In-Class Worksheet

8. Write the formula for diamminedichloroethylenediaminecobalt(III) bromide

[CoCl₂(en)(NH₃)₂]Br

sodium tetracyanonickelate(II)

Na₂[Ni(CN)₄]

9. Consider the following octahedral complex structures, each involving ethylene diamine and two different, unidentate ligands X and Y.

- D) is larger for ionic ligands like chloride than for molecular ligands like carbon monoxide, CO.
- E) determines the charge of a complex.

Ans: _____C

11. Which of the following ions could exist in either the high-spin or low-spin state in an octahedral complex?

A) Sc^{3+} B) Ni^{2+} C) Mn^{2+} D) Ti^{4+} E) Zn^{2+}

Ans: _____ C

Ans: _____ D

Ans: _____A

12. Which of the following octahedral complexes should have the largest crystal field splitting energy, Δ ?

A)	[Cr(H ₂ O) ₆] ³⁺	D)	[Cr(CN) ₆] ³⁻

- B) $[Cr(SCN)_6]^{3-}$ E) $[Cr(en)_3]^{3+}$ (en = ethylenediamine)
- C) $[Cr(NH_3)_6]^{3+}$

13. If a solution absorbs green light, what is its likely color?A) red B) violet C) orange D) yellow E) blue

14. Why is the +2 oxidation state so common among transition elements?

The outermost (ns^2) electrons are easily lost, producing the +2 oxidation state.

15. Give the oxidation number of the metal, the number of *d* electrons, the metal orbitals that are hybridized, the type of hybridization and the molecular geometry of Ni(CN)₄²⁻ complex ion.