\qquad
\qquad
\qquad

Factor 皿abel Miethod

- 2i㜔
- to convert from one unit to another by unit analysis

Notess

Creating factors from definitions

* The relationship between two units is based on a definition.
is Examples
* $1 \mathrm{~km}=1,000 \mathrm{~m}$
* $1 \mathrm{~L}=1,000 \mathrm{~cm}^{3}$
* A factor is a number derived from the definition that is equal to 1
is Each definition has two factors derived as follows:
* divide both sides of the definition equation by the value on the left side of the equation causing the values on the left to cancel resulting in 1
* Examples
* $\frac{1 \mathrm{~km}}{1,000 \mathrm{~m}}=1$
* $\frac{1 L}{1,000 \mathrm{~cm}^{3}}=1$
* divide both sides of the definition equation by the value on the right side of the equation causing the values on the right to cancel resulting in 1
* Examples

$$
\begin{aligned}
1 & =\frac{1,000 \mathrm{~m}}{1 \mathrm{~km}} \\
1 & =\frac{1,000 \mathrm{~cm}^{3}}{1 L}
\end{aligned}
$$

Using factors for unit analysis

* Multiplying a value by a factor is the same as multiplying by 1
* A factor is selected such that the original units cancel and the desired unit is obtained
is Example
How many cubic centimeters are in $0.04 L$?
Step 1: Calculate the factors

$$
\frac{1 L}{1,000 \mathrm{~cm}^{3}}=1 \text { or } 1=\frac{1,000 \mathrm{~cm}^{3}}{1 L}
$$

Step 2: Multiply by the factor that causes the original unit to cancel

$$
0.04 L \times \frac{1,000 \mathrm{~cm}^{3}}{1 L}=40 \mathrm{~cm}^{3}
$$

Answer the questions below by circling the number of the correct response

1. Which of the following conversions could be used to determine the number of $\mu \mathrm{L}$ in 1.25 L ?
(1) $1.25 L \times \frac{1 \mu L}{0.000001 L}$
(3) $1.25 L \times \frac{0.000001 L}{1 \mu L}$
(2) $0.000001 L \times \frac{1 \mu L}{1.25 L}$
(4) $1 \mu L \times \frac{0.000001 L}{1.25 L}$
2. Based on the fact that the density of water is $1 \mathrm{~g} / \mathrm{mL}$, what does the following expression show?

$$
3.0 L \times \frac{1,000 \mathrm{~mL}}{1 L} \times \frac{1 g}{1 m L} \times \frac{1 \mathrm{~kg}}{1,000 g}
$$

(1) the number of liters in 3.0 g of water
(2) the number of grams in 3.0 L of water
(3) the number of liters in 3.0 kg of water
(4) the number of kilograms in 3.0 L of water
3. Which of the following conversions could be used to determine the number of centimeters in 15 mm ?
(1) $\frac{1}{15 \mathrm{~mm}} \times \frac{0.001 \mathrm{~m}}{1 \mathrm{~mm}} \times \frac{1 \mathrm{~cm}}{0.01 \mathrm{~m}}$
(2) $15 \mathrm{~mm} \times \frac{1 \mathrm{~mm}}{0.001 \mathrm{~m}} \times \frac{0.01 \mathrm{~m}}{1 \mathrm{~cm}}$
(3) $15 \mathrm{~mm} \times \frac{0.001 \mathrm{~m}}{1 \mathrm{~mm}} \times \frac{0.01 \mathrm{~m}}{1 \mathrm{~cm}}$
(4) $15 \mathrm{~mm} \times \frac{0.001 \mathrm{~m}}{1 \mathrm{~mm}} \times \frac{1 \mathrm{~cm}}{0.01 \mathrm{~m}}$
4. Which is the equivalent of 750 . calories?
(1) 0.750 kcal
(3) 75.0 kcal
(2) 7.30 kcal
(4) $750 . \mathrm{kcal}$
5. What is the numerical value of the conversion factor $\frac{1 \mathrm{~km}}{1,000 \mathrm{~m}}$?
(1) 1
(3) 0.001
(2) There is no way to tell
(4) 1,000

