Per: Date:

Name:

The table below shows the electronegativity values for most elements in the periodic table. Determine if the bonds in the compounds below are **ionic**, **polar** or **nonpolar** based on the electronegativity differences.

Pauling's Electronegativity Scale:

Н																	He
2.1																	-
Li	Be											В	С	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	-
Na	Mg											AI	Si	Ρ	S	CI	Ar
0.9	1.2											1.5	1.8	2.1	2.5	3.0	-
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	<mark>1</mark> .3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe
0.8	1.0	<mark>1</mark> .2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.7	0.9	<mark>1</mark> .1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
		La	Ce	Pr	Nd	Ρm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		1.1	1.3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3		

According to Brown, Lemay and Bursten, page 313, if the difference in electronegativities of the two atoms in a bond is *less than 0.5*, the bond is considered **nonpolar**. If the difference *is greater than or equal to 0.5* and less than 2.0 it is considered **polar**. If the difference is *greater than or equal to 2.0*, it is considered **ionic**. (NOTE: In other reference materials the rule of a difference 1.7 to characterize bonds as ionic or covalent)

1.	BCl ₃	8.	NH ₃
2.	OF ₂	9.	CIF ₃
3.	H_2S	10.	PbS
4.	BeI ₂	11.	NaH
5.	CS ₂	12.	SO ₂
6.	BrO ₃ -	13.	AlCl ₃
7.	CCl ₄	14.	SnCl ₄