
16
DeVeLoPInG tHe

MR. stICK MAn GAMe

Now that we’ve created the images for our Mr. Stick

Man Races for the Exit game, we can begin to develop

the code. The description of the game in the previous

 chapter gives us a basic idea of what we need: a stick

figure that can run and jump, and platforms that he

must jump to.

We’ll need code to display the stick figure and

move it across the screen, as well as to draw platforms.

But before we write that code, we need to create the

canvas to display our background image.

234 Chapter 16

Creating the Game Class
First, we’ll create a class called Game, which will be our program’s

main controller. The Game class will have an __init__ function for ini-

tializing the game and a mainloop function for doing the animation.

setting the Window title and
 Creating the Canvas
In the first part of the __init__ function, we’ll set the window title

and create the canvas. As you’ll see, this part of the code is simi-

lar to the code that we wrote for the Bounce! game in Chapter 13.

Open your editor and enter the following code, and then save your

file as stickmangame.py. Make sure you save it in the directory we

created in Chapter 15 (called stickman).

from tkinter import *
import random
import time

class Game:
 def __init__(self):
 self.tk = Tk()
 self.tk.title("Mr. Stick Man Races for the Exit")
 self.tk.resizable(0, 0)
 self.tk.wm_attributes("-topmost", 1)
 self.canvas = Canvas(self.tk, width=500, height=500, \
 highlightthickness=0)
 self.canvas.pack()
 self.tk.update()
 self.canvas_height = 500
 self.canvas_width = 500

In the first half of this program (from from tkinter import * to

self.tk.wm_attributes), we create the tk object and then set the win-

dow title with self.tk.title to ("Mr. Stick Man Races for the Exit").

We make the window fixed (so it can’t be resized) by calling the

resizable function, and then we move the window in front of all

other windows with the wm_attributes function.

Next, we create the canvas with the self.canvas = Canvas line,

and call the pack and update functions of the tk object. Finally, we

create two variables for our Game class, height and width, to store the

height and width of the canvas.

Developing the Mr. Stick Man Game 235

note The backslash (\) in the self.canvas = Canvas line is used only to

separate the long line of code. It’s not required, but I’ve included it

here for readability since the entire line won’t fit on the page.

finishing the _init_ function
Now enter the rest of the __init__ function into the stickfiguregame

.py file that you just created. This code will load the background

image and then display it on the canvas:

 self.tk.update()
 self.canvas_height = 500
 self.canvas_width = 500

u self.bg = PhotoImage(file="background.gif")
v w = self.bg.width()

 h = self.bg.height()
w for x in range(0, 5):
x for y in range(0, 5):
y self.canvas.create_image(x * w, y * h, \

 image=self.bg, anchor='nw')
z self.sprites = []

 self.running = True

At u, we create the variable bg, which contains a PhotoImage

object—the background image file called background.gif that we

created in Chapter 15. Next, beginning at v, we store the width

and height of the image in the variables w and h. The PhotoImage

class functions width and height return the size of the image once

it has been loaded.

Next come two loops inside this func-

tion. To understand what they do, imagine

that you have a small square rubber stamp,

an ink pad, and a large piece of paper. How

are you going to fill the paper with colored

squares using the stamp? Well, you could

just randomly cover the page with stamps

until it’s filled. The result would be a mess,

and it would take a while to complete, but

it would fill the page. Or you could start

stamping down the page in a column and

then move back to the top and start stamp-

ing down the page in the next column, as

shown on the right.

236 Chapter 16

The background image we created in the previous chapter

is our stamp. We know that the canvas is 500 pixels across and

500 pixels down, and that we created a background image of

100 pixels square. This tells us that we need five columns across

and five rows down to fill the screen with images. We use the loop

at w to calculate the columns across, and the loop at x to calculate

rows going down.

At y, we multiply the first loop variable x by the width of the

image (x * w) to determine how far across we’re drawing, and then

multiply the second loop variable y by the height of the image (y * h)

to calculate how far down to draw. We use the create_image function

of the canvas object (self.canvas.create_image) to draw the image on

the screen using those coordinates.

Finally, beginning with z, we create the variables sprites,

which holds an empty list, and running, which contains the Boolean

value True. We’ll use these variables later in our game code.

Creating the mainloop function
We’ll use the mainloop function in the Game class to animate our

game. This function looks a lot like the main loop (or animation

loop) we created for the Bounce! game in Chapter 13. Here it is:

 for x in range(0, 5):
 for y in range(0, 5):
 self.canvas.create_image(x * w, y * h, \
 image=self.bg, anchor='nw')
 self.sprites = []
 self.running = True

 def mainloop(self):
u while 1:
v if self.running == True:
w for sprite in self.sprites:
x sprite.move()
y self.tk.update_idletasks()

 self.tk.update()
 time.sleep(0.01)

At u, we create a while loop that will run until the game win-

dow is closed. Next, at v, we check to see if the variable running

is equal to True. If it is, we loop through any sprites in the list of

sprites (self.sprites) at w, calling the function move for each one

at x. (Of course, we have yet to create any sprites, so this code

Developing the Mr. Stick Man Game 237

wouldn’t do anything if you ran the program

now, but it will be useful later.)

The last three lines of the function, begin-

ning at y, force the tk object to redraw the

screen and sleep for a fraction of a second, as

we did with the Bounce! game in Chapter 13.

So that you can run this code, add the

following two lines (note that there’s no inden-

tation required for these two lines) and save

the file.

g = Game()
g.mainloop()

note Be sure to add this code to the bottom of your game file. Also, make

sure that your images are in the same directory as the Python file.

If you created the stickman directory in Chapter 15 and saved all

your images there, the Python file for this game should be there

as well.

This code creates an object of the Game class and saves it as the

variable g. We then call the mainloop function on the new object to

draw the screen.

Once you’ve saved the program, run it in IDLE by choosing

Run4Run Module. You will see a window appear with the back-

ground image filling the canvas.

238 Chapter 16

We’ve added a nice background for our game, and created

an animation loop that will draw sprites for us (once we’ve cre-

ated them).

Creating the Coords Class
Now we’ll create the class that we’ll use to specify the position of

something on our game screen. This class will store the top-left (x1

and y1) and bottom-right (x2 and y2) coordinates of any component

of our game.

Here’s how you might record the position of the stick figure

image using these coordinates:

x1,y1

x2,y2

We’ll call our new class Coords, and it will contain only an

__init__ function, where we pass the four parameters (x1, y1, x2,

and y2). Here’s the code to add (put it at the beginning of the

stickmangame.py file):

class Coords:
 def __init__(self, x1=0, y1=0, x2=0, y2=0):
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2

Notice that each parameter is saved as an object variable of

the same name (x1, y1, x2, and y2). We’ll be using objects of this

class shortly.

Developing the Mr. Stick Man Game 239

Checking for Collisions
Once we know how to store the position of our game sprites, we

need a way to tell if one sprite has collided with another, like when

Mr. Stick Man jumps around the screen and bangs into one of

the platforms. To make this problem easier to solve, we can break

it down into two smaller problems: checking if sprites are collid-

ing vertically and checking if sprites are colliding horizontally.

Then we can combine our two smaller solutions to easily see if two

sprites are colliding in any direction!

sprites Colliding Horizontally
First, we’ll create the within_x function to determine if one set of

x coordinates (x1 and x2) has crossed over another set of x coordi-

nates (again, x1 and x2). There’s more than one way to do this, but

here’s a simple approach which you can add just below the Coords

class:

class Coords:
 def __init__(self, x1=0, y1=0, x2=0, y2=0):
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2

def within_x(co1, co2):
u if co1.x1 > co2.x1 and co1.x1 < co2.x2:
v return True
w elif co1.x2 > co2.x1 and co1.x2 < co2.x2:
x return True
y elif co2.x1 > co1.x1 and co2.x1 < co1.x2:

 return True
z elif co2.x2 > co1.x1 and co2.x2 < co1.x2:

 return True
{ else:
| return False

The within_x function takes the parameters co1 and co2, both

Coords objects. At u, we check to see if the leftmost position of

the first coordinate object (co1.x1) is between the leftmost position

(co2.x1) and the rightmost position (co2.x2) of the second coordinate

object. We return True at v if it is.

240 Chapter 16

Let’s take a look at two lines with overlapping x coordinates to

understand how this works. Each line starts at x1 and finishes at x2.

x1=50 x2=100

x1=40 x2=150

The first line in this diagram (co1) starts at pixel position 50

(x1) and finishes at 100 (x2). The second line (co2) starts at position

40 and finishes at 150. In this case, because the x1 position of the

first line is between the x1 and x2 positions of the second line,

the first if statement in the function would be true for these two

sets of coordinates.

With the elif at w, we see whether the rightmost position of

the first line (co1.x2) is between the leftmost position (co2.x1) and

rightmost position (co2.x2) of the second. If it is, we return True at x.

The two elif statements at y and z do almost the same thing: They

check the leftmost and rightmost positions of the second line (co2)

against the first (co1).

If none of the if statements match, we reach else at {, and

return False at |. This is effectively saying, “No, the two coordi-

nate objects do not cross over each other horizontally.”

To see an example of the function working, look back at the

diagram showing the first and second lines. The x1 and x2 positions

of the first coordinate object are 40 and 100, and the x1 and x2 posi-

tions of the second coordinate object are 50 and 150. Here’s what

happens when we call the within_x function that we wrote:

>>> c1 = Coords(40, 40, 100, 100)
>>> c2 = Coords(50, 50, 150, 150)
>>> print(within_x(c1, c2))
True

The function returns True. This is the first step to being

able to determine whether one sprite has bumped into another.

For example, when we create a class for Mr. Stick Man and for

the platforms, we will be able to tell if their x coordinates have

crossed one another.

Developing the Mr. Stick Man Game 241

It’s not really good programming practice to have lots of if or

elif statements that return the same value. To solve this problem,

we can shorten the within_x function by surrounding each of its

conditions with parentheses, separated by the or keyword. If you

want a slightly neater function, with a few less lines of code, you

can change the function so it looks like this:

def within_x(co1, co2):
 if (co1.x1 > co2.x1 and co1.x1 < co2.x2) \
 or (co1.x2 > co2.x1 and co1.x2 < co2.x2) \
 or (co2.x1 > co1.x1 and co2.x1 < co1.x2) \
 or (co2.x2 > co1.x1 and co2.x2 < co1.x2):
 return True
 else:
 return False

To extend the if statement across multiple lines so that we

don’t end up with one really long line containing all the conditions,

we use a backslash (\), as shown above.

sprites Colliding Vertically
We also need to know if sprites collide

vertically. The within_y function is very

similar to the within_x function. To create

it, we check whether the y1 position of the

first coordinate has crossed over the y1

and y2 positions of the second, and then

vice versa. Here’s the function to add (put

it below the within_x function)—this time

we’ll write it using the shorter version of

the code (rather than lots of if statements):

def within_y(co1, co2):
 if (co1.y1 > co2.y1 and co1.y1 < co2.y2) \
 or (co1.y2 > co2.y1 and co1.y2 < co2.y2) \
 or (co2.y1 > co1.y1 and co2.y1 < co1.y2) \
 or (co2.y2 > co1.y1 and co2.y2 < co1.y2):
 return True
 else:
 return False

242 Chapter 16

Putting It All together:
our final Collision-Detection Code
Once we’ve determined whether one set of x coordinates has

crossed over another, and done the same for y coordinates, we can

write functions to see whether a sprite has hit another sprite and

on which side. We’ll do this with the functions collided_left, col-

lided_right, collided_top, and collided_bottom.

the collided_left function

Here’s the code for the collided_left function, which you can add

below the two within functions we just created:

u def collided_left(co1, co2):
v if within_y(co1, co2):
w if co1.x1 <= co2.x2 and co1.x1 >= co2.x1:
x return True
y return False

This function tells us whether the left-hand side (the x1 value)

of a first coordinate object has hit another coordinate object.

The function takes two parameters: co1 (the first coordinate

object) and co2 (the second coordinate object). As you can see at u,

we check whether the two coordinate objects have crossed over verti-

cally, using the within_y function at v. After all, there’s no point in

checking whether Mr. Stick Man has hit a platform if he is floating

way above it, like this:

x1,y1

x1,y1

x1,y1

x2,y2

Developing the Mr. Stick Man Game 243

At w, we see if the value of the left-

most position of the first coordinate object

(co1.x1) has hit the x2 position of the sec-

ond coordinate object (co2.x2)—that it is

less than or equal to the x2 position. We

also check to make sure that it hasn’t

gone past the x1 position. If it has hit the

side, we return True at x. If none of the if

statements are true, we return False at y.

the collided_right function

The collided_right function looks a lot like collided_left:

def collided_right(co1, co2):
u if within_y(co1, co2):
v if co1.x2 >= co2.x1 and co1.x2 <= co2.x2:
w return True
x return False

As with collided_left, we check to see if the y coordinates have

crossed over each other using the within_y function at u. We then

check to see if the x2 value is between the x1 and x2 positions of the

second coordinate object at v, and return True at w if it is. Other-

wise, we return False at x.

the collided_top function

The collided_top function is very similar to the two functions we

just added.

def collided_top(co1, co2):
u if within_x(co1, co2):
v if co1.y1 <= co2.y2 and co1.y1 >= co2.y1:

 return True
 return False

The difference is that this time, we check to see if the coordi-

nates have crossed over horizontally, using the within_x function

at u. Next, at v, we see if the topmost position of the first coor-

dinate (co1.y1) has crossed over the y2 position of the second

coordinate, but not its y1 position. If so, we return True (mean-

ing that yes, the top of the first coordinate has hit the second

coordinate).

244 Chapter 16

the collided_bottom function

Of course, you knew that one of these four functions had to be just

a bit different, and it is. Here’s the collided_bottom function:

def collided_bottom(y, co1, co2):
u if within_x(co1, co2):
v y_calc = co1.y2 + y
w if y_calc >= co2.y1 and y_calc <= co2.y2:
x return True
y return False

This function takes an additional parameter, y, a value that

we add to the y position of the first coordinate. At u, we see if

the coordinates have crossed over horizontally (as we did with

 collided_top). Next, we add the value of the y parameter to the first

coordinate’s y2 position, and store the result in the variable y_calc

at v. If at w the newly calculated value is between the y1 and y2

values of the second coordinate, we return True at x because the

bottom of coordinate co1 has hit the top of coordinate co2. However,

if none of the if statements are true, we return False at y.

We need the additional y parameter because Mr. Stick Man

could fall off a platform. Unlike with the other collided functions,

we need to be able to test to see if he would collide at the bottom,

rather than whether he already has. If he walks off a platform and

keeps floating in midair, our game won’t be very realistic; so as he

walks, we check to see if he has collided with something on the left

or right. However, when we check below him, we see if he would

collide with the platform; if not, he needs to go crashing down!

Creating the sprite Class
We’ll call the parent class for our game items Sprite. This class will

provide two functions: move to move the sprite and coords to return

the sprite’s current position on the screen. Here’s the code for the

Sprite class.

class Sprite:
u def __init__(self, game):
v self.game = game
w self.endgame = False
x self.coordinates = None

Developing the Mr. Stick Man Game 245

y def move(self):
z pass
{ def coords(self):
| return self.coordinates

The Sprite class’s __init__ function defined at u takes a single

parameter: game. This parameter will be the game object. We need it

so that any sprite we create will be able to access the list of other

sprites in the game. We store the game parameter as an object vari-

able at v.

At w, we store the object variable endgame, which we’ll use to

indicate the end of the game. (At the moment, it’s set to False.) The

final object variable, coordinates at x, is set to nothing (None).

The move function defined at y does nothing in this parent

class, so we use the pass keyword in the body of this function

at z. The coords function at { simply returns the object variable

 coordinates at |.

So our Sprite class has a move function

that does nothing and a coords function that

returns no coordinates. It doesn’t sound

very useful, does it? However, we know

that any classes that have Sprite as their

parent will always have move and coords

functions. So, in the main loop of the game,

when we loop through a list of sprites, we

can call the function move, and it won’t

cause any errors. Why not? Because each

sprite has that function.

note Classes with functions that don’t do very much are actually quite

common in programming. In a way, they’re a kind of agreement

or contract that makes sure all the children of a class provide the

same sort of functionality, even if in some cases the functions in

the child classes do nothing.

Adding the Platforms
Now we’ll add the platforms. We’ll call our class for platform objects

PlatformSprite, and it will be a child class of Sprite. The __init__

function for this class will take a game parameter (as the Sprite

246 Chapter 16

parent class does), as well as an image, x and y positions, and the

image width and height. Here’s the code for the PlatformSprite class:

u class PlatformSprite(Sprite):
v def __init__(self, game, photo_image, x, y, width, height):
w Sprite.__init__(self, game)
x self.photo_image = photo_image
y self.image = game.canvas.create_image(x, y, \

 image=self.photo_image, anchor='nw')
z self.coordinates = Coords(x, y, x + width, y + height)

When we define the PlatformSprite class at u, we give it a sin-

gle parameter: the name of the parent class (Sprite). The __init__

function, at v, has seven parameters: self, game, photo_image, x, y,

width, and height.

At w, we call the __init__ function of the parent

class, Sprite, using self and game as the parameter val-

ues, because other than the self keyword, the Sprite

class’s __init__ function takes only one parameter: game.

At this point, if we were to create a PlatformSprite

object, it would have all the object variables from its

parent class (game, endgame, and coordinates), simply

because we’ve called the __init__ function in Sprite.

At x, we save the photo_image parameter as an object variable,

and at y we use the canvas variable of the game object to draw the

image on screen with create_image.

Finally, we create a Coords object with the x and y parameters

as the first two arguments. We then add the width and height param-

eters to these parameters for the second two arguments at z.

Even though the coordinates variable is set to None in the Sprite

parent class, we have changed it in our PlatformSprite child class

to a real Coords object, containing the real location of the platform

image on the screen.

Adding a Platform object
Let’s add a platform to the game to see how it looks. Change the

last two lines of the game file (stickmangame.py) as follows:

u g = Game()
v platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \

 0, 480, 100, 10)
w g.sprites.append(platform1)
x g.mainloop()

Developing the Mr. Stick Man Game 247

As you can see, lines u and x have not changed, but at v, we

create an object of the PlatformSprite class, passing it the variable

for our game (g), along with a PhotoImage object (which uses the first

of our platform images, platform1.gif). We also pass it the position

where we want to draw the platform (0 pixels across and 480 pixels

down, near the bottom of the canvas), along with the height and

width of our image (100 pixels across and 10 pixels high). We add

this sprite to the list of sprites in our game object at w.

If you run the game now, you should see a platform drawn at

the bottom-left side of the screen, like this:

Adding a Bunch of Platforms
Let’s add a whole bunch of platforms. Each platform will have

different x and y positions, so that they will be drawn scattered

around the screen. Here’s the code to use:

g = Game()
platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 0, 480, 100, 10)
platform2 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 150, 440, 100, 10)
platform3 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 400, 100, 10)
platform4 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 160, 100, 10)

248 Chapter 16

platform5 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 175, 350, 66, 10)
platform6 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 50, 300, 66, 10)
platform7 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 170, 120, 66, 10)
platform8 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 45, 60, 66, 10)
platform9 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 170, 250, 32, 10)
platform10 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 230, 200, 32, 10)
g.sprites.append(platform1)
g.sprites.append(platform2)
g.sprites.append(platform3)
g.sprites.append(platform4)
g.sprites.append(platform5)
g.sprites.append(platform6)
g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
g.mainloop()

We create a lot of PlatformSprite objects, saving them as vari-

ables platform1, platform2, platform3, and so on, up to platform10. We

then add each platform to the variable sprites, which we created in

our Game class. If you run the game now, it should look like this:

Developing the Mr. Stick Man Game 249

We’ve created the basics of our game! Now we’re ready to add

our main character, Mr. Stick Man.

What You Learned
In this chapter, you created the Game class and drew the background

image onto the screen like a kind of wallpaper. You learned how to

determine whether a horizontal or vertical position is within the

bounds of two other horizontal or vertical positions by creating the

functions within_x and within_y. You then used these functions to

create new functions to determine whether one coordinate object

had collided with another. We’ll use these functions in the next

chapters when we animate Mr. Stick Man and need to detect

whether he has collided with a platform as he moves around the

canvas.

We also created a parent class Sprite and its first child class,

PlatformSprite, which we used to draw the platforms onto the canvas.

Programming Puzzles
The following coding puzzles are some ways that you can experi-

ment with the game’s background image. Check your answers at

http://python-for-kids.com/.

#1: Checkerboard
Try changing the Game class so that the background image is drawn

like a checkerboard:

250 Chapter 16

#2: two-Image Checkerboard
Once you’ve figured out how to create a checkerboard effect, try

using two alternating images. Come up with another wallpaper

image (using your graphics program), and then change the Game

class so it displays a checkerboard with two alternating images

instead of one image and the blank background.

#3: Bookshelf and Lamp
You can create different wallpaper images to make the background

of the game look more interesting. Create a copy of the background

image, and then draw a simple bookshelf on it. Or you could draw

a table with a lamp or a window. Then dot these images around

the screen by changing the Game class so that it loads (and dis-

plays) three or four different wallpaper images.

17
CReAtInG MR. stICK MAn

In this chapter, we’ll create the main character of

our Mr. Stick Man Races for the Exit game. This will

require the most complicated coding we’ve done so

far, because Mr. Stick Man needs to run left and right,

jump, stop when he runs into a platform, and fall when

he runs off the edge of a platform. We’ll use event bind-

ings for the left and right arrow keys to make the stick

figure run left and right, and we’ll have him jump

when the player presses the spacebar.

252 Chapter 17

Initializing the stick figure
The __init__ function for our new stick figure class will look a lot

like it does in the other classes in our game so far. We start by

giving our new class a name: StickFigureSprite. As with previous

classes, this class has a parent class: Sprite.

class StickFigureSprite(Sprite):
 def __init__(self, game):
 Sprite.__init__(self, game)

This code looks like what we wrote for the PlatformSprite class

in Chapter 16, except that we’re not using any additional param-

eters (other than self and game). The reason is that, unlike with the

 PlatformSprite class, there will be only one StickFigureSprite object

used in the game.

Loading the stick figure Images
Because we have a lot of platform

objects on the screen, which each

can use a different-sized image,

we pass the platform image as a

parameter of the PlatformSprite’s

__init__ function (kind of like say-

ing, “Here, Platform Sprite, use

this image when you draw yourself

on the screen.”). But since there’s

only one stick figure on the screen,

it doesn’t make sense to load the

image outside the sprite and then

pass it in as a parameter. The

StickFigureSprite class will know

how to load its own images.

The next few lines of the __init__ function do this very job:

They load each of the three left images (which we’ll use to animate

the stick figure running left) and the three right images (used

to animate the stick figure running right). We need to load these

images now, because we don’t want to have to load them every time

we display the stick figure on the screen (doing so would take too

long and make our game run slowly).

Creating Mr. Stick Man 253

class StickFigureSprite(Sprite):
 def __init__(self, game):
 Sprite.__init__(self, game)

u self.images_left = [
 PhotoImage(file="figure-L1.gif"),
 PhotoImage(file="figure-L2.gif"),
 PhotoImage(file="figure-L3.gif")
]

v self.images_right = [
 PhotoImage(file="figure-R1.gif"),
 PhotoImage(file="figure-R2.gif"),
 PhotoImage(file="figure-R3.gif")
]

w self.image = game.canvas.create_image(200, 470, \
 image=self.images_left[0], anchor='nw')

This code loads each of the three left images, which we’ll

use to animate the stick figure running left, and the three right

images, which we’ll use to animate the stick figure running right.

At u and v, we create the object variables images_left and

images_right. Each contains a list of PhotoImage objects that we cre-

ated in Chapter 15, showing the stick figure facing left and right.

We draw the first image at w with images_left[0] using the

canvas’s create_image function at position (200, 470), which puts the

stick figure in the middle of the game screen, at the bottom of the

canvas. The create_image function returns a number that identifies

the image on the canvas. We store this identifier in the object vari-

able image for later use.

setting Up Variables
The next part of the __init__ function sets up some more variables

that we’ll be using later in this code.

 self.images_right = [
 PhotoImage(file="figure-R1.gif"),
 PhotoImage(file="figure-R2.gif"),
 PhotoImage(file="figure-R3.gif")
]
 self.image = game.canvas.create_image(200, 470, \
 image=self.images_left[0], anchor='nw')

u self.x = -2
v self.y = 0
w self.current_image = 0

254 Chapter 17

x self.current_image_add = 1
y self.jump_count = 0
z self.last_time = time.time()
{ self.coordinates = Coords()

At u and v, the object variables x and y will store the amount

we’ll be adding to the stick figure’s horizontal (x1 and x2) or verti-

cal (y1 and y2) coordinates when he is moving around the screen.

As you learned in Chapter 13, in order to animate something

with the tkinter module, we add values to the object’s x or y posi-

tion to move it around the canvas. By setting x to –2, and y to 0, we

subtract 2 from the x position later in the code and add nothing to

the vertical position, to make the stick figure run to the left.

note Remember that a negative x number means move left on the canvas,

and a positive x number means move right. A negative y number

means move up, and a positive y number means move down.

At w, we create the object variable current_image to store

the image’s index position as currently displayed on the screen.

Our list of left-facing images, images_left, contains figure-L1.gif,

figure-L2.gif, and figure-L3.gif. Those are index positions 0, 1,

and 2.

At x, the variable current_image_add will contain the number

we’ll add to that index position stored in current_image to get the

next index position. For example, if the image at index position 0

is displayed, we add 1 to get the next image at index position 1,

and then add 1 again to get the final image in the list at index

position 2. (You’ll see how we use this variable for animation in

the next chapter.)

The variable jump_count at y is a counter we’ll use while the

stick figure is jumping. The variable last_time will record the

last time we changed the image when animating our stick figure.

We store the current time using the time function of the time mod-

ule at z.

At {, we set the coordinates object variable to an object of the

Coords class, with no initialization parameters set (x1, y1, x2, and y2

are all 0). Unlike with the platforms, the stick figure’s coordinates

will change, so we’ll set these values later.

Creating Mr. Stick Man 255

Binding to Keys
In the final part of the __init__ function, the bind functions bind a

key to something in our code that needs to be run when the key is

pressed.

 self.jump_count = 0
 self.last_time = time.time()
 self.coordinates = Coords()
 game.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 game.canvas.bind_all('<KeyPress-Right>', self.turn_right)
 game.canvas.bind_all('<space>', self.jump)

We bind <KeyPress-Left> to the function turn_left, <KeyPress-Right>

to the function turn_right, and <space> to the function jump. Now we

need to create those functions to make the stick figure move.

turning the stick figure
Left and Right

The turn_left and turn_right functions

make sure that the stick figure is not

jumping, and then set the value of the

object variable x to move him left and

right. (If our character is jumping, our

game doesn’t allow us to change his

direction in midair.)

 game.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 game.canvas.bind_all('<KeyPress-Right>', self.turn_right)
 game.canvas.bind_all('<space>', self.jump)

u def turn_left(self, evt):
v if self.y == 0:
w self.x = -2

x def turn_right(self, evt):
y if self.y == 0:
z self.x = 2

Python calls the turn_left function when the player presses the

left arrow key, and it passes an object with information about what

the player did as a parameter. This object is called an event object,

and we give it the parameter name evt.

256 Chapter 17

note The event object isn’t important for our purposes, but we need to

include it as a parameter of our functions (at u and x) or we’ll

get an error because Python is expecting it to be there. The event

object contains things like the x and y positions of the mouse (mouse

event), a code identifying a particular key (keyboard event), and

other information. For this game, none of that information is use-

ful, so we can safely ignore it.

To see if the stick figure is jumping, we check the value of

the y object variable at v and y. If the value is not 0, the stick

figure is jumping. In this example, if the value of y is 0, we set x

to –2 to run left (w) or we set it to 2 to run right (z), because set-

ting the value to –1 or 1 wouldn’t make the stick figure move across

the screen fast enough. (Once you have the animation working for

your stick figure, try changing this value to see what difference it

makes.)

Making the stick figure Jump
The jump function is very similar to the turn_left and turn_right

functions.

 def turn_right(self, evt):
 if self.y == 0:
 self.x = 2

 def jump(self, evt):
u if self.y == 0:
v self.y = -4
w self.jump_count = 0

This function takes a parameter

evt (the event object), which we can

ignore because we don’t need any more

information about the event. If this

function is called, we know it’s because

the spacebar was pressed.

Because we want our stick figure

to jump only if he is not already jump-

ing, at u we check to see if y is equal

to 0. If the stick figure is not jump-

ing, at v we set y to –4 (to move him

Creating Mr. Stick Man 257

vertically up the screen), and we set jump_count to 0 at w. We’ll use

jump_count to make sure the stick figure doesn’t just keep jumping

forever. Instead, we’ll let him jump for a specific count and then

have him come down again, as if gravity were pulling him. We’ll

add this code in the next chapter.

What We Have so far
Let’s review the definitions of the classes and functions we now

have in our game, and where they should be in your file.

At the top of your program, you should have your import state-

ments, followed by the Game and Coords classes. The Game class will

be used to create an object which will be the main controller for

our game, and objects of the Coords class are used to hold the posi-

tions of things in our game (like the platforms and Mr. Stick Man):

from tkinter import *
import random
import time

class Game:
 ...
class Coords:
 ...

Next, you should have the within functions (which tell whether

the coordinates of one sprite are “within” the same area of another

sprite), the Sprite parent class (which is the parent class of all the

sprites in our game), the PlatformSprite class, and the beginning

of the StickFigureSprite class. PlatformSprite was used to create

platform objects, which our stick figure will jump across, and we

created one object of the StickFigureSprite class, to represent the

main character in our game:

def within_x(co1, co2):
 ...
def within_y(co1, co2):
 ...
def collided_left(co1, co2):
 ...
def collided_right(co1, co2):
 ...
def collided_top(co1, co2):
 ...

258 Chapter 17

def collided_bottom(y, co1, co2):
 ...
class Sprite:
 ...
class PlatformSprite(Sprite):
 ...
class StickFigureSprite(Sprite):
 ...

Finally, at the end of your program, you should have code that

creates all the objects in our game so far: the game object itself and

the platforms. The final line is where we call the mainloop function.

g = Game()
platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 0, 480, 100, 10)
...
g.sprites.append(platform1)
...
g.mainloop()

If your code looks a bit different, or you’re having trouble get-

ting it working, you can always skip ahead to the end of Chapter 18,

where you’ll find the full listing for the entire game.

What You Learned
In this chapter, we began working on the class for our stick figure.

At the moment, if we created an object of this class, it wouldn’t

really do much besides loading the images it needs for animat-

ing the stick figure, and setting up a few object variables to be

used later in the code. This class contains a couple of functions for

changing the values in those object variables based on keyboard

events (when the player presses the left or right arrow, or the

spacebar).

In the next chapter, we’ll finish our game. We’ll write the

functions for the StickFigureSprite class to display and animate the

stick figure, and move him around the screen. We’ll also add the

exit (the door) that Mr. Stick Man is trying to reach.

18
CoMPLetInG tHe

MR. stICK MAn GAMe

In the previous three chapters, we’ve been develop-

ing our game: Mr. Stick Man Races for the Exit. We

created the graphics, and then wrote code to add the

background image, platforms, and stick figure. In this

chapter, we’ll fill in the missing pieces to animate the

stick figure and add the door.

You’ll find the full listing for the complete game

at the end of this chapter. If you get lost or become

confused when writing some of this code, compare

your code with that listing to see where you might

have gone wrong.

260 Chapter 18

Animating the stick figure
So far, we’ve created a basic class for our stick

figure, loading the images we’ll be using and

binding keys to some functions. But none of our

coding will do anything particularly interesting

if you run our game at this point.

Now we’ll add the remaining functions to the

StickFigureSprite class we created in Chapter 17:

animate, move, and coords. The animate function will

draw the different stick figure images, move will

determine where the character needs to move to,

and coords will return the stick figure’s current

position. (Unlike with the platform sprites, we

need to recalculate the position of the stick fig-

ure as he moves around the screen.)

Creating the Animate function
First, we’ll add the animate function, which will need to check for

movement and change the image accordingly.

Checking for Movement

We don’t want to change the stick figure image too quickly in our

animation or its movement won’t look realistic. Think about a flip

animation, drawn in the corner of a notepad—if you flip the pages

too quickly, you may not get the full effect of what you’ve drawn.

The first half of the animate function checks to see if the stick

figure is running left or right, and then uses the last_time vari-

able to decide whether to change the current image. This variable

will help us control the speed of our animation. The function will

go after the jump function, which we added to our StickFigureSprite

class in Chapter 17.

 def jump(self, evt):
 if self.y == 0:
 self.y = -4
 self.jump_count = 0

 def animate(self):
u if self.x != 0 and self.y == 0:
v if time.time() - self.last_time > 0.1:

Completing the Mr. Stick Man Game 261

w self.last_time = time.time()
x self.current_image += self.current_image_add
y if self.current_image >= 2:
z self.current_image_add = -1
{ if self.current_image <= 0:
| self.current_image_add = 1

In the if statement at u, we check to see if x is not 0 in order

to determine whether the stick figure is moving (either left or right),

and we check to see if y is 0 in order to determine that the stick

figure is not jumping. If this if statement is true, we need to ani-

mate our stick figure; if not, he’s standing still, so there’s no need

to keep drawing. If the stick figure isn’t moving, we drop out of the

function, and the rest of the code in this listing is ignored.

At v, we calculate the amount of time since the animate

 function was last called, by subtracting the value of the last_time

variable from the current time, using time.time(). This calculation

is used to decide whether to draw the next image in the sequence,

and if the result is greater than a tenth of a second (0.1), we con-

tinue with the block of code at w. We set the last_time variable to

the current time, basically resetting the stopwatch to start timing

again for the next change of image.

At x, we add the value of the object variable current_image_add

to the variable current_image, which stores the index position of

the currently displayed image. Remember that we created the

 current_image_add variable in the stick figure’s __init__ function in

Chapter 17, so when the animate function is first called, the value

of the variable has already been set to 1.

At y, we check to see if the value of the index position in

 current_image is greater than or equal to 2, and if so, we change the

value of current_image_add to –1 at z. The process is similar at {—

once we reach 0, we need to start counting up again, which we do

at |.

note If you’re having trouble figuring out how to indent this code, here’s

a hint: There are 8 spaces at the beginning of u and 20 spaces at

the beginning of |.

To help you understand what’s going on in the function so far,

imagine that you have a sequence of colored blocks in a line on the

floor. You move your finger from one block to the next, and each

block that your finger points to (1, 2, 3, 4, and so on) has a number

262 Chapter 18

(the current_image variable). The number of the block your finger

moves to (it points at one block at a time) is the number stored in

the variable current_image_add. When your finger moves one way

up the line of blocks, you’re adding 1 each time, and when it hits

the end of the line and moves back down, you’re subtracting 1

(that is, adding –1).

The code we’ve added to our animate function performs this

process, but instead of colored blocks, we have the three stick fig-

ure images for each direction stored in a list. The index positions

of these images are 0, 1, and 2. As we animate the stick figure,

once we reach the last image, we start counting down, and once

we reach the first image, we need to start counting up again. As a

result, we create the effect of a running figure.

The following shows how we move through the list of images,

using the index positions we calculate in the animate function.

Position 0 Position 1 Position 2 Position 1 Position 0 Position 1

Counting up Counting up Counting up Counting

down

Counting

down

Counting up

Changing the Image

In the next half of the animate function, we change the currently

displayed image, using the calculated index position.

 def animate(self):
 if self.x != 0 and self.y == 0:
 if time.time() - self.last_time > 0.1:
 self.last_time= time.time()
 self.current_image += self.current_image_add
 if self.current_image >= 2:
 self.current_image_add = -1
 if self.current_image <= 0:
 self.current_image_add = 1

u if self.x < 0:
v if self.y != 0:
w self.game.canvas.itemconfig(self.image, \

 image=self.images_left[2])
x else:
y self.game.canvas.itemconfig(self.image, \

 image=self.images_left[self.current_image])

Completing the Mr. Stick Man Game 263

z elif self.x > 0:
{ if self.y != 0:
| self.game.canvas.itemconfig(self.image, \

 image=self.images_right[2])
} else:
~ self.game.canvas.itemconfig(self.image, \

 image=self.images_right[self.current_image])

At u, if x is less than 0, the stick figure is moving left, so

Python moves into the block of code shown at v through y, which

checks whether y is not equal to 0 (meaning the stick figure is

jumping). If y is not equal to 0 (the stick figure is moving up or

down—in other words, jumping), we use the canvas’s itemconfig

function to change the displayed image to the last image in our list

of left-facing images at w (images_left[2]). Because the stick figure

is jumping, we’ll use the image showing him in full stride to make

the animation look a bit more realistic:

If the stick figure is not jumping (that is, y is equal to 0), the

else statement starting at x uses itemconfig to change the displayed

image to whatever index position is in the variable current_image,

as shown in the code at y.

At z, we see if the stick figure is running right (x is greater

than 0), and Python moves into the block shown at { through ~.

This code is very similar to the first block, again checking whether

the stick figure is jumping, and drawing the correct image if so,

except that it uses the images_right list.

Getting the stick figure’s Position
Because we’ll need to determine where the stick figure is on the

screen (since he is moving around), the coords function will differ

from the other Sprite class functions. We’ll use the coords function

of the canvas to determine where the stick figure is, and then use

those values to set the x1, y1 and x2, y2 values of the coordinates

264 Chapter 18

variable we created in the __init__ function at the beginning of

Chapter 17. Here’s the code, which can be added after the animate

function:

 if self.x < 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[self.current_image])
 elif self.x > 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[self.current_image])

 def coords(self):
u xy = self.game.canvas.coords(self.image)
v self.coordinates.x1 = xy[0]
w self.coordinates.y1 = xy[1]
x self.coordinates.x2 = xy[0] + 27
y self.coordinates.y2 = xy[1] + 30

 return self.coordinates

When we created the Game class in Chapter 16, one of the object

variables was the canvas. At u, we use the coords function of this

canvas variable, with self.game.canvas.coords, to return the x and

y positions of the current image. This function uses the number

stored in the object variable image, the identifier for the image

drawn on the canvas.

We store the resulting list in the variable xy, which now con-

tains two values: the top-left x position stored as the x1 variable of

coordinates at v, and the top-left y position stored as the y1 variable

of coordinates at w.

Because all of the stick figure images we created are 27 pixels

wide by 30 pixels high, we can determine what the x2 and y2 vari-

ables should be by adding the width at x and the height at y to

the x and y numbers, respectively.

Finally, on the last line of the function, we return the object

variable coordinates.

Completing the Mr. Stick Man Game 265

Making the stick figure Move
The final function of the StickFigureSprite class, move, is in charge

of actually moving our game character around the screen. It also

needs to be able to tell us when the character has bumped into

something.

starting the move function

Here’s the code for the first part of the move function—this will go

after coords:

 def coords(self):
 xy = self.game.canvas.coords(self.image)
 self.coordinates.x1 = xy[0]
 self.coordinates.y1 = xy[1]
 self.coordinates.x2 = xy[0] + 27
 self.coordinates.y2 = xy[1] + 30
 return self.coordinates

 def move(self):
u self.animate()
v if self.y < 0:
w self.jump_count += 1
x if self.jump_count > 20:
y self.y = 4
z if self.y > 0:
{ self.jump_count -= 1

At u, this part of the function calls the animate function we cre-

ated earlier in this chapter, which changes the currently displayed

image if necessary. At v, we see whether the value of y is less than

0. If it is, we know that the stick figure is jumping because a nega-

tive value will move him up the screen. (Remember that 0 is at the

top of the canvas, and the bottom of the canvas is pixel position

500.)

At w, we add 1 to jump_count, and at x, we say that if the value

of jump_count reaches 20, we should change y to 4 to start the stick

figure falling again (y).

At z, we see if the value of y is greater than 0 (meaning the

character must be falling), and if it is, we subtract 1 from jump_count

because once we’ve counted up to 20, we need to count back down

again. (Move your hand slowly up in the air while counting to 20,

266 Chapter 18

then move it back down again while counting down from 20, and

you’ll get a sense of how calculating the stick figure jumping up

and down is supposed to work.)

In the next few lines of the move function, we call the coords

function, which tells us where our character is on the screen and

stores its result in the variable co. We then create the variables

left, right, top, bottom, and falling. We’ll use each in the remainder

of this function.

 if self.y > 0:
 self.jump_count -= 1
 co = self.coords()
 left = True
 right = True
 top = True
 bottom = True
 falling = True

Notice that each variable has been set to the Boolean value

True. We’ll use these as indicators to check whether the character

has hit something on the screen or is falling.

Has the stick figure Hit the Bottom or top of
the Canvas?

The next section of the move function checks whether our character

has hit the bottom or top of the canvas. Here’s the code:

 bottom = True
 falling = True

u if self.y > 0 and co.y2 >= self.game.canvas_height:
v self.y = 0
w bottom = False

Completing the Mr. Stick Man Game 267

x elif self.y < 0 and co.y1 <= 0:
y self.y = 0
z top = False

If the character is falling down the screen, y will be greater

than 0, so we need to make sure it hasn’t yet hit the bottom of the

canvas (or it will vanish off the bottom of the screen). To do so, at u,

we see if its y2 position (the bottom of the stick figure) is greater than

or equal to the canvas_height variable of the game object. If it is, we set

the value of y to 0 at v to stop the stick figure from falling, and then

set the bottom variable to False at w, which tells the remaining code

that we no longer need to see if the stick figure has hit the bottom.

The process of determining whether the stick figure has hit the

top of the screen is very similar to the way we determine whether

he has hit the bottom. To do so, at x, we first see if the stick figure

is jumping (y is less than 0), then we see if his y1 position is less

than or equal to 0, meaning he has hit the top of the canvas. If

both conditions are true, we set y equal to 0 at y to stop the move-

ment. We also set the top variable to False at z to tell the remaining

code that we no longer need to see if the stick figure has hit the top.

Has the stick figure Hit the side of the Canvas?

We follow almost exactly the same process as in the preceding code

to determine whether the stick figure has hit the left and right

sides of the canvas, as follows:

 elif self.y < 0 and co.y1 <= 0:
 self.y = 0
 top = False

u if self.x > 0 and co.x2 >= self.game.canvas_width:
v self.x = 0
w right = False
x elif self.x < 0 and co.x1 <= 0:
y self.x = 0
z left = False

The code at u is based on the fact that we know the stick fig-

ure is running to the right if x is greater than 0. We also know

whether he has hit the right-hand side of the screen by seeing if

the x2

pos ition (co.x2) is greater than or equal to the width of the

canvas stored in game_width. If both statements are true, we set x

equal to 0 (to stop the stick figure from running), and we set the

right variable to False at w.

268 Chapter 18

Colliding with other sprites

Once we’ve determined whether the figure has hit the sides of the

screen, we need to see if he has hit anything else on the screen.

We use the following code to loop through the list of sprite objects

stored in the game object to see if the stick figure has hit any of them.

 elif self.x < 0 and co.x1 <= 0:
 self.x = 0
 left = False

u for sprite in self.game.sprites:
v if sprite == self:
w continue
x sprite_co = sprite.coords()
y if top and self.y < 0 and collided_top(co, sprite_co):
z self.y = -self.y
{ top = False

At u, we loop through the list of sprites, assigning each one in

turn to the variable sprite. At v, we say that if the sprite is equal

to self (that’s another way of saying, “if this sprite is the same as

me”), we don’t need to determine whether the stick figure has col-

lided because he would have only hit himself. If the sprite variable

is equal to self, we use continue to jump to the next sprite in the list.

Next, we get the coordinates of the new sprite by calling its

coords function at x and storing the results in the variable sprite_co.

Then the code at y checks for the following:

•	 The stick figure has not hit the top of the canvas (the top vari-

able is still true).

•	 The stick figure is jumping (the value of y is less than 0).

•	 The top of the stick figure has collided with the sprite from the

list (using the collided_top function we created in Chapter 16).

Completing the Mr. Stick Man Game 269

If all of these conditions are true, we want the sprite to start

falling back down again, so at z, we reverse the value of the y using

minus (-). The top variable is set to False at {, because once the

stick figure has hit the top, we don’t need to keep checking for a

collision.

Colliding at the Bottom

The next part of the loop checks to see if the bottom of our charac-

ter has hit something:

 if top and self.y < 0 and collided_top(co, sprite_co):
 self.y = -self.y
 top = False

u if bottom and self.y > 0 and collided_bottom(self.y, \
 co, sprite_co):

v self.y = sprite_co.y1 - co.y2
w if self.y < 0:
x self.y = 0
y bottom = False
z top = False

There are three similar checks at u: whether the bottom variable

is still set, whether the character is falling (y is greater than 0), and

whether the bottom of our character has hit the sprite. If all three

checks are true, we subtract the bottom y value (y2) of the stick fig-

ure from the top y value of the sprite (y1) at v. This might seem

strange, so let’s see why we do this.

Imagine that our game character has fallen off a platform. He

moves down the screen 4 pixels each time the mainloop function runs,

and the foot of the stick figure is 3 pixels above another platform.

Let’s say the stick figure’s bottom (y2) is at position 57 and the top

of the platform (y1) is at position 60. In this case, the collided_bottom

function would return true, because its code will add the value of y

(which is 4) to the stick figure’s y2 variable, resulting in 61.

However, we don’t want Mr. Stick Man to stop falling as soon

as it looks like he will hit a platform or the bottom of the screen,

because that would be like taking a huge jump off a step and stop-

ping in midair, an inch above the ground. That may be a neat

trick, but it won’t look right in our game. Instead, if we subtract

the character’s y2 value (of 57) from the platform’s y1 value (of 60)

we get 3, the amount the stick figure should drop in order to land

properly on the top of the platform.

270 Chapter 18

At w, we make sure that the calculation doesn’t result in a

negative number; if it does, we set y equal to 0 at x. (If we let the

number be negative, the stick figure would fly back up again, and

we don’t want that to happen in this game.)

Finally, we set the top z and bottom y flags to False, so we no

longer need to check whether the stick figure has collided at the

top or bottom with another sprite.

We’ll do one more bottom check to see whether the stick fig-

ure has run off the edge of a platform. Here’s the code for this if

statement:

 if self.y < 0:
 self.y = 0
 bottom = False
 top = False
 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False

Five checks here must all be true in order for the falling vari-

able to be set to False:

•	 We still need to check that the bottom flag is set to True.

•	 We need to check whether the stick figure should be falling

(the falling flag is still set to True).

•	 The stick figure isn’t already falling (y is 0).

•	 The bottom of the sprite hasn’t hit the bottom of the screen

(it’s less than the canvas height).

•	 The stick figure has hit the top of a platform (collided_bottom

returns True).

Then we set the falling variable to False.

Checking Left and Right

We’ve checked whether the stick figure has hit a sprite at the bot-

tom or the top. Now we need to check whether he has hit the left or

right side, with this code:

 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False

Completing the Mr. Stick Man Game 271

u if left and self.x < 0 and collided_left(co, sprite_co):
v self.x = 0
w left = False
x if right and self.x > 0 and collided_right(co, sprite_co):
y self.x = 0
z right = False

At u, we see if we should

still be looking for collisions to

the left (left is still set to True)

and whether the stick figure

is moving to the left (x is less

than 0). We also check to see

if the stick figure has col-

lided with a sprite using the

collided_left function. If these three conditions are true, we set x

equal to 0 at v (to make the stick figure stop running), and set left

to False at w, so that we no longer check for collisions on the left.

The code is similar for collisions to the right, as shown at x.

We set x equal to 0 again at y, and right to False at z, to stop

checking for right-hand collisions.

Now, with checks for collisions in all four directions, our for

loop should look like this:

 elif self.x < 0 and co.x1 <= 0:
 self.x = 0
 left = False
 for sprite in self.game.sprites:
 if sprite == self:
 continue
 sprite_co = sprite.coords()
 if top and self.y < 0 and collided_top(co, sprite_co):
 self.y = -self.y
 top = False
 if bottom and self.y > 0 and collided_bottom(self.y, \
 co, sprite_co):
 self.y = sprite_co.y1 - co.y2
 if self.y < 0:
 self.y = 0
 bottom = False
 top = False
 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False

272 Chapter 18

 if left and self.x < 0 and collided_left(co, sprite_co):
 self.x = 0
 left = False
 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False

We need to add only a few more lines to the move function, as

follows:

 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False

u if falling and bottom and self.y == 0 \
 and co.y2 < self.game.canvas_height:

v self.y = 4
w self.game.canvas.move(self.image, self.x, self.y)

At u, we check whether both the falling and bottom variables

are set to True. If so, we’ve looped through every platform sprite in

the list without colliding at the bottom.

The final check in this line determines whether the bottom of

our character is less than the canvas height—that is, above the

ground (the bottom of the canvas). If the stick figure hasn’t collided

with anything and he is above the ground, he is standing in mid-

air, so he should start falling (in other words, he has run off the

end of a platform). To make him run off the end of any platform,

we set y equal to 4 at v.

At w, we move the image across the screen, according to the

values we set in the variables x and y. The fact that we’ve looped

through the sprites checking for collisions may mean that we’ve set

both variables to 0, because the stick figure has collided on the left

and with the bottom. In that case, the call to the move function of

the canvas will do nothing.

It may also be the case that Mr. Stick Man has walked off the

edge of a platform. If that happens, y will be set to 4, and Mr. Stick

Man will fall downward.

Phew, that was a long function!

Completing the Mr. Stick Man Game 273

testing our stick figure sprite
Having created the StickFigureSprite class, let’s try it out by adding

the following two lines just before the call to the mainloop function.

u sf = StickFigureSprite(g)
v g.sprites.append(sf)

g.mainloop()

At u, we create a StickFigureSprite object and set it equal to the

variable sf. As we did with the platforms, we add this new variable

to the list of sprites stored in the game object at v.

Now run the program. You will find that Mr. Stick Man can

run, jump from platform to platform, and fall!

the Door!
The only thing missing from our game is the door to the exit. We’ll

finish up by creating a sprite for the door, adding code to detect the

door, and giving our program a door object.

274 Chapter 18

Creating the Doorsprite Class
You guessed it—we need to create one more class: DoorSprite.

Here’s the start of the code:

class DoorSprite(Sprite):
u def __init__(self, game, photo_image, x, y, width, height):
v Sprite.__init__(self, game)
w self.photo_image = photo_image
x self.image = game.canvas.create_image(x, y, \

 image=self.photo_image, anchor='nw')
y self.coordinates = Coords(x, y, x + (width / 2), y + height)
z self.endgame = True

As shown at u, the __init__ function of

the DoorSprite class has parameters for self,

a game object, a photo_image object, the x and y

coordinates, and the width and height of the

image. At v, we call __init__ as with our

other sprite classes.

At w, we save the parameter photo_image

using an object variable with the same name,

as we did with PlatformSprite. We create a

display image using the canvas create_image function and save the

identifying number returned by that function using the object vari-

able image at x.

At y, we set the coordinates of DoorSprite to the x and y param-

eters (which become the x1 and y1 positions of the door), and then

calculate the x2 and y2 positions. We calculate the x2 position by

adding half of the width (the width variable, divided by 2) to the x

parameter. For example, if x is 10 (the x1 coordinate is also 10), and

the width is 40, the x2 coordinate would be 30 (10 plus half of 40).

Why use this confusing little calculation? Because, unlike with

the platforms, where we want Mr. Stick Man to stop running as

soon as he collides with the side of the platform, we want him to

stop in front of the door. (It won’t look good if Mr. Stick Man stops

running next to the door!) You’ll see this in action when you play

the game and make it to the door.

Unlike the x1 position, the y1 position is simple to calculate.

We just add the value of the height variable to the y parameter, and

that’s it.

Finally, at z, we set the endgame object variable to True. This says

that when the stick figure reaches the door, the game should end.

Completing the Mr. Stick Man Game 275

Detecting the Door
Now we need to change the code in the StickFigureSprite class of

the move function that determines when the stick figure has col-

lided with a sprite on the left or the right. Here’s the first change:

 if left and self.x < 0 and collided_left(co, sprite_co):
 self.x = 0
 left = False
 if sprite.endgame:
 self.game.running = False

We check to see if the sprite that the stick figure has collided

with has an endgame variable that is set to True. If it does, we set the

running variable to False, and everything stops—we’ve reached the

end of the game.

We’ll add these same lines to the code that checks for a colli-

sion on the right. Here’s the code:

 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False
 if sprite.endgame:
 self.game.running = False

Adding the Door object
Our final addition to the game code is an object for the door. We’ll

add this before the main loop. Just before creating the stick fig-

ure object, we’ll create a door object, and then add it to the list of

sprites. Here’s the code:

g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
door = DoorSprite(g, PhotoImage(file="door1.gif"), 45, 30, 40, 35)
g.sprites.append(door)
sf = StickFigureSprite(g)
g.sprites.append(sf)
g.mainloop()

We create a door object using the variable for our game object, g,

followed by a PhotoImage (the door image we created in Chapter 15).

We set the x and y parameters to 45 and 30 to put the door on a

276 Chapter 18

platform near the top of the screen, and set the width and height to

40 and 35. We add the door object to the list of sprites, as with all

the other sprites in the game.

You can see the result when Mr. Stick Man reaches the door.

He stops running in front of the door, rather than next to it, as

shown here:

the final Game
The full listing of our game is now a bit more than 200 lines of

code. The following is the complete code for the game. If you have

trouble getting your game to work, compare each function (and

each class) to this listing and see where you’ve gone wrong.

from tkinter import *
import random
import time

class Game:
 def __init__(self):
 self.tk = Tk()
 self.tk.title("Mr. Stick Man Races for the Exit")
 self.tk.resizable(0, 0)

Completing the Mr. Stick Man Game 277

 self.tk.wm_attributes("-topmost", 1)
 self.canvas = Canvas(self.tk, width=500, height=500, \
 highlightthickness=0)
 self.canvas.pack()
 self.tk.update()
 self.canvas_height = 500
 self.canvas_width = 500
 self.bg = PhotoImage(file="background.gif")
 w = self.bg.width()
 h = self.bg.height()
 for x in range(0, 5):
 for y in range(0, 5):
 self.canvas.create_image(x * w, y * h, \
 image=self.bg, anchor='nw')
 self.sprites = []
 self.running = True

 def mainloop(self):
 while 1:
 if self.running == True:
 for sprite in self.sprites:
 sprite.move()
 self.tk.update_idletasks()
 self.tk.update()
 time.sleep(0.01)

class Coords:
 def __init__(self, x1=0, y1=0, x2=0, y2=0):
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2

def within_x(co1, co2):
 if (co1.x1 > co2.x1 and co1.x1 < co2.x2) \
 or (co1.x2 > co2.x1 and co1.x2 < co2.x2) \
 or (co2.x1 > co1.x1 and co2.x1 < co1.x2) \
 or (co2.x2 > co1.x1 and co2.x2 < co1.x2):
 return True
 else:
 return False

def within_y(co1, co2):
 if (co1.y1 > co2.y1 and co1.y1 < co2.y2) \
 or (co1.y2 > co2.y1 and co1.y2 < co2.y2) \
 or (co2.y1 > co1.y1 and co2.y1 < co1.y2) \
 or (co2.y2 > co1.y1 and co2.y2 < co1.y2):
 return True

278 Chapter 18

 else:
 return False

def collided_left(co1, co2):
 if within_y(co1, co2):
 if co1.x1 <= co2.x2 and co1.x1 >= co2.x1:
 return True
 return False

def collided_right(co1, co2):
 if within_y(co1, co2):
 if co1.x2 >= co2.x1 and co1.x2 <= co2.x2:
 return True
 return False

def collided_top(co1, co2):
 if within_x(co1, co2):
 if co1.y1 <= co2.y2 and co1.y1 >= co2.y1:
 return True
 return False

def collided_bottom(y, co1, co2):
 if within_x(co1, co2):
 y_calc = co1.y2 + y
 if y_calc >= co2.y1 and y_calc <= co2.y2:
 return True
 return False

class Sprite:
 def __init__(self, game):
 self.game = game
 self.endgame = False
 self.coordinates = None
 def move(self):
 pass
 def coords(self):
 return self.coordinates

class PlatformSprite(Sprite):
 def __init__(self, game, photo_image, x, y, width, height):
 Sprite.__init__(self, game)
 self.photo_image = photo_image
 self.image = game.canvas.create_image(x, y, \
 image=self.photo_image, anchor='nw')
 self.coordinates = Coords(x, y, x + width, y + height)

Completing the Mr. Stick Man Game 279

class StickFigureSprite(Sprite):
 def __init__(self, game):
 Sprite.__init__(self, game)
 self.images_left = [
 PhotoImage(file="figure-L1.gif"),
 PhotoImage(file="figure-L2.gif"),
 PhotoImage(file="figure-L3.gif")
]
 self.images_right = [
 PhotoImage(file="figure-R1.gif"),
 PhotoImage(file="figure-R2.gif"),
 PhotoImage(file="figure-R3.gif")
]
 self.image = game.canvas.create_image(200, 470, \
 image=self.images_left[0], anchor='nw')
 self.x = -2
 self.y = 0
 self.current_image = 0
 self.current_image_add = 1
 self.jump_count = 0
 self.last_time = time.time()
 self.coordinates = Coords()
 game.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 game.canvas.bind_all('<KeyPress-Right>', self.turn_right)
 game.canvas.bind_all('<space>', self.jump)

 def turn_left(self, evt):
 if self.y == 0:
 self.x = -2

 def turn_right(self, evt):
 if self.y == 0:
 self.x = 2

 def jump(self, evt):
 if self.y == 0:
 self.y = -4
 self.jump_count = 0

 def animate(self):
 if self.x != 0 and self.y == 0:
 if time.time() - self.last_time > 0.1:
 self.last_time= time.time()
 self.current_image += self.current_image_add

280 Chapter 18

 if self.current_image >= 2:
 self.current_image_add = -1
 if self.current_image <= 0:
 self.current_image_add = 1
 if self.x < 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[self.current_image])
 elif self.x > 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[self.current_image])

 def coords(self):
 xy = self.game.canvas.coords(self.image)
 self.coordinates.x1 = xy[0]
 self.coordinates.y1 = xy[1]
 self.coordinates.x2 = xy[0] + 27
 self.coordinates.y2 = xy[1] + 30
 return self.coordinates

 def move(self):
 self.animate()
 if self.y < 0:
 self.jump_count += 1
 if self.jump_count > 20:
 self.y = 4
 if self.y > 0:
 self.jump_count -= 1
 co = self.coords()
 left = True
 right = True
 top = True
 bottom = True
 falling = True
 if self.y > 0 and co.y2 >= self.game.canvas_height:
 self.y = 0
 bottom = False
 elif self.y < 0 and co.y1 <= 0:
 self.y = 0
 top = False

Completing the Mr. Stick Man Game 281

 if self.x > 0 and co.x2 >= self.game.canvas_width:
 self.x = 0
 right = False
 elif self.x < 0 and co.x1 <= 0:
 self.x = 0
 left = False
 for sprite in self.game.sprites:
 if sprite == self:
 continue
 sprite_co = sprite.coords()
 if top and self.y < 0 and collided_top(co, sprite_co):
 self.y = -self.y
 top = False
 if bottom and self.y > 0 and collided_bottom(self.y, \
 co, sprite_co):
 self.y = sprite_co.y1 - co.y2
 if self.y < 0:
 self.y = 0
 bottom = False
 top = False
 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False
 if left and self.x < 0 and collided_left(co, sprite_co):
 self.x = 0
 left = False
 if sprite.endgame:
 self.game.running = False
 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False
 if sprite.endgame:
 self.game.running = False
 if falling and bottom and self.y == 0 \
 and co.y2 < self.game.canvas_height:
 self.y = 4
 self.game.canvas.move(self.image, self.x, self.y)

class DoorSprite(Sprite):
 def __init__(self, game, photo_image, x, y, width, height):
 Sprite.__init__(self, game)
 self.photo_image = photo_image
 self.image = game.canvas.create_image(x, y, \
 image=self.photo_image, anchor='nw')
 self.coordinates = Coords(x, y, x + (width / 2), y + height)
 self.endgame = True

282 Chapter 18

g = Game()
platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 0, 480, 100, 10)
platform2 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 150, 440, 100, 10)
platform3 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 400, 100, 10)
platform4 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 160, 100, 10)
platform5 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 175, 350, 66, 10)
platform6 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 50, 300, 66, 10)
platform7 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 170, 120, 66, 10)
platform8 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 45, 60, 66, 10)
platform9 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 170, 250, 32, 10)
platform10 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 230, 200, 32, 10)
g.sprites.append(platform1)
g.sprites.append(platform2)
g.sprites.append(platform3)
g.sprites.append(platform4)
g.sprites.append(platform5)
g.sprites.append(platform6)
g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
door = DoorSprite(g, PhotoImage(file="door1.gif"), 45, 30, 40, 35)
g.sprites.append(door)
sf = StickFigureSprite(g)
g.sprites.append(sf)
g.mainloop()

What You Learned
In this chapter, we completed our game, Mr. Stick Man Races for

the Exit. We created a class for our animated stick figure and

wrote functions to move him around the screen and animate him

as he moves (changing from one image to the next to give the illu-

sion of running). We’ve used basic collision detection to tell when

he has hit the left or right sides of the canvas, and when he has hit

Completing the Mr. Stick Man Game 283

another sprite, such as a platform or a

door. We’ve also added collision code to

tell when he hits the top of the screen

or the bottom, and to make sure that

when he runs off the edge of a plat-

form, he tumbles down accordingly.

We added code to tell when Mr. Stick

Man has reached the door, so the game

comes to an end.

Programming Puzzles
There’s a lot more we can do to improve the game. At the moment,

it’s very simple, so we can add code to make it more professional

looking and more interesting to play. Try adding the following fea-

tures and then check your code at http://python-for-kids.com/.

#1: “You Win!”
Like the “Game Over” text in the Bounce! game we completed in

Chapter 14, add the “You Win!” text when the stick figure reaches

the door, so players can see that they have won.

#2: Animating the Door
In Chapter 15, we created two images

for the door: one open and one closed.

When Mr. Stick Man reaches the door,

the door image should change to the

open door, Mr. Stick Man should vanish,

and the door image should revert to the

closed door. This will give the illusion

that Mr. Stick Man is exiting and clos-

ing the door as he leaves. You can do this

by changing the DoorSprite class and the

StickFigureSprite class.

#3: Moving Platforms
Try adding a new class called MovingPlatformSprite. This plat-

form should move from side to side, making it more difficult for

Mr. Stick Man to reach the door at the top.

GLossARY

Sometimes, when you’re programming for the first

time, you’ll encounter a new term that just doesn’t

make much sense. That lack of understanding can

get in the way of making any real progress. But

there’s a simple solution to that problem!

I’ve created this glossary to help you through

those times when a new word or term holds you up.

You’ll find definitions of many of the programming

terms used in this book, so look here if you encounter

a word that you don’t understand.

308 Glossary

animation The process of displaying a sequence of images fast

enough that it looks like something is moving.

block A group of computer statements in a program.

Boolean A type of value that can be either true or false. (In

Python, it’s True or False, with capital T and F.)

call Run the code in a function. When we use a function, we say

we are “calling” it.

canvas An area of the screen for drawing on. canvas is a class

provided by the tkinter module.

child When we’re talking about classes, we describe the relation-

ships between classes as that of parents and children. A child class

inherits the characteristics of its parent class.

class A description or definition of a type of thing. In program-

ming terms, a class is a collection of functions and variables.

click Press one of the mouse buttons to push an on-screen but-

ton, select a menu option, and so on.

collision In computer games, when one character in the game

crashes into another character or object on the screen.

condition An expression in a program that is a bit like a ques-

tion. Conditions evaluate to true or false.

coordinates The position of a pixel on the screen. This is usu-

ally described as a number of pixels across the screen (x) and a

number of pixels down (y).

degrees A unit of measurement for angles.

data Usually refers to information stored and manipulated by a

computer.

dialog A dialog is typically a small window in an application

that presents some contextual information, such as an alert or an

error message, or asks you to respond to a question. For example,

when you choose to open a file, the window that appears is usually

the File dialog.

dimensions In the context of graphics programming, two-

dimensional or three-dimensional refers to how images are dis-

played on a computer monitor. Two-dimensional (2D) graphics

are flat images on a screen that have width and height—like

Glossary 309

the old cartoons you might see on TV. Three-dimensional (3D)

graphics are images on the screen that have width, height, and

the appearance of depth—the sort of graphics you might see in

a more realistic computer game.

directory The location of a group of files on the hard disk of

your computer.

embed Replace values inside a string. The replaced values are

sometimes called placeholders.

error When something goes wrong with a program on your com-

puter, this is an error. When programming with Python, you might

see all sorts of messages displayed in response to an error. If you

enter your code incorrectly you might see an IndentationError, for

example.

event Something that occurs when a program is running. For

example, an event might be someone moving the mouse, clicking

the mouse button, or typing on a keyboard.

exception A type of error that can occur when running a

 program.

execute Run some code, like a program, a small snippet of code,

or a function.

frame One of a series of images that makes up an animation.

function A command in a programming language that is usu-

ally a collection of statements that perform some action.

hexadecimal A way of representing numbers, particularly in

computer programming. Hexadecimal numbers are base 16, which

means the numbers go from 0 through 9 and then A, B, C, D, E,

and F.

horizontal The left and right directions on the screen (repre-

sented by x).

identifier A number that uniquely names something in a pro-

gram. For example, in Python’s tkinter module, the identifier is

used to refer to shapes drawn on the canvas.

image A picture on the computer screen.

import In Python terms, importing makes a module available

for your program to use.

310 Glossary

initialize Refers to setting up the initial state of an object (that

is, setting variables in the object when it is first created).

installation The process of copying a software application’s files

onto your computer so that the application is available for use.

instance The instance of a class—in other words, an object.

keyword A special word used by a programming language.

Keywords are also referred to as reserved words, which basically

means you can’t use them for anything else (for example, you can’t

use a keyword as the name of a variable).

loop A repeated command or set of commands.

memory A device or component in your computer that is used to

temporarily store information.

module A group of functions and variables.

null The absence of value (in Python, also referred to as None).

object The specific instance of a class. When you create an

object of a class, Python sets aside some of your computer’s mem-

ory to store information about a member of that class.

operator An element in a computer program used for mathemat-

ics or for comparing values.

parameter A value used with a function when calling it or when

creating an object (when calling the Python __init__ function, for

example). Parameters are sometimes referred to as arguments.

parent When referring to classes and objects, the parent of a

class is another class that functions and variables are inherited

from. In other words, a child class inherits the characteristics of

its parent class. When we’re not talking Python, a parent is the

person who tells you to brush your teeth before going to bed at

night.

pixel A single point on your computer screen—the smallest dot

that the computer is capable of drawing.

program A set of commands that tells a computer what to do.

scope The part, or section, of a program where a variable can be

“seen” (or used). (A variable inside a function may not be visible to

code outside the function.)

Glossary 311

shell In computing, a shell is a command-line interface of

some kind. In this book, “the Python shell” refers to the IDLE

application.

software A collection of computer programs.

sprite A character or an object in a computer game.

string A collection of alphanumeric characters (letters, numbers,

punctuation, and whitespace).

syntax The arrangement and order of words in a program.

transparency In graphics programming, part of an image that

isn’t displayed, meaning it doesn’t overwrite whatever is displayed

behind it.

variable Something used to store values. A variable is like a

label for information held in the computer’s memory. Variables

aren’t permanently tied to a specific value, hence the name “vari-

able,” meaning it can change.

vertical The up and down directions on the screen (represented

by y).

