Answer key

Section 1: Number and algebra

Now you practise it

Topic: Sequences and series – arithmetic

May 1999

- (a) \$500
- (b) \$5100

November 2003

(a) $u_1 + 3d = 12$

- $u_1 + 9d = 42$
- (b) $d = 5, u_1 = -3$

Topic: Sequences and series – geometric Specimen 2005 Paper 1

- (a) *r* = 2
- (b) 114 681

May 2000

- (a) 42 000
- (b) 32 908

Topic: Number sets November 2002 Paper 1

	\mathbb{N}	R	Q
5	1	1	1
0.5	×	1	1
$\sqrt{5}$	×	1	×
-5	×	1	1

Specimen 2005 Paper 1

- (a) For example, 2, -3 etc.
- (b) For example, $\frac{3}{5}$ (not $\frac{6}{1}$)
- (c) For example, $2, \pi$
- (d) U

Topic: Approximation, significant figures, percentage errors, estimation

November 2003 Paper 1

- (a) 412.199 412 3
- (b) 412.20 (c) 410
- (c) 410

May 2004 Paper 1

- (a) 730
- (b) 500
- (c) 31.5% (3sf)

Topic: Scientific notation and the SI (metric) system November 2000 Paper 1

- (a) 2.79×10^{-6}
- (b) 1.024×10^{-2}

May 2005 Paper 1

- (a) 2 ml
- (b) 5 460 410 000 joules
- (c) kg ms⁻¹

Topic: Word problems and systems of linear equations May 2002 Paper 1

- (a) *r* = 200 AUD
- (b) s = 525 AUD

May 1998 Paper 1

- (a) $\frac{x}{5}$
- (b) $\frac{7x}{125}$ (housekeeping fees included) or $\frac{7x}{100}$ (housekeeping not included)
- (c) £200

Topic: Quadratic equations November 1999 Paper 1

- (a) W = 110 x
- (b) Area = x(110 x)
- (c) 2800 m²

May 2002 Paper 1

- (a) *x* = 8, *x* = −3
- (b) *a* = 3

1

2

Additional practice problems

- (a) (5k 2) (2k + 3) = (10k 15) (15k 2) 3k - 5 = 5k - 13 8 = 2k
 - 3 = 2k4 = k
 - (b) 11, 18, 25
 - (c) 7
 - (d) 144
 - (e) 900
- (a) x = 400, y = 60
 - (b) 61 months

3

4

(i) (a) $u_1 = d = 1$ (b) $\frac{1}{2}n(2u_1 + d(n-1)) = \frac{1}{2}n(2 + n - 1) =$ $\frac{1}{2}n(n+1)$

- (c) 20 100
- (ii) (a) *n* = 10
 - (b) $r = \frac{1}{3}$
 - (c) 1.50
 - (d) Both $1.5(\frac{1}{3})^{10}$ and $1.5(\frac{1}{3})^{1000}$ are 0 when corrected to 3sf, so they make no difference to the final answer. (e) 29 525.5

U

- (a) l = 2x + 5
- (b) Area of frame, $A = (2x + 5)^2 5^2$
- (c) x = 1

Section 2: Sets, logic and probability

Now you practise it Topic: Set theory and Venn diagrams

November 2004 Paper 1

November 2007 Paper 1

- A = 8, 10, 12, 14, 16 (a)
- (b) B = 3, 6, 9, 12, 15, 18
- (c) $A \cup B = 3, 6, 8, 9, 10, 12, 14, 15, 16, 18$
- (d) *A*∩*B* = 8, 10, 14, 16

Topic: Logic symbols and statements May 2002 Paper 1

- (a) (i) If a figure is a rhombus, then it is a square. (ii) If a figure is not a square, then it is not a rhombus.
- (iii) If a figure is not a rhombus, then it is not a square. (b) Statement (iii) is true.

November 2006 Paper 1

- (a) Dany either goes to the cinema or studies for the test but not both.
- (b) (i) $p \Rightarrow \neg q$ (ii) $q \Rightarrow \neg p$

Topic: Truth tables May 2006 Paper 1

If I am wearing my hat then the sun is not shining. (a)

(h)	
(D)	

р	q	$\neg p$	$q \Rightarrow \neg p$
Т	Т	F	F
Т	F	F	Т
F	Т	Т	Т
F	F	Т	Т

(c) $\neg p \Rightarrow q$

November 2005 Paper 1

$(p \lor \neg q) \Longrightarrow (p \lor q)$	$(p \lor q)$	$(p \land \neg q)$	$\neg q$	q	р
Т	Т	F	F	Т	Т
Т	Т	Т	Т	F	Т
Т	Т	F	F	Т	F
Т	F	F	Т	F	F

Topic: Probability: simple problems May 1996 Paper 1

- (a)
- 4|55|g (b)

- May 2000 Paper 1 (a) 10 combinations
- $\frac{1}{10}$ (b)

Topic: Probability: harder problems (compound and conditional probability)

November 2005 Paper 1

0.551 (b)

November 1999 Paper 1 $\frac{4}{9}$

(a)

1

<u>2</u> (b)

Additional practice problems

- (i) (a) (i) $p(\text{green}) = \frac{5}{10}$ (ii) $p(\text{not green}) = \frac{5}{10}$ (b) (i) $\frac{4}{9}$ or 0.444 (3sf) (ii) $\frac{2}{9}$ or 0.222 (3sf) (iii) $\frac{5}{9}$ or 0.556 (3sf)
 - (c) (i) $\frac{1}{12}$ or 0.0833 (3sf)

Answer key

(ii)
$$\frac{5}{12}$$
 or 0.417 (3sf)
(iii) $\frac{11}{12}$ or 0.917 (3sf)
(i) (a) 0.0135 (3sf)
(b) 0.185 (3sf)
2 (i) (a) 11 students
(c) 2 students
(c) 2 students
(d) 77 students
(i) (a) (i) If you do not watch the music TV channel,
then you do not like music.
(i) If you like music, then you watch the music
TV channel.
(b)

$$\frac{p}{1} \frac{q}{1} \frac{\neg p}{1} \frac{\neg q}{1} \frac{p \Rightarrow q}{1} \frac{\neg p \Rightarrow \neg q}{1} \frac{p \lor \neg q}{p \lor \neg q} \frac{\neg p \land q}{1}$$
(c) $\neg p \Rightarrow \neg q$ and $p \lor \neg q$ are logically
equivalent.
3 (a) (i) 4 students
(ii) A is the set of students who study maths but
do not study history or science.
(iii) 2 students
(b)
(c) 13
(d) (i) $\frac{1}{10}$ or 0.1
(i) $\frac{7}{10}$ or 0.7
(e) (i) $\frac{1}{95}$ or 0.0105
(ii) $\frac{6}{95}$ or 0.0632
(iii) $\frac{8}{19}$ or 0.421
Section 3: Functions
Now you practise it
Topic: Definition of a function, mapping diagrams, domain and range
Specimen 2005 Paper 1
(a)

 $\begin{array}{c}
-2 \\
-1 \\
0 \\
-5 \\
2 \\
3 \\
-5 \\
3 \\
-13 \\
\end{array}$

(b) $x \in \{-2, -1, 0, 1, 2, 3\}$ (c) $y \in \{-5, -3, 3, 13\}$

November 2004 Paper 1

(a) domain: x < 3, range: y ≤ 2
(b) domain: {-3, -2, -1, 0, 1, 2, 3}, range: {1, 2, 3, 4}

Topic: Linear functions and graphs May 2005 Paper 1

(b)
$$3x + y = -6$$

(C)

May 2007 Paper 1 (a) 2b + 3m = 7.80

(b) b = \$1.80, m = \$1.40

Topic: Quadratic functions and graphs November 2004 Paper 1

- (a) (x 3)(x + 1)
- (b) A(-1, 0), B(3, 0)
- (c) x = 1(d) C(1, -4)

May 2003 Paper 1

- (a) c = 6
- (b) *a* = -2
- (c) y = -2(x 3)(x + 1)

Topic: Exponential functions and graphs November 2006 Paper 1

- (a) (i) 32 000 USD
- (ii) *r* = 0.85
- (b) t = years

November 2001 Paper 1 c = -10, k = 5

C = -10, K = 5

Topic: Trigonometric functions and graphs November 2007 Paper 1

- (b) period = 180°
- (c) amplitude $=\frac{1}{2}$

May 2007 Paper 1

- (a) (i) period = 180° (ii) amplitude = 2
- (b) a = 2, c = 1
- (c) -15°

Topic: Unfamiliar functions and graphs Specimen 2005 Paper 1

(b) horizontal asymptote y = 1, vertical asymptote x = -2

November 2006 Paper 1

- (a) A(-1.79, 0.789), B(1.14, 2.70)
- (b) −1.79 < *x* < 1.14

Additional practice problems

1 (a) *a* = 15 000, *b* = 5500, *c* = 2000 (b)

- (c) (i) 4.4 secs
 - (ii) 2700 bacteria
 - (iii) No. Theoretically, the curve never touches the horizontal axis.
- 2 (a) A = (5 + 2x)(7 2x)
 - $= 35 10x + 14x 4x^{2} = 35 + 4x 4x^{2}$ (b) (i) p = 11, q = 35, r = 27, s = -13

- (c) (i) axis of symmetry is $x = \frac{1}{2}$
 - (ii) *x* = 2
 - (iii) 3 m imes 9 m
- (d) (i) See line on graph shown above. (ii) x = 1 or x = -1.25
- (a) (i) 1.75 m

3

- (ii) 01:38 and 06:22
 - (b) 2 < *t* < 6 (c) *a* = 1.5, *b* = 45
 - (d) 1.94 m
 - (e) 12 noon

Section 4: Geometry and trigonometry

Now you practise it

Topic: Coordinates, midpoint and distance formulae May 2004 Paper 2 (modified)

- (b) $PQ = \sqrt{80} = 8.94$ (3sf)
- (c) a = -6
- (d) Area = 60

Topic: Equation of a line: forms, slope/gradient, perpendicular and parallel lines November 2001 Paper 1

- I_1 is parallel to I_2 (b)
- $y = \frac{1}{2}x + 3$ (c)

May 2001 Paper 1

- (a) *m* = 3
- $m = -\frac{1}{3}$ (b)
- (c) b = 6

Topic: Right-angled triangle trigonometry (SOHCAHTOA) November 2001 Paper 1

- (a) 37.5 cm
- (b) 46.8°

May 2001 Paper 1

8.17 cm (3sf)

Topic: Sine rule and area of a triangle May 2001 Paper 1

- 52.6 m² (3sf) (a)
- 24.7° (b)

May 1999 Paper 1

- 134° (a)
- 8.15 cm (3sf) (b)

Topic: Cosine rule November 2007 Paper 1

- 1270 m (a)
- 49.3° (b)

May 2003 Paper 1

- 120° (a)
- 6.93 cm² (b)
- 41.6 cm² (c)

Topic: Geometry of 3-D shapes In the style of Paper 1

- (a) 25.1 cm³ (3sf)
- 6.28 cm² (3sf) (b)
- 182 cm² (3sf) (c)

Specimen 2005 Paper 1

- (a) 3125 m³
- (b) 56.0 m (3sf)
- 87.4° (3sf) (c)

Additional practice problems

- (i) (a) 1294.14 cm³ 1
 - (b) 6 balls
 - (c) (i) 431 cm³
 - (ii) $4.31 \times 10^{-4} \text{ m}^{3}$ (ii) (a) (i) 73.5°
 - (ii) 55.8 m (3sf)
 - (b) 55.0 m (3sf)
 - (c) 217 m (3sf)
 - (a) $CA = \sqrt{(500^2 + 800^2)} = 943$
- 2 (b) angle BCA = $\tan^{-1}\left(\frac{800}{500}\right) = 58.0^{\circ}$
 - (c) (i) 78°
 - (ii) 1600 m (3sf)
 - (d) 892 000 m²
 - (e) 18.3 minutes
 - (a) 11.3 cm
 - (b) 68.9°

3

- (c) AB = 6 cm. Area = 2 × (8 × 8) + 4 × (6 × 8) = 320 cm²
- (d) 192 cm³

Section 5: Statistics

Now you practise it

Topic: Classification of data, frequency tables and polygons November 2005 Paper 1 (modified)

- a = 2, b = 4(a)
- $14 < x \le 16$ (b)
- 15.7 (3sf) (C)

Topic: Grouped data, histograms, stem-and-leaf plots November 2003 Paper 1 (modified)

- 15 students (a)
- 25 students (b)

(c)

Topic: Cumulative frequencies, box-and-whisker plots May 2004 Paper 1

- m = 168, n = 200(a)
- 137 students (b)
- (c) 18 years

Answer key

May 2005 Paper 1 (a) w = 43 (b) cars

(c) median = 63 cars

Topic: 1-variable statistical calculations November 2004 Paper 1

- (a) mode = 6 hours
- (b) mean = 6.1 hours

May 2004 Paper 1

- (a) 6
- (b) 11.7 m

Topic: Linear regression (line of best fit) November 2007 Paper 1

- (a) y = 20.9 0.134x
- (b) 17 objects
- (c) r = -0.756
- (d) negative and moderately strong

November 2006 Paper 2 (modified)

(b) y = 1.83x + 22.7

Topic: Chi-squared (χ^2) independence test November 2001 Paper 2 (modified)

- (a) p = 25.2, q = 16.8, r = 12.4
- (b) (i) H₀: There is no connection between gender and the subject taken.

(ii) df = (3 - 1)(2 - 1) = 2(iii) $\chi^2(2) = 5.99$

(c) Accept H_0 since 1.78 < 5.99

May 2006 Paper 2 (modified)

(a) H_0 : Level of stress is independent of travel time. H_1 : Level of stress is not independent of travel time.

(b)

1

12	5	15
20	9	24
12	5	14

- (c) df = (r 1)(c 1) = (3 1)(3 1) = 4
- (d) $\chi^2 = 9.28$
- (e) Accept H₀ (Level of stress is not independent of travel time.)

Additional practice problems

(i) (a) mode: 45 ≤ t < 60
(b) mean: 42.4 minutes, standard deviation: 21.6 minutes

(c)

(ii) (a)

	Drama	Comedy	Film	News
Males	58	119	157	52
Females	86	98	120	61

(b) H_0 : Favourite TV programme is independent of gender.

 ${\rm H}_1$: Favourite TV programme is dependent on gender.

- (c) 105
- (d) 12.6
- (e) (i) 3
 - (ii) 7.815
 - (iii) Reject H_0
- (a) mean of x = 72.25, standard deviation of x = 4.41mean of y = 139.7, standard deviation of y = 5.99
 - (b) r = -0.940

2

- (c) strong, negative correlation
- (d) y = 232 1.28x
- (e) 136 seconds

Answer key

- (I) 13 IISN
- (ii) 0.79 kg
- (c) (i) minimum: 0.855 kg, maximum: 1.045 kg
 (ii) 42 fish

Section 6: Introductory differential calculus

Now you practise it

Topic: Differentiation and the derivative of a polynomial May 2006 Paper 2 (modified)

(a) g(2) = 8(b) $g'(2) = \frac{1}{2}x^3 + \frac{9}{2}x - 5$

Topic: Equations of tangent lines, values of x when f'(x) is given

Specimen 2005 Paper 1 (extra question bank)

(a) $f'(x) = 2 + 25x^{-2}$ (b) $x = \pm 2.5$

November 2004 Paper 2

- (a) 2ax + b
- (b) 2 = 12a + b
- (c) -7 = 3a + b

Topic: Increasing and decreasing functions, max/min problems (optimisation problems) November 2004 Paper 2 (modified)

- (a) $B \rightarrow D, G \rightarrow L$ (or $G \rightarrow K$ and $K \rightarrow L$) (or C, H, L)
- (b) $A \rightarrow B, D \rightarrow G \text{ (or } A, E, F)$
- (c) D
- (d) B or G

November 2001 Paper 2 (modified)

(a) $B = x(24 - 2x)(9 - 2x) = 4x^3 - 66x^2 + 216x$

- (b) $12x^2 132x + 216$ (c) (i) x = 2 cm
- (ii) 200 cm³

Additional practice problems

- 1 (i) (a) $g'(x) = 4x^3 + 9x^2 + 4x + 1$ (b) g'(1) = 18
 - (ii) (a) x 15(b) Profit = $(x - 15)(100\ 000 - 4000x)$ = 100 000 $x - 4000x^2 - 1\ 500\ 000 + 60\ 000x$ (c) (i) 160 000 - 8000x
 - (ii) x = 20
 - (d) 20 000 books

(a) 38.4 cm

2

3

- (b) (i) 24 4.8*w* (ii) 3.5 weeks (iii) 5 weeks, 60 cm
- (c) 70 days = 10 weeks; $h(10) = 24(10) 2.4(10)^2 = 0$ (height of zero means daffodil is lying on the ground)

(a) (i) $3x^2 - 8x - 3$ (ii) max $(-\frac{1}{3}, 18.5)$, min (3, 0) (b) a = 0, b = 18

(d) (i)
$$-\frac{1}{3} < x < 3$$

(ii) $-3 \le x < -\frac{1}{3}$ or $3 < x \le 5$

Section 7: Financial mathematics

Now you practise it Topic: Currency conversions

May 2003 Paper 1

- (a) 1413.16 USD
- (b) 1288.34 MD

November 2002 Paper 1

- (a) 325 CHF
- (b) s = 2.5(b 3)
- (c) 175 GBP

Topic: Simple and compound interest May 2000 Paper 1

- (a) 14 000 CHF
- (b) 29 201.29 CHF

November 2000 Paper 1

- (a) $X(1.005)^{12}$
- (b) 6.17%

1

Topic: Loan and savings tables Specimen 2000 Paper 1

- (a) 95.07 AUD
- (b) 12 547.20 AUD

Additional practice problems

(i) (a) p = 0.159, q = 17.5 (b) (i) 1390 FFR (3sf) (ii) 137 GBP (3sf)

2

3 i

4

(c) (i) 1600 FFR
(ii) 304 USD (3sf)
(iii) Paul
(iv) Jean: 1600 FFR. <u>1600</u> = 254.41 or
254 USD (3sf): Paul: 304 USD (3sf)
(ii) Takaya: $1000 + 1000(0.063)(15) = 1945$ JPY
Morimi: $900(1\ 063)^{15} = 2250$ JPY: Morimi had
more.
(a) (i) \$507.30
(ii) 12.7% (3sf)
(b) (i) \$1000
(ii) \$450.00
(c) (i) Option A. Because she doesn't need a deposit.
(ii) Option B. Because it is cheaper by \$57.30.
(a) end January: $600 \times 1.0075 = 604.50$
begin February: 604.50 + 1300 = 1904.50
end February: $1904.50 \times 1.0075 = 1918.78$
(b) 2896.46 AUD
(c) 3074.88 AUD
(d) 3 years
(a) Choice A: \$1200
Choice B: \$1239.51
Choice C: \$1230
Choice D: \$1273.37

- (b) Choice D because the total allowance is the hig hest. (c) 10%

Answer key – Practice exam 1 Paper 1 1 (a) 11.6725 watts (b) 10 watts 1.17×10^{1} watts (c) 2 3 (a) 105 (b) 15 150 (C) 3 (a) 58 (b) 36 (c) $10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \quad 80 \quad 90 \quad 100$ quiz grade 12 4 (a) 0 (b) (x + 3)(x - 2)(c) (-3, 0), (2, 0) 13 5 5.57 cm (3sf) (a) 8.04 cm² (3sf) (b) 14 \$15 503.96 6 (a) (b) \$7751.98 7 (a) $p \Rightarrow q$ (b) If I slap you, you will insult me one more time. (c) $p \Rightarrow q$ but q does not $\Rightarrow p$ 8 vertical: x = -1, horizontal: y = 0(a) (b) (6.41, 0.41) and (-1.41, -7.41) 9 The length of the extended essay is not (a) dependent on the number of hours of sleep the night before it is due. (b) 11.8 (3sf) The chi-squared statistic is less than the chi-(c) squared critical value of 5.99 at 5% significance level, so we accept the null hypothesis. Therefore, the length of the essay is not 1 dependent on the hours of sleep. 10 (a) \$1831.78 (b) \$125.24 \$676 (3sf) (c) 11 (a) R

(b)

(a) It is not true that Katie has brown hair if and only if she is good at mathematics.

	р	q	p⇔q	$\neg(p \Leftrightarrow q)$
	Т	Т	Т	F
ſ	Т	F	F	Т
	F	Т	F	Т
ſ	F	F	Т	F

(c) The statement is not a tautology because it is not always true.

15 (a) (-5, -1)

- (b) 671 m
- (c) Sarah lives about 808 m from school, so Salome is closer.

Paper 2

(i) $\frac{1}{10}$ (ii) $\frac{4}{9}$ (iii) $\frac{1}{1000}$ (iv) $\frac{72}{1000}$ (v) $\frac{927}{1000}$ (vi) 0.139 (3sf)

- Answer key Practice exam 1
- (a) 2x 2(b) (i) -2(ii) y = -2x - 2(c) vertex: (1, -3), gradient: 0 (d) (i) x > 1(ii) x < 1

(a) (i)

2

3

- (b) approximately $30 \text{ m}^2 (31.6 \text{ m}^2)$
- (c) between 10 and 11 days (10.4 days) (d)

(e) 14.4 days, or between 14 and 15 days

- 4 (a) (i) 170 cm² (3sf) (ii) 198 cm² (3sf) (iii) C = $\frac{0.03b}{12} + \frac{0.04w}{15}$ (iv) \$0.95 (v) Yes: it costs \$0.98.
 - (b) (i) 10 cm
 - (ii) 53.1°

5

- (iii)67.0°
- (a) mean: 51.3 sec, st. dev. 3.20 sec (b)

X	0	19	26	37	41	50	65	73
Year	1935	1954	1961	1972	1976	1985	2000	2008
	(D)							

(c) (i) -0.988

(ii) t = -0.140x + 56.8

(iii) 50.48 sec

(d) This would involve extrapolation that would extend toofar from the given data so there is no guarantee a linear relationship would still hold.

Answer key – Practice exam 2

Paper 1

				Interest Paid from	Principal Paid fron
Date	ġ	Balance	Payment	payment	payment
Dec.	1, 2008	€15 000	€0	€0	€0
Jan.	1, 2009	€14 550	€600	€150	€450
Feb.	1, 2009	€14 095.50	€600	€145.50	€454.50
	(b)	£11 475.24			
9	(a)	$\begin{array}{c} 4 \rightarrow \frac{12}{7} \\ -1 \rightarrow \frac{3}{8} \end{array}$			
	(b) (c)	$0 \rightarrow 0$ $5 \times 10^{-1} \rightarrow y \in \mathbb{R}$ (2.32, -1.94)	<u>–6</u> 35) or (–0.668,	0.234)	
10	(a) (b)	35 years 11 550 AUD)		
11	(a) (b)	$\frac{1}{36}$ $\frac{1}{4}$			
12	(a) (b) (c)	a = 100 b = 0.912 (3 25.3°C	3sf)		
13	(a) (b) (c)	7.62 cm (3st $\left(-\frac{3}{2}, \frac{19}{2}\right)$ 44.1 cm ² (3st	f) sf)		
14	(a) (b) (c) (d)	Machine 4 Machine 1 Machine 2 Machine 2			
15	(a) (b)	\$31 646 \$9738			
Pap	er 2				
1	(a)(i),	(ii)			
			\mathbf{a}^{q}		

(b) If Cuan has a score over 90% and Richard does not have a score over 90% then Hani has a score over 90% or Richard has a score over 90%.
 (c) (j)

`	-) (!)					
р	q	r	¬r	p∧¬r	q∨r	$(p \land \neg r) \Rightarrow (q \lor r)$
Т	Т	Т	F	F	Т	Т
Т	Т	F	Т	Т	Т	Т
T	F	Т	F	F	Т	Т
Т	F	F	Т	Т	F	F
F	T	Т	F	F	Т	т
F	Т	F	Т	F	Т	Т
F	F	Т	F	F	Т	Т
F	F	F	Т	F	F	Т

(ii) It is not a tautology because there is one false case. (d) (i) If Cuan does not have a score over 90%, then

Richard does not have a score over 90%. (ii) Yes, they are logically equivalent.

2 (a)

time <i>t</i>	0	1	2	3	4
height <i>h</i>	0	16.1	22.4	18.9	5.6

(b) and (e)

(c) (2.14, 22.5)

- (d) *x* = 2.14
- (f) 1.30 seconds (3sf)
- (a) Null hypothesis: The time to finish the course is not dependent on riding conditions.Alternate hypothesis: The time to finish the course is dependent on riding conditions.
 - (b)

3

	clear weather	cloudy	rain
less than 2 minutes	8.09	7.80	10.11
between 2 and 3 minutes	9.96	9.60	12.44
greater than 3 minutes	9.96	9.60	12.44

(c) df = 4

- (d) The *p*-value is greater than 0.05 so we accept the null hypothesis.
- (e) (i) Discrete Lauren has categorised the weather into distinct categories.
 - (ii) Continuous time is ongoing.

- (a) AB = 303 cm (3sf), AC = 213 cm (3sf), BC = 200 cm
 - (b) (i) 1.08×10^{9} km/hr (ii) 1×10^{-8} sec
 - (c) 41.2°
 - (d) C = 3.2t + 20
 - (e) 9 hours

4

5

(a) mean: 22.6 cm (3sf), standard deviation: 12.25 cm (3sf)

- (c) (i) 25 cm
- (ii) 26 cm
- (iii)38 cm
- (d) period: 30 seconds, amplitude: 10 cm
- (e) a = -10, b = 12, c = 15
- (f) 23.1 cm (3sf)

12

(a)

(b)

Answer key – Practice exam 3

Paper 1

- **1** (a) a = -14, b = 33(b) -12
- 2 (a) $r = \frac{2}{3}$ (b) x = 24, y = 16
 - (c) 106 (3sf)
- **3** (a) *a* = 3, *b* = 5 or *a* = 5, *b* = 3 (b) 5
- **4** (a) 0.416 792 758 9 (b) 4.17 × 10⁻¹
 - (c) 0.4168
 - (d) 0.001 74%
 - (a) $(p \land q) \Rightarrow r$

5

(b) Unconsented physical contact was made or contact was menacing or offensive, but not both, if and only if the person is guilty of battery.

(C)	

р	q	r	$p \lor q$	$(p \ge q) \Leftrightarrow r$
Т	F	Т	Т	Т
F	F	Т	F	F

- 6 (a) domain: x ≥ 4, range: 0 ≤ y ≤ 0.25
 (b) (8, 0.25)
 (c) (4.31, 0.129), (8.33, 0.250)
- 7 (a) 35.7° (3sf)
 (b) 183 cm² (3sf)
 (c) 136 cm³ (3sf)
 - (a) (x + 2)(x 1)
 - (b) g(x) = 12x 2(c) x = -0.5
 - (a) df = 6

8

9

- (b) 12.0
- (c) Accept null hypothesis at 99% level because
 0.0128 > 0.01.
- (d) One of the observed data values is less than 5.
- 10 (a) 1 yr: €1380.60, 2yrs: €1461.20, 3yrs: €1541.80, 4 yrs: €1622.40
 (b) B = 1300 + 80.6k
 - (c) 9 years
 - C) J years

11 (a) $A(t) = A(0.5)^{t/20}$

(b) 2018

- **13** (a) 4x 7y + 10 = 0(b) 4.03 (3sf)
- **14** (a) P = 10x 3400
 - (b) 341 players
- **15** (a) (i) mean number of roses: 11, mean phone duration: 26.5 min

(ii) st. dev. roses: 4.58, st. dev. duration: 10.2 min (b) 45.9 (3sf)

(c) strong positive correlation

Paper 2

1

(a) 3 (b)

X	2	1.5	1.1	1.01	1.001	1.0001
f (x)	4.5	3.125	2.205	2.020 05	2.002 000 5	2.000 200 005
gradient of line AB	2.5	2.25	2.05	2.005	2.0005	2.000 05

- (c) Slope at point A is 2. As A and B get closer and closer together, the gradient of AB gets closer and closer to 2.
- (d) $0.5x^2 + x + 0.5$
- (e) f'(x) = x + 1

