Academic Chemistry Chemical Quantities Notes

Unit #6 Test Date: November 16th

Cincochem.pbworks.com

	Dimensional Analysis is a process scientists use to convert from
	one unit of measure to another, like <i>converting inches to feet.</i>
Exan	ple: Convert 96 inches to feet.
1.	First, write the
	96 inches
2.	Draw in ""
	96 inches
<u>Co</u>	nversion factor = an between two units of measure.
3.	Bring units from the given to the next bottom box. In
	the box above, write the you want to convert
	to. You have built a conversion factor.

4. Insert the values for each unit that make the conversion factor *true*.

In this case, 12 inches = 1 foot.

- 5. Perform the math:
 - ______ units that appear both in the numerator and denominator.
 - _____ numbers on top (numerators)
 - _____ by any numbers on bottom (denominators).

 $\begin{array}{c|c|c|c|c|c|c|c|c|}\hline 96 \ inches & 1 \ feet & = & \frac{96 \ x \ 1}{12} & = 8 \ feet \\\hline & 12 \ inches & = & \frac{12}{12} & = 8 \ feet \\\hline \end{array}$

Chemistry fact: Mole day is celebrated every year on October 23rd.

What is a MOLE?
A <i>mole</i> is of
a pure substance. This is called
number. We use Avogadro's number and "mole" the
same way we use 12 and "dozen". Mole is abbreviated as
(this does mean).
What is Molar Mass? How do I calculate it?
Molar mass is the of 1 of a
compound. Its units are
To calculate molar mass of an element or compound:
1) Make a of the elements present and how
many atoms of each there are.
2) Use the periodic table to determine the
of each element (round to the hundredths).
3)across the chart.
4) up the totals.
Example: Na ₂ SO ₄

Practice:

1) Calculate the molar mass of zinc.

2) What is the molar mass of barium nitrate?

 You decide to electroplate your old rims on your 1977 Cadillac Eldorado with a bright silver finish and find a nickel color to be your favorite. The substance used for nickel electroplating is called nickel (II) phosphate. Determine the molar mass of nickel (II) phosphate.

How do I convert from MOLES to mass?

- 1) Calculate the ______ of the compound.
- 2) Use the conversion factor created in step 1 in dimensional analysis

to find the number of moles.

Example:

What is the mass of 2.50 mol of NaCl?

Practice:

1) What is the mass of 2.32 mol of dicarbon hexahydride?

2) You need 1.70 moles of calcium hydroxide to make your magic "potion" for the traveling carnival in which you portray a magician. You have 86 grams of the powder in your apothecary's chest. Do you have enough to make your potion?

How do I convert from mass to MOLES?

- 1) Calculate the ______ of the compound.
- 2) Use the conversion factor created in step 1 in dimensional

analysis to find the number of moles.

Mass \rightarrow MOLES $\frac{1 \text{ mole}}{\text{Molar mass (g)}}$

Example:

How many moles are in 74 g of potassium sulfide?

Practice:

1) How many moles are in 39 g of barium hydroxide?

2) Heading into your last lap around campus, Coach Beasley yells, "You can have 1 mole of water when you finish this lap!" However, you finish and chug 100 g of water. How many moles are in 100 g of water?

What are representative particles (a.k.a. particles)?

A representative particle is the ______ unit of a pure

substance that still holds the ______ of that substance!

Example	Symbol	Pure Substance	Representative Particle
potassium			
magnesium chloride			
diphosphorous pentoxide			
fluorine*		*	

*Diatomic Molecules are _____ that only exist in

nature in their "pure" form bonded to another identical atom. For

example, fluorine ONLY exists "by itself" in nature bonded to

another atom of fluorine. It is still called fluorine, but is written F2.

The Diatomic Molecules are:

You can use the mnemonic "Dr._____"

_ ____ _ ___

How do I convert from MOLES to particles?

- Remember : 1 mole of <u>anything</u> = 6.02 x 10²³
- 2) Use the above ______ in dimensional

analysis to calculate the number of representative particles.

3) End with the correct ______ for the compound type.

$MOLES \rightarrow Particles$

Example:

6.02 x 10²³ (formula units, molecules, atoms) 1 mole

How many representative particles are in 0.72 mol of Zn?

Practice:

1) How many representative particles are in 7.5 mol of sulfur dioxide?

What are the representative particles for SO₂ called?

2) How many representative particles are in 0.4 mol of potassium chloride?

What are the representative particles called?

How do I convert from particles to MOLES?

1) Use number in dimensional analysis

to calculate the number of moles present

Particles \rightarrow MOLES $\frac{1 \text{ mole}}{6.02 \times 10^{23}}$ (formula units, molecules, atoms)

How many moles are in 8.34×10^{24} molecules of bromine?

Practice:

Example:

1) How many moles are in 4.81×10^{24} atoms of rubidium?

2) To fill a 4 liter tank with nitrogen dioxide you need 16 moles of the gas. If you have 3.4×10^{26} molecules of nitrogen dioxide, will the tank fill?

Mixed mole questions ask you to convert between ______

and ______. You MUST convert to ______

before converting from *particles to mass* or *mass to particles*.

How do I solve a mixed mole problem?

- 1) Use dimensional analysis and start with the ______.
- 2) Find the ______ of substances when necessary.

Practice:

1) How many atoms of sodium are you eating when you consume 1.09 g (the amount in a sausage McGriddle)?

2) How many grams in 4.29 x 10³⁹ formula units of sodium sulfate?

3) You just inhaled 57 grams of the toxic gas carbon tetrachloride. A lethal dose is 2.26 x 10²⁴ molecules of the gas. Are you going to die from this dose? Percent composition is the _____, by _____,

of each element in a compound.

% composition = $\frac{\text{total mass of }}{\text{molar mass of compound}}$ x 100%

Calculate the _____ of the compound.
Example: CO₂ (C) 1 x 12.011 = 12.011

 Look at the calculations above. For each element, we have already calculated the in the compound.

> (C) $1 \times 12.011 = 12.011 \text{ g/mol} \leftarrow mass of C in CO_2$ (O) $2 \times 15.999 = 31.998 \text{ g/mol} \leftarrow mass of O in CO_2$

3) Using the formula, solve for % composition for each element.

 $\frac{12.011}{44.009} x \ 100\% = 27.29\% \text{ C} \qquad \frac{31.998}{44.009} x \ 100\% = 72.71\% \text{ O}$

Practice:

1) Find the % composition of each element in ammonium chloride.

2) What is the % composition of each element in mercury (IV) oxide?

12

• The *empirical formula* of a compound is the formula with the whole number of elements. How do I calculate it? ... You will be given either: The actual of the elements in the compound **or** a. b. The compositions. The of elements in a compound is preserved in a percentage, so we can just change the ______ from ______ to _____! 1) Use ______ of each element to determine the number of of each element. 2) Divide all _____ by the mole number. 3) If whole numbers, apply these numbers as to their corresponding elements in the compound. IF NOT WHOLE NUMBERS, Convert to whole number ratio. To do this: multiply results by a common number. Apply these numbers as subscripts. For example: Nitrogen = 1 **x 3** = <u>3</u> Phosphorus = $1 \times 2 = 2$ Oxygen = 2.5 x 2 = 5 Chlorine = 1.33 **x 3** = <u>4</u> $P_1O_{2.5} \rightarrow$ P₂O₅ N₃Cl₄ No 🛞 Yes 😳

Example:

Determine the empirical formula for a compound that contains 40.05 g sulfur and 59.95 g oxygen.

Practice:

1) What is the empirical formula of a compound that contains 5.90 g hydrogen and 94.1 g oxygen?

2) Determine the empirical formula for a compound that contains 48.64% carbon, 8.16% hydrogen, and 43.20% oxygen.

3) While an undergraduate assistant in food chemistry, you discover a new non-nutritive sugar substitute that tastes better than maple syrup. After evaluating the substance's properties you find the substance contains 12.12% carbon, 71.72% chlorine, and 16.16% oxygen? From your learning, you know that a substance with more chlorine than carbon tends to cause cancer. Is your sugar substitute safe to eat?

Unit 6

• T	he	molecular formula is the	<pre> of atoms of</pre>
eacł	h el	ement in a compound. In order to find the m	olecular formula
you	ne	ed to compare theof the	compound with
the	ma	ss of the formula.	
	<u>Ho</u>	w do I find the molecular formula?	
	1)	Determine the	_ of the
		formula.	
	2)	Find the scale. $Scale = \frac{1}{mass \ of \ empirical \ fo}$	rmula
		Round the Scale to the nearest whole numbe	r.
	3)	"" empirical	formula.
		# atoms of each elen	nent by the scale
		from	

Example:

Find the molecular formula for a compound with a molar mass of 78.12 g/mol and an empirical formula of CH.

1) Find the molecular formula for a compound with 43.64% phosphorus and 56.36% oxygen and a molar mass of 283.88 g/mol.

2) As a medical bioengineer, you encounter a compound capable of curing seasonal allergies. You know one mole has a mass of 90.04 grams. You have used mass spectrometry to surmise the substance has an empirical formula of CHO₂. Find the molecular formula of the compound.

 Find the molecular formula for a compound with 46.68% nitrogen and 53.32% oxygen and a molar mass of 60.01 g/mol.

What did Avogadro teach his students in math class?

Solve the following problems. Use the table to determine the letter that corresponds to each answer. Fill in the blanks with the appropriate letter for each question to figure out the riddle.

- 1. How many grams are in 3.6 mol of Au?
- 2. How many atoms are in 3.6 mol of Au?
- 3. How many moles are in 6.4 x 10²⁷ formula units of KCl?
- 4. How many moles are in 100 g of BCl_3 ?
- 5. Convert 7.82 mol BeBr₂ to grams.
- 6. Convert 399 g ZrS_2 to mol.
- 7. Convert 6.8×10^{20} molecules of BCl₃.
- 8. Convert 400 moles to atoms of Pt.
- 9. How many moles are in 250 g of NaBr?

10. How many molecules are in 5 moles of $C_6H_{12}O_6$?

11. How many moles are in 4×10^{23} formula units of NH₄Br?

12. How many grams are in 17.6 mol of K_3PO_3 ?

13. Convert 42 moles of MgSO₃ to formula units.

14. Convert 3 moles of Ga to grams.

Α	С	I	I	I	L	L
3.01x10 ²⁴	2.43	3454.35	2.41x10 ²⁶	1320.09	10631.23	0.001

M N	0	0	Р	Т	Т		
709.09 209.	16 2.17x10 ²⁴	2.53x10 ²⁵	2.57	0.85	0.66		

What did Avogadro teach his students in math class?

#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14

Common Polyatomic Ions List

20 Common Polyatomic Ions												
acetate	$C_2H_3O_2^-$ or CH_3COO^-	hypochlorite	CIO [−]									
ammonium	NH_4^+	nitrate	NO ₃ ⁻									
carbonate	CO ₃ ²⁻	nitrite	NO ₂ ⁻									
chlorate	CIO ₃	perchlorate										
chlorite	CIO ₂ ⁻	permanganate	MnO ₄ ⁻									
chromate	CrO ₄ ²⁻	phosphate	PO4 ³⁻									
cyanide	CN⁻	phosphite	PO3 ³⁻									
dichromate	Cr ₂ O ₇ ²⁻	silicate	SiO ₃ ²⁻									
hydrogen carbonate	HCO ₃ ⁻	sulfate	SO4 ²⁻									
hydroxide	OH⁻	sulfite	SO ₃ ²⁻									

How to key scientific notation into a TI calculator:

18 8A	2 He	4.003 Helium	10 No	20.180	Neon	Ar	39.948 Argon	36	Kr	83.798 Krypton	54	Xe	131.294 Yonon	86	Bn	(222) Radon										
		17 7A	οц	18.998	Fluorine	20	35.453 Chlorine	35	Br	79.904 Bromine	53	н	126.904 Indiao	85	At	(210) Astatine					70	γb	173.055 Ytterbium	102	No	(259) Nobelium
		16 6A	∞C	15.999	Oxygen	ຼ ອຸ	32.066 Sulfur	34	Se	78.96 Selenium	52	Te	127.60 Tollurium	84	Po	(209) Polonium					69	Tm	168.934 Thulium	101	Md	(258) Mendelevium
		15 5A	Z N	14.007	Nitrogen	<u>ם</u>	30.974 Phosphorus	33	As	74.922 Arsenic	51	<mark>Sb</mark>	121.760 Antimony	83	Bi	208.980 Bismuth	three of	sotope.			68	Ъ	167.259 Erbium	100	Fm	(257) Fermium
		14 4A	ە د	12.011	Carbon	Si 4	28.086 Silicon	32	Ge	72.64 Germanium	50	Sn	118.711 Tin	82	Pb	207.2 Lead	nthese are	st common i			67	Р	164.930 Holmium	66	Es	(252) Einsteinium
		13 3A	u a	10.812	Boron	PI PI	26.982 Aluminum	31	Ga	69.723 Gallium	49	Ч	114.818 Indium	81	F	204.383 Thallium	oron ni anod	table or most			66	D	162.500 Dysprosium	98	Ç	(251) Californium
							12 2B	30	Zn	65.38 Zinc	48	Cd	112.412 Cadmium	80	Hg	200.59 Mercury	Mace num	the most s			65	Tb	158.925 Terbium	97	BK	(247) Berkelium
							11	29	Cu	63.546 Copper	47	Ag	107.868 Silvor	79	Au	196.967 Gold	111	Rg	(280) Roentgenium		64	Gd	157.25 Gadolinium	96	Cm	(247) Curium
			e				10	28	IN	58.693 Nickel	46	Pd	106.42 Palladium	78	Pt	195.085 Platinum	110	Ds	(281) Darmstadtium	¢	63	Eu	151.964 Europium	95	Am	(243) Americium
			Nan	-			6 88	27	ပိ	58.933 Cobalt	45	Rh	102.906 Bhodium	77	ĥ	192.217 Iridium	109	Mt	(276) Meitnerium		62	Sm	150.36 Samarium	94	Pu	(244) Plutonium
	-14	-Si 20 000	Silicon -				8	26	Fe	55.845 Iron	44	Ru	101.07	76	Os	190.23 Osmium	108	Hs	(270) Hassium		61	Pm	(145) Promethium	66	dN	(237) Neptunium
			2				7 7B	25	Mn	54.938 Manganese	43	Tc	(98) Tochrotium	75	Re	186.207 Rhenium	107	Bh	(272) Bohrium	2	60	Nd	144.242 Neodymium	92	D	238.029 Uranium
	omic numbe	Symbo Atomic mass					6B	24	C C	51.996 Chromium	42	Mo	95.96 Molvhdonum	74	M	183.84 Tungsten	106	Sg	(271) Seaborgium	¢ 2	59	Pr	140.908 Preseodymium	91	Pa	231.036 Protactinium
	Ate						5B	23	٧	50.942 Vanadium	41	qN	92.906 Michium	73	Ta	180.948 Tantalum	105	Db	(268) Dubnium		58	Ce	140.116 Cerium	06	Ч	232.038 Thorium
							4 4B	22	F	47.867 Titanium	40	Zr	91.224 Zirronium	72	H	178.49 Hafnium	104	Rf	(267) Rutherfordium	(X	57	La	138.905 Lanthanum	89	Ac	(227) Actinium
							38	21	Sc	44.956 Scandium	39	7	88.906 Vitrium	71	Lu	174.967 Lutetium	103	2	(262) Lawrencium	1		- 5	/	_	~	
		2 2A	4 B	9.012	Beryllium	Ma	24.305 Magnesium	20	Ca	40.078 Calcium	38	Sr	87.62 Strontium	56	Ba	137.328 Barium	88	Ra	(226) Radium			de Series			de Serie	
1 1A	- H	1.008 Hydrogen	8	6.941	Lithium	Na	22.990 Sodium	19	¥	39.098 Potassium	37	Rb	85.468 Dubidium	55	Cs	132.905 Cesium	87	È	(223) Francium			anthanic			Actinic	
	,			2		c	0		4	1		LC.			y y	,		7	5							