \Rightarrow r$
(b) Unconsented physical contact was made or contact was menacing or offensive, but not both, if and only if the person is guilty of battery.
(c)

p	q	r	$p \vee q$	$(p \vee q) \Leftrightarrow r$
T	F	T	T	T
F	F	T	\mathbf{F}	\mathbf{F}

6 (a) domain: $x \geq 4$, range: $0 \leq y \leq 0.25$
(b) $(8,0.25)$
(c) $(4.31,0.129),(8.33,0.250)$
$7 \quad$ (a) $\quad 35.7^{\circ}$ (3sf)
(b) $183 \mathrm{~cm}^{2}$ (3sf)
(c) $136 \mathrm{~cm}^{3}$ (3sf)

8 (a) $(x+2)(x-1)$
(b) $g(x)=12 x-2$
(c) $x=-0.5$

9 (a) $d f=6$
(b) 12.0
(c) Accept null hypothesis at 99\% level because 0.0128 > 0.01 .
(d) One of the observed data values is less than 5 .

10 (a) 1 yr: €1380.60, 2yrs: €1461.20, 3yrs: €1541.80, 4 yrs: €1622.40
(b) $B=1300+80.6 k$
(c) 9 years

11 (a) $A(t)=A(0.5)^{t / 20}$
(b) 2018

12 (a)

(b)

(c)

13 (a) $4 x-7 y+10=0$
(b) 4.03 (3sf)

14
(a) $P=10 x-3400$
(b) 341 players

15 (a) (i) mean number of roses: 11, mean phone duration: 26.5 min
(ii) st. dev. roses: 4.58 , st. dev. duration: 10.2 min
(b) 45.9 (3sf)
(c) strong positive correlation

Paper 2

1 (a) 3
(b)

x	2	1.5	1.1	1.01	1.001	1.0001
$f(x)$	4.5	3.125	2.205	2.02005	2.0020005	2.000200005
gradient of line $\overline{A B}$	2.5	2.25	2.05	2.005	2.0005	2.00005

(c) Slope at point A is 2. As A and B get closer and closer together, the gradient of $A B$ gets closer and closer to 2 .
(d) $0.5 x^{2}+x+0.5$
(e) $f^{\prime}(x)=x+1$

Answer key - Practice Exam 3

(f) $\quad f^{\prime}(1)=2$
(g) $(-1,0)$

2
(a)

(b) (i) 12
(ii) 2
(iii) 8
(iv) 2 or 10
(c) May $19(x=4.6)$ and August $12(x=7.4)$
(d) May 11

3 (a) (i) 1890.00 XCD
(ii) 5417.79 ZAR
(b) 1832.20 XCD
(c) 5255.26 ZAR
(d) (i) 23.02 XCD
(ii) 58.13 ZAR
(e) 742.56 GBP

4 (a)
(b) (i) 0.176
(ii) 0.278
(iii) 0.550
(iv) 0.319
(c) 0.413

5 (a) 34.9° (3sf)
(b) (i) 72.6° (3sf)
(ii) 72.6° (3sf)
(c) 20.0 m
(d) $2320 \mathrm{~m}^{2}$ (3sf)
(e) $\quad \frac{2318.07226}{114.4727042}=\left(\frac{54}{12}\right)^{2}$
$20.25=20.25$
(f) 4.30 seconds (3sf)

[^0]: For $\mathbb{Z} \subset \mathbb{Q}$
 For $\mathbb{Z} \subset \mathbb{R}$
 For $\mathbb{Q} \subset \mathbb{R}$

