Academic Chemistry
 Chemical Quantities Notes

Unit \#6 Test Date: November 16 ${ }^{\text {th }}$

Dimensional Analysis is a process scientists use to convert from one unit of measure to another, like converting inches to feet.

Example: Convert 96 inches to feet.

1. First, write the \qquad .

96 inches
2. Draw in " \qquad

Conversion factor = an \qquad between two units of measure.
3. Bring \qquad units from the given to the next bottom box. In the box above, write the \qquad you want to convert
to. You have built a conversion factor.

4. Insert the values for each unit that make the conversion factor true.

In this case, 12 inches = 1 foot.

96 inches	1 feet	
	12 inches	

Conversion factor Values are EQUAL
5. Perform the math:

0 \qquad units that appear both in the numerator and
denominator.

0 \qquad numbers on top (numerators)

○ \qquad by any numbers on bottom (denominators).

96 inches	1 feet	
	12 inches	$=\frac{96 \times 1}{12}=8$ feet 1

Chemistry fact: Mole day is celebrated every year on October $23^{\text {rd }}$.

$>$ What is a MOLE?

A mole is \qquad
\qquad of a pure substance. This is called \qquad
number. We use Avogadro's number and "mole" the same way we use 12 and "dozen". Mole is abbreviated as
\qquad (this does \qquad mean \qquad).

What is Molar Mass? How do I calculate it?

Molar mass is the \qquad of 1 \qquad of a
compound. Its units are \qquad .

To calculate molar mass of an element or compound:

1) Make a \qquad of the elements present and how many atoms of each there are.
2) Use the periodic table to determine the \qquad
\qquad of each element (round to the hundredths).
3) \qquad across the chart.
4) \qquad up the totals.

Example: $\mathrm{Na}_{2} \mathrm{SO}_{4}$ \square

Practice:

1) Calculate the molar mass of zinc.
2) What is the molar mass of barium nitrate?
3) You decide to electroplate your old rims on your 1977 Cadillac Eldorado with a bright silver finish and find a nickel color to be your favorite. The substance used for nickel electroplating is called nickel (II) phosphate. Determine the molar mass of nickel (II) phosphate.

- How do I convert from MOLES to mass?

1) Calculate the \qquad of the compound.
2) Use the conversion factor created in step 1 in dimensional analysis to find the number of moles.

MOLES \rightarrow Mass
Molar mass (g)
1 mole

What is the mass of 2.50 mol of NaCl ?

Practice:

1) What is the mass of 2.32 mol of dicarbon hexahydride?
2) You need 1.70 moles of calcium hydroxide to make your magic "potion" for the traveling carnival in which you portray a magician. You have 86 grams of the powder in your apothecary's chest. Do you have enough to make your potion?

How do I convert from mass to MOLES?

1) Calculate the \qquad of the compound.
2) Use the conversion factor created in step 1 in dimensional analysis to find the number of moles.

Example:

Mass \rightarrow MOLES
1 mole Molar mass (g)

How many moles are in 74 g of potassium sulfide?

Practice:

1) How many moles are in 39 g of barium hydroxide?
2) Heading into your last lap around campus, Coach Beasley yells, "You can have 1 mole of water when you finish this lap!" However, you finish and chug 100 g of water. How many moles are in 100 g of water?

- What are representative particles (a.k.a. particles)?

A representative particle is the \qquad unit of a pure substance that still holds the \qquad of that substance!

Example	Symbol	Pure Substance	Representative Particle
potassium			
magnesium chloride			
diphosphorous pentoxide		$*$	
fluorine*			

*Diatomic Molecules are \qquad that only exist in nature in their "pure" form bonded to another identical atom. For example, fluorine ONLY exists "by itself" in nature bonded to another atom of fluorine. It is still called fluorine, but is written F_{2}.

The Diatomic Molecules are:

[^0]\qquad "

How do I convert from MOLES to particles?

1) Remember : 1 mole of anything $=6.02 \times 10^{23}$ \qquad
2) Use the above \qquad
\qquad in dimensional analysis to calculate the number of representative particles.
3) End with the correct \qquad for the compound type.

MOLES \rightarrow Particles

6.02×10^{23} (formula units, molecules, atoms)
Example: 1 mole

How many representative particles are in 0.72 mol of Zn ?

Practice:

1) How many representative particles are in 7.5 mol of sulfur dioxide?

What are the representative particles for SO_{2} called?
2) How many representative particles are in 0.4 mol of potassium chloride?

What are the representative particles called?

How do I convert from particles to MOLES?

1) Use \qquad number in dimensional analysis
to calculate the number of moles present

Particles \rightarrow MOLES

Example:

How many moles are in 8.34×10^{24} molecules of bromine?

Practice:

1) How many moles are in 4.81×10^{24} atoms of rubidium?
2) To fill a 4 liter tank with nitrogen dioxide you need 16 moles of the gas. If you have 3.4×10^{26} molecules of nitrogen dioxide, will the tank fill?

- Mixed mole questions ask you to convert between \qquad
and \qquad . You MUST convert to \qquad
before converting from particles to mass or mass to particles.

How do I solve a mixed mole problem?

1) Use dimensional analysis and start with the \qquad .
2) Find the \qquad of substances when necessary.

Practice:

1) How many atoms of sodium are you eating when you consume 1.09 g (the amount in a sausage McGriddle)?
2) How many grams in 4.29×10^{39} formula units of sodium sulfate?
3) You just inhaled 57 grams of the toxic gas carbon tetrachloride. A lethal dose is 2.26×10^{24} molecules of the gas. Are you going to die from this dose?

- Percent composition is the \qquad by \qquad , of each element in a compound.
$\%$ composition $=\frac{\text { total mass of }}{\text { molar mass of compound }} \times 100 \%$

1) Calculate the \qquad of the compound.

Example: CO_{2}

> (C) $1 \times 12.011=12.011$ (O) $2 \times 15.999=\frac{31.998+}{44.009 \mathrm{~g} / \mathrm{mol}}$
2) Look at the calculations above. For each element, we have already calculated the \qquad in the compound.
(C) $1 \times 12.011=12.011 \mathrm{~g} / \mathrm{mol} \leftarrow$ mass of $\mathrm{C}^{\text {in }} \mathrm{CO}_{2}$
(0) $2 \times 15.999=31.998 \mathrm{~g} / \mathrm{mol} \leftarrow$ mass of O in CO_{2}
3) Using the formula, solve for \% composition for each element.

$$
\frac{12.011}{44.009} \times 100 \%=27.29 \% \mathrm{C} \quad \frac{31.998}{44.009} \times 100 \%=72.71 \% \mathrm{O}
$$

Practice:

1) Find the \% composition of each element in ammonium chloride.
2) What is the \% composition of each element in mercury (IV) oxide?

- The empirical formula of a compound is the formula with the
\qquad whole number \qquad of elements.

How do I calculate it? ... You will be given either:
a. The actual \qquad of the elements in the compound or
b. The \qquad compositions. The \qquad of elements in a compound is preserved in a percentage, so we can just change the \qquad from \qquad to \qquad !

1) Use \qquad of each element to
determine the number of \qquad of each element.
2) Divide all \qquad by the
\qquad mole number.
3) If whole numbers, apply these numbers as \qquad
to their corresponding elements in the compound.
4) IF NOT WHOLE NUMBERS, Convert to \qquad whole number ratio. To do this: multiply results by a common number. Apply these numbers as subscripts.

For example:

$$
\begin{array}{ll}
\text { Phosphorus }=1 \times \mathbf{1}=\underline{2} \\
\text { Oxygen }= \\
2.5 \times 2=\underline{2}
\end{array} \quad \begin{aligned}
& \text { Nitrogen }=1 \\
& \text { Chlorine }=1.33
\end{aligned} \quad \begin{aligned}
& \mathbf{x 3}=\underline{3} \\
& \mathbf{x} \mathbf{3}=\underline{4}
\end{aligned}
$$

Example:

Determine the empirical formula for a compound that contains 40.05 g sulfur and 59.95 g oxygen.

Practice:

1) What is the empirical formula of a compound that contains 5.90 g hydrogen and 94.1 g oxygen?
2) Determine the empirical formula for a compound that contains 48.64% carbon, 8.16% hydrogen, and 43.20% oxygen.
3) While an undergraduate assistant in food chemistry, you discover a new non-nutritive sugar substitute that tastes better than maple syrup. After evaluating the substance's properties you find the substance contains 12.12% carbon, 71.72% chlorine, and 16.16% oxygen? From your learning, you know that a substance with more chlorine than carbon tends to cause cancer. Is your sugar substitute safe to eat?

- The molecular formula is the \qquad of atoms of each element in a compound. In order to find the molecular formula you need to compare the \qquad of the compound with the mass of the \qquad formula.

How do I find the molecular formula?

1) Determine the \qquad of the
\qquad formula.
2) Find the scale. Scale $=\overline{\text { mass of empirical formula }}$

Round the Scale to the nearest whole number.
3) \qquad " empirical formula.
\qquad \# atoms of each element by the scale from \qquad .

Example:

Find the molecular formula for a compound with a molar mass of $78.12 \mathrm{~g} / \mathrm{mol}$ and an empirical formula of CH .

Practice:

1) Find the molecular formula for a compound with 43.64% phosphorus and 56.36% oxygen and a molar mass of 283.88 $\mathrm{g} / \mathrm{mol}$.
2) As a medical bioengineer, you encounter a compound capable of curing seasonal allergies. You know one mole has a mass of 90.04 grams. You have used mass spectrometry to surmise the substance has an empirical formula of CHO_{2}. Find the molecular formula of the compound.
3) Find the molecular formula for a compound with 46.68% nitrogen and 53.32% oxygen and a molar mass of $60.01 \mathrm{~g} / \mathrm{mol}$.

What did Avogadro teach his students in math class?

Solve the following problems. Use the table to determine the letter that corresponds to each answer. Fill in the blanks with the appropriate letter for each question to figure out the riddle.

1. How many grams are in 3.6 mol of Au?
2. How many atoms are in 3.6 mol of Au ?
3. How many moles are in 6.4×10^{27} formula units of KCl ?
4. How many moles are in 100 g of BCl_{3} ?
5. Convert $7.82 \mathrm{~mol} \mathrm{BeBr}_{2}$ to grams.
6. Convert 399 g ZrS 2 to mol.
7. Convert 6.8×10^{20} molecules of BCl_{3}.
8. Convert 400 moles to atoms of Pt.
9. How many moles are in 250 g of NaBr ?
10. How many molecules are in 5 moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
11. How many moles are in 4×10^{23} formula units of $\mathrm{NH}_{4} \mathrm{Br}$?
12. How many grams are in 17.6 mol of $\mathrm{K}_{3} \mathrm{PO}_{3}$?
13. Convert 42 moles of MgSO_{3} to formula units.
14. Convert 3 moles of Ga to grams.

A	C	I	I	I	L	L
3.01×10^{24}	2.43	3454.35	2.41×10^{26}	1320.09	10631.23	0.001

M	N	O	O	P	T	T
709.09	209.16	2.17×10^{24}	2.53×10^{25}	2.57	0.85	0.66

What did Avogadro teach his students in math class?
$\overline{\# 1} \overline{\# 2} \overline{\# 3} \overline{\# 4} \overline{\# 5} \overline{\# 6} \overline{\# 7} \overline{\# 8} \overline{\# 9} \overline{\# 10} \overline{\# 11} \overline{\# 12} \overline{\# 13} \overline{\# 14}$

Common Polyatomic lons List

20 Common Polyatomic Ions

acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$or $\mathrm{CH}_{3} \mathrm{COO}^{-}$	hypochlorite	ClO^{-}
ammonium	NH_{4}^{+}	nitrate	$\mathrm{NO}_{3}{ }^{-}$
carbonate	$\mathrm{CO}_{3}{ }^{2-}$	nitrite	$\mathrm{NO}_{2}{ }^{-}$
chlorate	ClO_{3}^{-}	perchlorate	ClO_{4}^{-}
chlorite	ClO_{2}^{-}	permanganate	MnO_{4}^{-}
chromate	CrO_{4}^{2-}	phosphate	PO_{4}^{3-}
cyanide	CN^{-}	phosphite	$\mathrm{PO}_{3}{ }^{3-}$
dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	silicate	$\mathrm{SiO}_{3}{ }^{2-}$
hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{-}$	sulfate	$\mathrm{SO}_{4}{ }^{2-}$
hydroxide	OH^{-}	sulfite	$\mathrm{SO}_{3}{ }^{2-}$

How to key scientific notation into a TI calculator:

Should display: E. ETET
How to key molar mass into a TI calculator in ONE STEP!:
Example: $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$2 * 22.99+1 * 32.07+$
$4 * 16.60$
142.65

Mole conversion chart

[^0]: You can use the mnemonic "Dr.

