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Preface (Abridged) 

T h e  h is tory  and mot iva t ion  

Although I d idn ' t  know it at the time, I began writing this book in the summer of 1988 when I 

was part  of a computer  science research group at the Human Genome Center of Lawrence Berkeley 

Laboratory. Our group followed the standard assumption that  biologically meaningful results could 

come from considering DNA as a one-dimensional character string, abstract ing away the reality of 

DNA as a flexible three-dimensional molecule, interacting in a dynamic environment with protein 

and RNA, and repeating a life-cycle in which even the classic linear chromosome exists for only a 

fraction of the time. A similar, but  stronger, assumption existed for protein, holding for example 

that  all the information needed for correct three-dimensional folding is contained in the protein 

sequence itself, essentiaUy independent of the biological environment the protein lives in. This 

assumption has recently been modified, but remains largely intact. 

For non-biologlsts, these two assllmptions were (and remain) a god-send allowing rapid entry 

into an exciting and important  field. Statements such as 

"The  digital information tha t  underlies biochemistry, cell biology, and development 

can be represented by a simple string of G's, A's, T's and COs. This string is the root 

da ta  s tructure of an organism's biology." 

reinforced the importance of sequence-level investigation. 

So without  worrying much about the more diIBcult chemical and biological aspects of DNA and 

protein, our computer  science group was empowered to consider a variety of biologically impor tant  

problems defined plrimarily on sequences, or (more in the computer  science vernacular) on strings. 

We organized our efforts into two high-level tasks. First, to learn the relevant biology, laboratory 

protocols, and existing algorithmic methods used by biologists. Second to canvass the computer  

science l i terature for ideas and algorithms tha t  weren' t  already used by biologists, but  wkich might 

plausibly be of use either in current problems, or in problems tha t  we could anticipate arising when 

vast quantities of sequenced DNA or protein become available. 

Our p r o b l e m  

None of us was an expert on string algorithms. At tha t  point I had a textbook knowledge of 

Knuth-Morris-Pratt~ and a deep confusion about Boyer-Moore (under what  circumstances it was 

a linear t ime algorithm, and how to do strong preprocessing in linear time). I unders tood the use 

of dynamic programming to compute edit distance, but  otherwise had little exposure to specific 

string algorithm~ in biology. My general background was in combinatorial  optimization, al though 

I had a prior interest in algorithms for building evolutionary trees and had studied genetics and 

molecular biology in order to pursue that  interest. 
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What  we needed then, but did.u't have, was a comprehensive cohesive text on string algorithrn~ 

to guide our education. There were at that  time several computer science texts cont~niug a chapter 

or two on strings, usuany devoted to a rigorous treatment of Knuth-Morris-Prat t  and a cursory 

t reatment  of Boyer-Moore, and possibly an elementary discussion of matching with errors. There 

were also some good survey papers that  had a somewhat wider scope but didn' t  t reat  .their topics 

in much depth. There were several texts and edited volumes from the biological side on uses of 

computers and algorithms for sequence analysis. Some of these were wonderful in exposing the 

potential benefits and the pitfalls of using computers in biology, but  generally lacked algorithmic 

rigor and covered a narrow range of techniques. Finally, there was the sernlnal text Time Warps, 

String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison edited by D. 

Sankoff and J. Krnskal, that  served as a bridge between algorithms and biology, and had many 

applications of dynamic programming. But it too was much narrower than  our focus, and a bit 

dated. 

Moreover, most of the available sources from either cornrnunlty focused on string matching, the 

problem of searching for an exact or "nearly exact"- copy of a pat tern in a given text. Matching 

problems are central, but as detailed in this book, they axe only a part  of the many important  

computational problems defined on strings. So we recognized that  s l ~ m e r  a need for a rigor- 

ous and fundamental  t reatment  of the general topic of algorithmA that  operate on strings, along 

with a rigorous t reatment  of specific string algorithm~ of greatest current and potential  import  in 

computations] biology. This book is an at tempt to provide such a dual, and integrated, t reatment .  

W h y  m i x  C o m p u t e r  Sc i ence  a n d  C o m p u t a t i o n a l  B i o l o g y  in  o n e  b o o k ?  

My interest in computational biology began in 1980, when I started reading papers on bu.i]ding 

evolutionary trees. At that  point, computational molecular biology was a largely undiscovered area 

for computer science, although it was an active area for statisticians and mathematicians (notably 

Michael Waterman and David S~n~off who have largely framed the field). But seventeen years 

later, computational biology is hot, and many computer scientists are now entering the (now more 

hectic, more competitive) field. What  should they learn.7 

The problem is tha t  the emerging field of computational molecular biology is not wen de- 

fined and its definition is made more difficult by rapid changes in molecu l~  biology itself. Still, 

algorithrn~ that  operate on molecular sequence data (strings) are at the heart  of computat ional  

molecular biology. The big-picture question in computational molecular biology" is how to "do" as 

much "real biology" as possible by exploiting molecular sequence data  (DNA, RNA and protein). 

Getting sequence data is relatively cheap and fast (and getting more so) compared to more tradi- 

tional laboratory investigations. The use of sequence data  is already central in several subareas of 

molecular biology and the full impact of having extensive sequence data  is yet to be seen. Hence, 

algorithms that  operate on strings will continue to be the area of closest intersection and interaction 

between computer science and molecular biology. Certainly then, computer  scientists need to learn 

the string techniques that  have been most successfully applied. But that  is not enough. 

Computer  scientists need to learn hmdamental  ideas and techniques that  will endure long 

after today's central motivating applications are forgotten. They need to s tudy methods that  

prepare them to frame and tackle future problems and applications. Signi6cant contributions to 

computational biology might be made by extending or adapting algorithm~ from computer  science, 

even when the original algorithm has no clear utility in biology. Therefore, the computer scientist 

who wants to enter t h e  general field of computational molecular biology and. who learns string 

algorithms with that  end in mind, should receive a training in string algorithms that  is much 

broader than a tour through techniques of known present application. So even ff I were to write 
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a book for computer  scientists who only want to do computat ional  biology, I would still choose to 

include a broad range of algorithmic techniques from pure computer  science. 

In this book, I cover a wide spectrnrn of string techniques, well beyond those of established 

utility, but I select ~ o m  the many possible illustrations, those techniques that  seem to have the 

greatest potential  application in future molecular biology. Potential  application, particularly of 

ideas rather than  of concrete methods, and to anticipated rather  than  to existing problems, is a 

mat ter  of judgment  and speculation. No doubt, some of the material  contained in this book will 

never find direct application in biology, while other material  will find uses in surprising ways. 

Fonowing the above discussion, this book is a general-purpose rigorous t rea tment  of the entire 

field of deterministic algorithms that  operate on strings and sequences. Many of those algorithms 

utilize trees as data- structures, or arise in biological problems related to evolutionary trees, hence 

the inclusion of "trees" in the title. 

The model reader is a research-level professional in computer science or a graduate or advanced 

undergraduate  student in computer scienee~ although there are many biologists (and of course 

mathematici~nR) with s11~cient algorithmic background to read the book. The book is intended 

to be both a reference, and a main text for courses in pure computer  science, and for computer  

science oriented courses on computational  biology. 

Explicit discussions of biological applications appear throughout  the book, but are more con- 

centrated in the last sections of Par t  II, and in most of Parts  III  and IV. I discuss a nlwnber of 

biological issues in detail in order to give the reader a deeper appreciation for the reasons tha t  

many biological problems have been cast as problems on strings, and for the variety of (often very 

imaginative) technical ways that  string algorithms have been employed in molecular biology. 

This book covers all the classic topics and most of the important  advanced techniques in the 

field of string algorithm% with three exceptions. It only lightly touches on probabilistic analysis, 

does not discuss parallel algorithms, or the elegant, but very theoretical results on algorithms for 

infinite alphabets and on algorithms using only constant au.x.iliary space. The book also does not 

cover stochastic oriented methods that  have come out of the machine learniug comm,mlty, al though 

some of the algorithms in this book are extensively used as subtools in those methods.  Wi th  these 

exceptions, the book covers all the major  styles of thinlcing about string algorithms. The reader 

who absorbs the material  in this book will gain a deep and broad understanSing of the field, and 

s~Wicient sophistication to undertake original research. 

Reflecting my background, the book rigorously discusses each of the topics, usually providing 

complete proofs of behavior (correctness~ worst-case t ime and space). More important ,  it empha- 

sizes the ideas and derivations of the methods it presents, ra ther  than simply providing an inventory 

of available algorithms. To bet ter  expose ideas and encourage discovery, I often present a com- 

plex algorithm by introducing a naive, inefficient, version and then successively applying additional 

insight and implementat ion detail to obtalu the desired result. 

The book contains some new approaches I developed to explain certain classic and complex 

material. In particular, the preprocessing methods I present for Knuth-Morris-Prat t ,  Boyer-Moore 

and several other linear-time pat tern  matching algorithm% differ from the classical methods,  both 

imiFying and simplifying the preprocessing tasks needed for those algorithms. I also expect that  

my (hopefully simpler and clearer) expositions on linear t ime s ~ x  tree constructions and on 

the constant t ime ]east common ancestor algorithm will make those important  methods more 

available and widely understood. I connect theoretical results from computer  science on sublinear- 

t ime algorithms, with widely used methods for biological database search. In the discussion of 

multiple sequence alignment, I bring together the three major  objective functions tha t  have been 

proposed for multiple alignment, and show a continuity between approyimation algorithrn.q for 
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those three multiple alignment problems. Similarly, the chapter on evolutionary tree construction 

exposes the commonality of several distinct problems and solutions in a way tha t  is not well known. 

Throughout the book, I discuss many computational problems concerning repeated substrings 

(a very widespread phenomenon in DNA). I consider several different ways to define repeated 

substrings and use each specific definition to explore computational problems and algori thms on 

repeated substrings. 

In the book I t ry  to explain in complete detail, and at a reasonable pace, many complex methods 

that  have previously been writ ten exclusively for the specialist in string algorithrn~. I avoid detailed 

code, as I find it rarely serves to exp]~in interesting ideas, and I provide over 400 exercises to both 

reinforce the material  of the book, and to develop additional topics. 
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B l u r b  ( i n  L i e u  o f  t h e  P r e f a c e )  

Complexity theory is a flourishing area of research that continues to provide one of the richest 

sources of research problemR in computer science. This volllrne, a collection of articles written by 
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experts, provides a survey of the subject, a comprehensive guide to research, and a provocative 

look to the future. 

The editors' aim has been to provide an accessible description of the current state of complexity 

theory and to demonstrate the breadth of techniques and results that  make the subject exciting. 

Papers are on traditional topics ranging from sublogarithmlc space to exponential time, on new 

combinatorial techniques and recent successes such as interactive proof systems, and on the newly 

emerging areas of quantum and biological computing. As a result, researchers and students in 

computer science will find this book an excellent starting point for study of the subject and a 

useful source of the key known results. 
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Preface (Abridged) 

Theoretical computer science treats any computational subject for which a good model can be 

created. Research on formal models of computation was initiated in the 1930s and 1940s by 

Taring, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language 

translators, and operating systems were under development and therefore became the subject and 
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basis for a great deal of theoretical work. The power of computers of this period was lim.ited by slow 

processors and small amounts of memory, and thus theories (models, algorithms, and analysis) were 

developed to explore the efficient use of computers as well as the inherent complexity of problems. 

The former subject is known today as algorithm~ and data structures, the latter computational  

complexity. 

The focus of theoretical computer scientists in the 1960s on languages is reflected in the f~rst 

textbook on the subject, Formal Langu~gea and Their Relation ~o Automata by John Hopcroft and 

Jeffrey Ullman. This influential book led to the creation of many language-centered theoretical 

computer science sources; many introductory theory courses today continue to reflect the content 

of this book and the interests of theoreticians of the 1960s and early 1970s. 

Although the 1970s and 1980s saw the development of models and methods  of analysis directed 

at understandlug the limits on the performance of computers, this attractive new material has not 

been made available at the introductory level. This book is designed to remedy this situation. 

This book is distinguished from others on theoretical computer science by its primary focus 

on real problems, its emphasis on concrete models of machines and programming styles, and the 

nllmber and variety of models and styles it covers. These include the logic circuit, the Knite state 

machine, the pushdown automaton, the random-access machine, memory hierarchies, the PRAM 

(parallel random-access machine), the VLSI (very large-scale integrated) chip, and a variety of 

parallel machines. ' -. 

The book covers the traditional topics of formal languages and automata and complexity classes 

but also gives an introduction to the more modern topics of space-time tradeoffs, memory hier- 

archies, parallel computation, the VLSI model, and circuit comPlexity. These modern  topics axe 

integrated throughout the text as illustrated by the early introduction of P-complet~ and N P -  

complete problems. The book provides the first textbook treatment  of space-time tradeoffs and 

memory hierarchies as well as a comprehensive introduction to traditional computational  complex- 

ity. Its t reatment  of circuit complexity is modern and substantive, and parallelism is integrated 

throughout. 
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P r e f a c e  

Theore t i ca l  c o m p u t e r  science covers a wide range of topics ,  b u t  none  is as f u n d a m e n t a l  and  as 

useful  as t h e  t h e o r y  of  c o m p u t a t i o n .  Given  t h a t  c o m p u t i n g  is our  field of endeavor ,  t he  m o s t  basic  

ques t ion  t h a t  we can  ask is surely " W h a t  can  be achieved t h r o u g h  c o m p u t i n g ? "  "" 

In  o rder  to  answer  such a quest ion,  we m u s t  beg in  by def ining c o m p u t a t i o n ,  a t a s k  t h a t  was 

s t a r t e d  last  c e n tu ry  by m a t h e m a t i c i a n s  and  r ema ins  very  m u c h  a work  in progress  at  th is  da te .  

Mos t  theore t i c i ans  would  at  least  agree t h a t  c o m p u t a t i o n  m e a n s  solving p r o b l e m s  t h r o u g h  t he  

mechanica l ,  p r e p r o g r a m m e d  execu t ion  of  a series of small ,  u n a m b i g u o u s  s teps.  F r o m  basic  phi lo-  

sophica l  ideas a b o u t  c o m p u t i n g ,  we m u s t  progress  to  the  def in i t ion  of  a m o d e l  of  c o m p u t a t i o n ,  

formal iz ing these  basic  ideas and  p rov id ing  a f ramework  in which  to  r eason  a b o u t  c o m p u t a t i o n .  

T h e  m o d e l  m u s t  be  a f l 'amework in which  to  reason abou t  c o m p u t a t i o n .  T h e  m o d e l  m u s t  be  b o t h  

reasonab ly  realist ic (it c anno t  depa r t  too  far fi 'om w h a t  is perce ived  as a c o m p u t e r  nowadays )  

a n d  as universa l  a n d  powerfu l  as possible.  W i t h  a reasonable  m o d e l  in hand ,  we m a y  p roceed  to  

pos ing  and  resolving f u n d a m e n t a l  ques t ions  such  as " W h a t  can  and  c a n n o t  be  c o m p u t e d ? " "  a n d  

"How efBciently can  s o m e t h i n g  be  c o m p u t e d ? "  "" T h e  first ques t ion  is a t  t he  hea r t  of  t h e  t h e o r y  of 

c o m p u t a b i l i t y  and  t h e  second is at  t he  hea r t  of t he  theo ry  of complexi ty .  

In  this  t ex t ,  I have chosen to  give pr ide  of  place to  the  t heo ry  of  complexi ty .  M y  basic r eason  is 

very  simple:  complex i ty  is w h a t  really defines t he  l imits  of c o m p u t a t i o n .  C o m p u t a b i l i t y  es tabl ishes  

some  abso lu te  l imits ,  b u t  l imits  t h a t  do no t  t ake  into account  any  resource  usage  are h a r d l y  l imi ts  in 

a p rac t ica l  sense. M a n y  of  today"  s i m p o r t a n t  prac t ica l  ques t ions  in c o m p u t i n g  are based  on  resource  

p rob lems .  For  ins tance ,  enc ryp t i on  of t r ansac t ions  for t r ansmiss ions  over a ne twork  can  never  

be  ent i re ly  p r o o f  aga ins t  snoopers ,  because  an  e n c r y p t e d  t r a n s a c t i o n  m u s t  be d e c r y p t e d  by some  

m e a n s  and  thus  can  always be  dec iphered  by someone  d e t e r m i n e d  to  do so, g iven s,,fBcient resources .  

However,  t he  real  goal of enc ryp t i on  is to  m a k e  it  sufficiently "hard" " " - - t h a t  is, sufficiently resource-  

in tens ive  to  dec ipher  t h e  message  t h a t  snoopers  will be  d i scouraged  or t h a t  even d e t e r m i n e d  

spies will t ake  too  long to  comple t e  t h e  decryp t ion .  In  o the r  words,  a g o o d  e n c r y p t i o n  scheme 

does  no t  m a k e  it  imposs ib le  to  decode  the  message,  ju s t  very d i fBcu l t - - t he  p r o b l e m  is no t  one of 

c o m p u t a b i l i t y  b u t  one of  complexi ty .  As ano the r  example ,  m a n y  tasks  car r ied  ou t  by  c o m p u t e r s  

t o d a y  involve some  t y p e  of  op t imiza t ion :  rou t ing  of  p lanes  in the  sky or of packe t s  t h r o u g h  a 

n e twor k  so as to  get p lanes  or packets  to  the i r  de s t i na t i on  as efficiently as possible;  a l loca t ion  of  

m a n u f a c t u r e d  p r o d u c t s  to warehouses  in a re ta i l  chain  so as to  rninimi~.e was te  and  fu r t he r  sh ipping;  

p rocess ing  of  raw mate r ia l s  into  c o m p o n e n t  pa r t s  (e.g., c u t t i n g  c lo th  in to  p a t t e r n s  pieces or cracking 

c rude  oil into a r ange  of oils and  dist i l lates) so as to  min imize  waste;  des igning  new  p r o d u c t s  to  

mln lmize  p r o d u c t i o n  costs  for a given level of  pe r formance ;  and  so for th .  All of  these  p r o b l e m s  are 

ce r ta in ly  c ompu tab l e :  t h a t  is, each such p r o b l e m  has  a well-defined o p t i m a l  so lu t ion  t h a t  could  be  

found  t h r o u g h  s , , ~ c i e n t  c o m p u t a t i o n  (even if this  c o m p u t a t i o n  is n o t h i n g  m o r e  t h a n  an  exhaus t ive  

search t h r o u g h  all possible  solut ions) .  Yet these  p rob lems  are so complex  t h a t  t h e y  c a n n o t  be  

solved op t ima l l y  wi th in  a reasonable  a m o u n t  Of t ime;  indeed,  even der iv ing  good  a p p r o x i m a t e  

so lu t ions  for these  p rob lems  rema ins  resource- intensive.  T h u s  t h e  complex i ty  of  solving (exac t ly  
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or approximately) problems is what determines the usefnlness of computat ion in practice. I t  is no 

accident that  complexity theory is the most active area of research in theoretical computer  science 

today. 

Yet this text is not just  a text on the theory of complexity. I have two reasons for covering 

additional material: one is to provide a graduated approach to the often challenging results of 

complexity theory and the other is to paint a suitable backdrop for the unfolding of these results. 

The backdrop is mostly computabili ty theory--clearly,  there is little use in aslring what  is the com- 

plexity of a problem that  cannot be solved at all! The graduated approach is provided by a review 

chapter and a chapter on fi.nite automata.  Finite au tomata  should already be somewhat  familiar 

to the reader; they provide an ideal testing ground for the ideas and methods  need in working 

with complexity models. On the other hand, I have deliberately omit ted theoretical topics (such as 

formal grammars,  the Chomsky hierarchy, formal semantics, and formal specifications) that ,  while 

interesting in their own right, have limited impact on everyday computing ~ome because they  are 

not concerned with resources, some because the models used are not well accepted, and grammars  

because their use in compilers is quite different fTom their theoretical expression in the Chomsky 

hierarchy. Finite au tomata  and regular expressions (the lowest level of the ChomRky hierarchy) are 

covered here but  only by way of an introduction to (and contrast with) the  u.uiversal models of 

computat ion used in computabil i ty and complexity. • - 

Of course, not all results in the theory of complexity have the same impact  on computing, 

Like any rich body of theory, complexity theory has applied aspects and very abstract  ones. I 

have focused on the applied aspects: for instance, I devote an entire chapter on how to prove 

tha t  a problem is hard but less than a section on the entire topic of s t ructure theory (the par t  of 

complexity theory that  addresses the internal logic of the field). Abstract results found in this text 

are mostly in support  of fundamental  results that  are later exploited for practical reasons. 

Since theoretical computer  science is often the most challenging topic studied in the course of a 

degree program in computing, I have avoided the dense presentation often favored by theoreticians 

(de~n;tions, theorems, proofs, with as little text in between as possible). Instead, I provide intuitive 

as well as formal support  for further derivations and present the idea behind any line of reasoning 

before formalizing said reason;ug. I have included large plumbers of examples and i l lustrated many  

abstract  ideas through diagrams; the reader will also find useful synopses of methods  (such as 

steps in an NP-completeness proof) for quick reference. Moreover, this text offers strong support  

through the Web for both students and instructors. Instructors will find solutions for most  of the 

250 problems in the text, along with many more solved problems; students will find interactive 

solutions for chosen problems, testing and validating their reasoning process along the way ra ther  

than  delivering a complete solution at once. In addition, I will also acc~,mulate on the Web site 

addenda,  errata,  co~nrnents form students and instructors, and pointers to useful resources, as well 

as feedback mechani~rnR--I want to hear fi'om all users of this text suggestions on how to improve it. 

The Ulq.L for the Website is h t t p : / / t ~ m ,  cs .,,,~.edu/~moret/computal:ion/; my email address 

is motet@ca, l m . .  ode. 
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