Algorithms on Strings, Trees, and Sequences:

Computer Science and Computational Biology

Dan Gusfield
University of California, Davis

Cambridge University Press, 1998
ISBN: 0-521-58519-8

Preface (Abridged)

The history and motivation

Although I didn’t know it at the time, I began writing this book in the summer of 1988 when I
was part of a computer science research group at the Human Genome Center of Lawrence Berkeley
Laboratory. Our group followed the standard assumption that biologically meaningful results could
come from considering DNA as a one-dimensional character string, abstracting away the reality of
DNA as a flexible three-dimensional molecule, interacting in a dynamic environment with protein
and RNA, and repeating a life-cycle in which even the classic linear chromosome exists for only a
fraction of the time. A similar, but stronger, assumption existed for protein, holding for example
that all the information needed for correct three-dimensional folding is contained in the protein
sequence itself, essentially independent of the biological environment the protein lives in. This
assumption has recently been modified, but remains largely intact.

For non-biologists, these two assumptions were (and remain) a god-send allowing rapid entry
into an exciting and important field. Statements such as

"The digital information that underlies biochemistry, cell biology, and development
can be represented by a simple string of G’s, A’s, T’s and C’s. This string is the root
data structure of an organism’s biology.”

reinforced the importance of sequence-level investigation.

So without worrying much about the more difficult chemical and biological aspects of DNA and
protein, our computer science group was empowered to consider a variety of biologically important
problems defined primarily on sequences, or (more in the computer science vernacular) on strings.
We organized our efforts into two high-level tasks. First, to learn the relevant biology, laboratory
protocols, and existing algorithmic methods used by biologists. Second to canvass the computer
science literature for ideas and algorithms that weren’t already used by biologists, but which might
plausibly be of use either in current problems, or in problems that we could anticipate arising when
vast quantities of sequenced DNA or protein become available.

Our problem

None of us was an expert on string algorithms. At that point I had a textbook knowledge of
Knuth-Morris-Pratt, and a deep confusion about Boyer-Moore (under what circumstances it was
a linear time algorithm, and how to do strong preprocessing in linear time). I understood the use
of dynamic programming to compute edit distance, but otherwise had little exposure to specific
string algorithms in biology. My general background was in combinatorial optimization, although
I had a prior interest in algorithms for building evolutionary trees and had studied genetics and
molecular biology in order to pursue that interest.

41



What we needed then, but didn’t have, was a comprehensive cohesive text on string algorithms
to guide our education. There were at that time several computer science texts containing a chapter
or two on strings, usually devoted to a rigorous treatment of Knuth-Morris-Pratt and a cursory
treatment of Boyer-Moore, and possibly an elementary discussion of matching with errors. There
were also some good survey papers that had a somewhat wider scope but didn’t treat their topics
in much depth. There were several texts and edited volumes from the biological side on uses of
computers and algorithms for sequence analysis. Some of these were wonderful in exposing the
potential benefits and the pitfalls of using computers in biology, but generally lacked algorithmic
rigor and covered a narrow range of techniques. Finally, there was the seminal text Time Warps,
String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison edited by D.
Sankoff and J. Kruskal, that served as a bridge between algorithms and biology, and had many
applications of dynamic programming. But it too was much narrower than our focus, and a bit
dated.

Moreover, most of the available sources from either community focused on string matching, the
problem of searching for an exact or “nearly exact”- copy of a pattern in a given text. Matching
problems are central, but as detailed in this book, they are only a part of the many important
computational problems defined on strings. So we recognized that summer a need for a rigor-
ous and fundamental treatment of the general topic of algorithms that operate on strings, along
with a rigorous treatment of specific string algorithms of greatest current and potential import in
computational biology. This book is an attempt to provide such a dual, and integrated, treatment.

Why mix Computer Science and Computational Biology in one book?

My interest in computational biology began in 1980, when I started reading papers on building
evolutionary trees. At that point, computational molecular biology was a largely undiscovered area
for computer science, although it was an active area for statisticians and mathematicians (notably
Michael Waterman and David Sankoff who have largely framed the field). But seventeen years -
later, computational biology is hot, and many computer scientists are now entering the (now more
hectic, more competitive) field. What should they learn?

The problem is that the emerging field of computational molecular biology is not well de-
fined and its definition is made more difficult by rapid changes in molecular biology itself. Still,
algorithms that operate on molecular sequence data (strings) are at the heart of computational
molecular biology. The big-picture question in computational molecular biology is how to “do” as
much “real biology” as possible by exploiting molecular sequence data (DNA, RNA and protein).
Getting sequence data is relatively cheap and fast (and getting more so) compared to more tradi-
tional laboratory investigations. The use of sequence data is already central in several subareas of
molecular biology and the full impact of having extensive sequence data is yet to be seen. Hence,
algorithms that operate on strings will continue to be the area of closest intersection and interaction
between computer science and molecular biology. Certainly then, computer scientists need to learn
the string techniques that have been most successfully applied. But that is not enough.

Computer scientists need to learn fundamental ideas and techniques that will endure long
after today’s central motivating applications are forgotten. They need to study methods that
prepare them to frame and tackle future problems and applications. Significant contributions to
computational biology might be made by extending or adapting algorithms from computer science,
even when the original algorithm has no clear utility in biology. Therefore, the computer scientist
who wants to enter the general field of computational molecular biology and who learns string
algorithms with that end in mind, should receive a training in string algorithms that is much
broader than a tour through techniques of known present application. So even if I were to write

42



a book for computer scientists who only want to do computational biology, I would still choose to
include a broad range of algorithmic techniques from pure computer science.

In this book, I cover a wide spectrum of string techniques, well beyond those of established
utility, but I select from the many possible illustrations, those techniques that seem to have the
greatest potential application in future molecular biology. Potential application, particularly of
ideas rather than of concrete methods, and to anticipated rather than to existing problems, is a
matter of judgment and speculation. No doubt, some of the material contained in this book will
never find direct application in biology, while other material will find uses in surprising ways.

Following the above discussion, this book is a general-purpose rigorous treatment of the entire
field of deterministic algorithms that operate on strings and sequences. Many of those algorithms
utilize trees as data- structures, or arise in biological problems related to evolutionary trees, hence
the inclusion of “trees” in the title.

The model reader is a research-level professional in computer science or a graduate or advanced
undergraduate student in computer science, although there are many biologists (and of course
mathematicians) with sufficient algorithmic background to read the book. The book is intended
to be both a reference, and a main text for courses in pure computer science, and for computer
science oriented courses on computational biology.

Explicit discussions of biological applications appear throughout the book, but are more con-
centrated in the last sections of Part II, and in most of Parts IIT and IV. I discuss a number of
biological issues in detail in order to give the reader a deeper appreciation for the reasons that
many biological problems have been cast as problems on strings, and for the variety of (often very
imaginative) technical ways that string algorithms have been employed in molecular biology.

This book covers all the classic topics and most of the important advanced techniques in the
field of string algorithms, with three exceptions. It only lightly touches on probabilistic analysis,
does not discuss parallel algorithms, or the elegant, but very theoretical results on algorithms for
infinite alphabets and on algorithms using only constant auxiliary space. The book also does not
cover stochastic oriented methods that have come out of the machine learning community, although
some of the algorithms in this book are extensively used as subtools in those methods. With these
exceptions, the book covers all the major styles of thinking about string algorithms. The reader
who absorbs the material in this book will gain a deep and broad understanding of the field, and
sufficient sophistication to undertake original research.

Reflecting my background, the book rigorously discusses each of the topics, usually providing
complete proofs of behavior (correctness, worst-case time and space). More important, it empha-
sizes the ideas and derivations of the methods it presents, rather than simply providing an inventory
of available algorithms. To better expose ideas and encourage discovery, I often present a com-
plex algorithm by introducing a naive, inefficient, version and then successively applying additional
insight and implementation detail to obtain the desired result.

The book contains some new approaches I developed to explain certain classic and complex
material. In particular, the preprocessing methods I present for Knuth-Morris-Pratt, Boyer-Moore
and several other linear-time pattern matching algorithms, differ from the classical methods, both
unifying and simplifying the preprocessing tasks needed for those algorithms. I also expect that
my (hopefully simpler and clearer) expositions on linear time suffix tree constructions and on
the constant time least common ancestor algorithm will make those important methods more
available and widely understood. I connect theoretical results from computer science on sublinear-
time algorithms, with widely used methods for biological database search. In the discussion of
multiple sequence alignment, I bring together the three major objective functions that have been
proposed for multiple alignment, and show a continuity between approximation algorithms for

43



those three multiple alignment problems. Similarly, the chapter on evolutionary tree construction
exposes the commonality of several distinct problems and solutions in a way that is not well known.
Throughout the book, I discuss many computational problems concerning repeated substrings
(a very widespread phenomenon in DNA). I consider several different ways to define repeated
substrings and use each specific definition to explore computational problems and algorithms on
repeated substrings.

In the book I try to explain in complete detail, and at a reasonable pace, many complex methods
that have previously been written exclusively for the specialist in string algorithms. I avoid detailed
code, as I find it rarely serves to explain interesting ideas, and I provide over 400 exercises to both
reinforce the material of the book, and to develop additional topics.

Table of Contents

Preface

The history and motivation / Why mix Computer Science and Computational Biology
in one book? / What the book is / What the book is not / Acknowledgements

I EXACT STRING MATCHING

The Fundamental String Problem / Exact matching: What’s the problem? / Impor-
tance of the exact matching problem / Overview of Part I / Basic string definitions

Chapter 1. Exact Matching: Fundamental Preprocessing and First Aléorithms

1.1 The Naive method / 1.1.1 Early ideas for speeding up the naive method / 1.2
The preprocessing approach / 1.3 Fundamental preprocessing of the pattern / 1.4
Fundamental preprocessing in linear time / 1.5 The simplest linear-time exact matching
algorithm / 1.5.1 Why continue? / 1.6 Exercises /

Chapter 2 Exact Matching: Classical Comparison-Based Methods

2.1 Introduction / 2.2 The Boyer-Moore Algorithm / 2.2.1 Right to left scan / 2.2.2
Bad character rule / 2.2.2.1 Extended bad character rule / 2.2.2.2 Implementing the
extended bad character rule / 2.2.3 The (strong) good suffix rule / 2.2.4 Preprocessing
for the good suffix rule / 2.2.5 The good suffix rule in the search stage of Boyer-Moore
/ 2.2.6 The complete Boyer-Moore algorithm / 2.3 The Knuth-Morris-Pratt algorithm
/ 2.3.1 The Knuth-Morris-Pratt shift idea / 2.3.1.1 The Knuth-Morris-Pratt shift rule
/ 2.3.2 Preprocessing for Knuth-Morris-Pratt / 2.3.3 A full implementation of Knuth-
Morris-Pratt / 2.4 Real-time string matching / 2.4.1 Converting Knuth-Morris-Pratt to
a real-time method / 2.4.2 Preprocessing for real-time string matching / 2.5 Exercises

Chapter 3 Exact Matching: A deeper look at classical methods

3.1 A Boyer-Moore variant with a “simple” linear time bound / 3.1.1 Key ideas /
3.1.2 One phase in detail / 3.1.2.1 Phase algorithm / 3.1.3 Correctness and linear time
analysis / 3.2 Cole’s linear worst case bound for Boyer-Moore / 3.2.1 Cole’s proof when
the pattern does not occur in the text / 3.2.1.1 An initial lemma / 3.2.1.2 Return to

44



Cole’s proof / 3.2.2 The case when the pattern does occur in the text / 3.2.3 Adding in
the bad character rule / 3.3 The original preprocessing for Knuth-Morris-Pratt / 3.3.1
The method does not use fundamental preprocessing / 3.3.2 The easy case / 3.3.3 The
general case / 3.3.4 The complete preprocessing algorithm / 3.3.5 How to compute the
optimized shift values / 3.4 Exact matching with a set of patterns / 3.4.1 Naive use
of keyword trees for set matching / 3.4.2 The speed-up: generalizing Knuth-Morris-
Pratt / 3.4.3 Failure functions for the keyword tree / 3.4.4 The failure links speed up
the search / 3.4.5 Linear preprocessing for the failure function / 3.4.6 The full Aho-
Corasick algorithm: relaxing the substring assumption / 3.4.6.1 Implementation / 3.5
Three applications of exact set matching / 3.5.1 Matching against a DNA or protein
library of known patterns / 3.5.2 Exact matching with wild cards / 3.5.2.1 Correctness
and complexity of the method / 3.5.3 Two dimensional exact matching / 3.6 Regular
Expression Pattern Matching / 3.6.1 Formal Definitions / 3.7 Exercises

Chapter 4 Semi-Numerical String Matching

4.1 Arithmetic verses comparisons / 4.2 The Shift-And method / 4.2.1 How to construct
array M / 4.2.2 Shift-And is effective for small patterns / 4.2.3 agrep: the Shift-And
method with errors / 4.2.4 How to compute Mk / 4.3 The match-count problem and
Fast Fourier Transform / 4.3.1 A fast worst-case method for the match-count problem?
/ 4.3.2 Using Fast Fourier Transform for match-counts / 4.3.2.1 The high-level approach
/ 4.3.2.2 Cyclic correlation / 4.3.2.3 Handling wildcards in match-counts / 4.4 Karp-
Rabin fingerprint methods for exact match / 4.4.1 Arithmetic replaces comparisons /
4.4.2 Fingerprints of P and T / 4.4.2.1 Prime moduli limit false matches / 4.4.2.2 The
Central Theorem / 4.4.2.3 Extensions / 4.4.2.4 Even lower limits on error / 4.4.2.5
Checking for error in linear time / 4.4.3 Why fingerprints? / 4.5 Exercises

PART II Suffix trees and their uses

Chapter 5 Introduction to suffix trees

5.1 A short history / 5.2 Basic definitions / 5.3 A motivating example / 5.4 A naive
algorithm to build a suffix tree

Chapter 6 Linear time construction of suffix trees

6.1 Ukkonen’s linear time suffix tree algorithm / 6.1.1 Implicit suffix trees / 6.1.2
Ukkonen’s algorithm at a high level 6.1.3 Implementation and speedup / 6.1.3.1 Suffix
links: first implementation speedup / 6.1.3.2 Following a trail of suffix links to build
I(i+1) / 6.1.3.3 Single extension algorithm: SEA / 6.1.3.4 Trick number 1: skip/count
trick / 6.1.4 A simple implementation detail / 6.1.5 Two more little tricks and we'’re
done / 6.1.5.1 The punch line / 6.1.6 Creating the true suffix tree / 6.2 Weiner’s linear
time suffix tree algorithm / 6.2.1 A straightforward construction / 6.2.2 Towards a
more efficient implementation / 6.2.2.1 Finding Head(i) efficiently / 6.2.3 The basic
idea of Weiner’s algorithm / 6.2.3.1 The algorithm in the good case / 6.2.3.2 The two
degenerate cases / 6.2.4 The Full Algorithm for creating T(i) from T(i+1) / 6.2.4.1
Correctness / 6.2.4.2 How to update the vectors / 6.2.5 Time analysis of Weiner’s
algorithm / 6.2.6 Last comments about Weiner’s algorithm / 6.3 McCreight’s suffix tree

45



algorithm / 6.4 Generalized suffix tree for a set of strings / 6.5 Practical implementation
issues / 6.5.1 Alphabet independence: all linears are equal, but some are more equal
than others / 6.6 Exercises

Chapter 7 First applications of suffix trees

7.1 APL1: Exact string matching / 7.2 APL2: Suffix trees and the exact set matching
problem / 7.2.1 Comparing suffix trees and keyword trees for exact set matching / 7.3
APL3: The substring problem for a database of patterns / 7.4 APL4: Longest common
substring of two strings / 7.5 APL5: Recognizing DNA contamination / 7.6 APL6:
Common substrings of more than two strings / 7.6.1 Computing the C(v) numbers /
7.7 APL7: Building a smaller directed graph for exact matching / 7.8 APL8: A reverse
role for suffix trees, and major space reduction / 7.8.1 Matching statistics: duplicating
bounds and reducing space / 7.8.2 Correctness and time analysis for matching statistics
/ 7-8.3 A small but important extension / 7.9 APL9: Space efficient longest common
substring / 7.10 APL10: All-Pairs Suffix-Prefix Matching / 7.10.1 Solving the all-pairs
suffix-prefix problem in linear time / 7.11 Introduction to repetitive structures in strings
/ 7-11.1 Repetitive structures in biological strings / 7.11.2 Uses of repetitive structures
in molecular biology / 7.12 APL11: Finding all maximal repetitive structures in linear
time / 7.12.1 A linear time algorithm to find all maximal repeats / 7.12.2 Finding
supermaximal repeats in linear time / 7.12.3 Finding all the maximal pairs in linear
time / 7.13 APL12: Circular string linearization / 7.13.1 Solution via suffix trees /
7.14 APL13: Suffix Arrays: more space reduction / 7.14.1 Suffix tree to suffix array in -
linear time / 7.14.2 How to search for a pattern using a suffix array / 7.14.3 A simple
accelerant / 7.14.4 A super-accelerant / 7.14.5 How to obtain the Lcp values / 7.14.6
Where do large alphabet problems arise? / 7.15 APL14: Suffix trees in genome-scale
projects / 7.16 APL15: A Boyer-Moore approach to exact set matching / 7.16.1 The
search / 7.16.2 Bad character rule / 7.16.3 Good suffix rule / 7.16.4 How to determine i2
and i3 / 7.16.5 An implementation eliminating redundancy / 7.17 APL16: Ziv-Lempel
data compression / 7.17.1 Implementation using suffix trees / 7.17.2 A one-pass version
/ 7.17.3 The real Ziv-Lempel / 7.18 APL17: Minimum length encoding of DNA / 7.19
Additional applications / 7.20 Exercises -

Chapter 8 Constant time lowest common ancestor retrieval

8.1 Introduction / 8.1.1 What do ancestors have to do with strings? / 8.2 The assumed
machine model / 8.3 Complete binary trees: A very simple case / 8.4 How to solve
lca queries in B / 8.5 First steps in mapping T to B / 8.6 The mapping of T to B /
8.7 The linear time preprocessing of T / 8.8 Answering an lca query in constant time
/ 8.9 The binary tree is only conceptual / 8.10 For the purists: how to avoid bit-level
operations / 8.11 Exercises

Chapter 9 More applications of suffix trees

9.1 Longest common extension: a bridge to inexact matching / 9.1.1 Linear time
solution / 9.1.2 Space efficient longest common extension / 9.2 Finding all maximal
palindromes in linear time / 9.2.1 Linear time solution / 9.2.2 Complemented and

46



separated palindromes / 9.3 Exact matching with wild cards / 9.4 The k-mismatch
problem / 9.4.1 The solution / 9.5 Approximate palindromes and repeats / 9.6 Faster
methods for tandem repeats / 9.6.1 The speedup for k-mismatch tandem repeats / 9.7
A linear time solution to the multiple common substring problem / 9.7.1 The method
/ 9.7.2 Time analysis / 9.7.3 Related uses / 9.8 Exercises

PART III Inexact Matching, Sequence Alignment, and Dynamic
Programming '

Chapter 10 The importance of (sub)sequence comparison in molecular biology

Chapter 11 Core string edits, alignments and dynamic programming

11.1 Introduction / 11.2 The edit distance between two strings / 11.2.1 String align-
ment / 11.3 Dynamic programming calculation of edit distance / 11.3.1 The recurrence
relation / 11.3.2 Tabular computation of edit distance / 11.3.3 The traceback / 11.3.3.1
The pointers represent all optimal edit transcripts / 11.4 Edit graphs / 11.5 Weighted
edit distance / 11.5.1 Operation weights / 11.5.2 Alphabet-weight edit distance / 11.6
String similarity / 11.6.1 Computing similarity / 11.6.2 Special cases of similarity /
11.6.3 Alignment graphs for similarity / 11.6.4 Endspace free variant / 11.6.5 Ap-
proximate occurrences of P in T / 11.7 Local alignment: Finding substrings of high
similarity / 11.7.1 Computing local alignment / 11.7.2 How to solve the local suffix
alignment problem / 11.7.3 Three final comments on local alignment / 11.8 Gaps /
11.8.1 Introduction to Gaps / 11.8.2 Why gaps? / 11.8.3 cDNA matching: a concrete
illustration / 11.8.3.1 Processed Pseudogenes / 11.8.4 Choices for gap weights / 11.8.5
Arbitrary gap weights / 11.8.5.1 Time analysis / 11.8.6 Affine (and constant) Gap
Weights / 11.8.6.1 The recurrences / 11.8.6.2 Time analysis / 11.9 Exercises

Chapter 12 Refining Core String Edits and Alignments

12.1 Computing alignments in only linear space / 12.1.1 Space reduction for computing
similarity / 12.1.2 How to find the optimal alignment in linear space / 12.1.3 The full
idea: Use recursion / 12.1.4 Time analysis / 12.1.5 Extension to local alignment /
12.2 Faster algorithms when the number of differences is bounded / 12.2.1 Where do
bounded difference problems arise? / 12.2.2 Dlustrations from molecular biology /
12.2.3 k-difference global alignment / 12.2.4 The return of the suffix tree: k-difference
inexact matching / 12.2.5 The primer (and probe) selection problem revisited / 12.2.5.1
How to solve the k-difference primer problem / 12.3 Exclusion methods: fast expected
running time / 12.3.1 The BYP method / 12.3.2 Expected time analysis of Algorithm
BYP / 12.3.3 The Chang-Lawler method / 12.3.4 Multiple filtration for k-mismatches
/ 12.3.5 Myers’ sublinear-time method / 12.3.6 Final comment on exclusion methods /
12.4 Yet more suffix-trees, more hybrid dynamic programming / 12.4.1 The P-against-
all problem / 12.4.2 The (threshold) all-against-all problem / 12.4.2.1 Correctness and
time analysis / 12.5 A faster (combinatorial) algorithm for longest common subsequence
/ 12.5.1 Longest increasing subsequence / 12.5.2 Longest common subsequence reduces
to longest increasing sequence / 12.5.3 How good is the method / 12.5.4 The lcs of more
than two strings / 12.6 Convex Gap weights / 12.6.1 Forward dynamic programming
/ 12.6.2 The basis of the speedup / 12.6.3 Cell pointers and row partition / 12.6.3.1

47



Preparation for the speedup / 12.6.4 Final implementation details and time analysis /
12.6.4.1 The case of F values is essentially symmetric / 12.7 The Four-Russians speedup
/ 12.7.1 t-blocks / 12.7.2 The Four-Russians idea for the restricted block function /
12.7.2.1 Accounting detail / 12.7.3 The trick: offset encoding / 12.7.3.1 Time analysis
/ 12.7.4 Practical approaches / 12.8 Exercises

Chapter 13 Extending the core problems

13.1 Parametric Sequence Alignment / 13.1.1 Introduction / 13.1.2 Definitions and
first results / 13.1.3 Parametric alignment with the use of scoring matrices / 13.1.4
Efficient algorithms for computing a polygonal decomposition / 13.1.4.1 Finding a
polygon of the decomposition / 13.1.4.2 Filling in the parameter space / 13.1.5 Time
analysis and next idea / 13.1.6 Bounding the number of polygons in the decomposition
/ 13.1.6.1 The special case of global alignment / 13.1.7 Uses for parametric alignment
/ 13.1.7.1 Sensitivity analysis / 13.1.7.2 Efficient computation of all co-optimals / 13.2
Computing suboptimal alignments / 13.2.1 First definitions and first results / 13.2.2 A
useful re-weighting / 13.2.3 Counting and enumerating near-optimal paths / 13.2.4 An
alternative approach to suboptimal alignment / 13.3 Chaining diverse local alignments
/ 13.4 Exercises

Chapter 14 Multiple String Comparison — The Holy Grail

14.1 Why multiple string comparison? / 14.1.1 Biological basis for multiple string com-
parison / 14.2 Three “big-picture” biological uses for multiple string comparison / 14.3
Family and superfamily representation / 14.3.1 Family representations and alignments
with profiles / 14.3.1.1 Aligning a string to a profile / 14.3.2 Signature representa-
tions of families / 14.3.2.1 Signatures for Helicase proteins / 14.4 Multiple sequence
comparison for structural inference / 14.5 Introduction to computing multiple string
alignments / 14.5.1 How to score multiple alignments / 14.6 Multiple alignment with
the sum-of-pairs (SP) objective function / 14.6.1 An exact solution to the SP align-
ment problem / 14.6.1.1 A speed up for the exact solution / 14.6.2 A bounded-error
approximation method for SP alignment / 14.6.2.1 An initial key idea: Alignments
consistent with a tree / 14.6.2.2 The center star method for SP alignment / 14.6.3
Weighted SP alignment / 14.7 Multiple alignment with consensus objective functions
/ 14.7.1 Steiner consensus strings / 14.7.2 Consensus strings from multiple alignment /
14.7.3 Approximating the optimal consensus multiple alignment / 14.8 Multiple align-
ment to a (phylogenetic) tree / 14.8.1 A heuristic for phylogenetic alignment / 14.8.1.1
The error analysis / 14.8.1.2 Computing the minimum distance lifted alignment /
14.9 Comments on bounded-error approximations / 14.10 Common multiple alignment
methods / 14.10.1 Iterative pairwise alignment / 14.10.2 Two specific illustrations of
iterative pairwise alignment / 14.10.2.1 Iterative multiple alignment to identify protein
secondary structure / 14.10.2.2 Iterative multiple alignment to build evolutionary trees
/ 14.10.3 Repeated-motif methods / 14.10.4 Two newer approaches to multiple string
comparison / 14.11 Exercises

Chapter 15 Sequence Database and their uses - the MotherLode

48



15.1 Success stories of database search / 15.1.1 The first success story / 15.1.2 A more
recent example of successful database search / 15.1.3 Indirect applications of database
search / 15.2 The database industry / 15.3 Algorithmic issues in database search /
15.3.1 Should there be any? / 15.4 Real Sequence Database search / 15.5 FASTA /
15.6 BLAST / 15.6.1 The hit (hot-spot) strategy of BLAST / 15.6.2 The effectiveness
of BLAST / 15.7 PAM: the first major amino acid substitution matrices / 15.7.1 PAM
units and PAM matrices / 15.7.2 PAM units / 15.7.3 PAM matrices / 15.7.4 How are
PAM matrices actually derived? / 15.7.5 The use of the PAM matrix / 15.8 PROSITE
/ 15.9 BLOCKS and BLOSUM / 15.10 The BLOSUM substitution matrices / 15.11
Additional considerations for database searching / 15.11.1 Statistical significance /
15.11.2 A theory of log-odds scores / 15.11.3 Importance of searching protein with
protein / 15.12 Exercises

PART IV Currents, Cousins and Cameos

Chapter 16 Maps, Mapping, Sequencing and Superstrings

16.1 A look at some DNA mapping and sequencing problems / 16.2 Mapping and the
genome project / 16.3 Physical versus genetic maps / 16.4 Physical mapping / 16.5
Physical mapping: STS-content mapping and ordered clone libraries / 16.5.1 Recon-
struction of STS order / 16.6 Physical mapping: Radiation-hybrid mapping / 16.6.1
Reconstruction of STS order in radiation hybrids / 16.6.2 Traveling salesman formula-
tion of STS ordering / 16.6.3 Back to STS-content mapping: the case of errors / 16.7
Physical mapping: Fingerprinting for general map construction / 16.8 Computing the
tightest layout / 16.9 Physical mapping: last comments / 16.10 An introduction to
map alignment / 16.10.1 A non-unary dynamic programming approach to map align-
ment / 16.10.2 Extensions of the map alignment model / 16.11 Large-scale sequencing
and sequence assembly / 16.12 Directed sequencing / 16.13 Top-down, bottom-up se-
quencing: The picture using YACs / 16.13.1 Is mapping necessary for sequencing? /
16.13.2 Fragment selection for sequencing / 16.13.3 Some real numbers / 16.14 Shotgun
DNA sequencing / 16.15 Sequence assembly / 16.15.1 Step one: Overlap detection /
16.15.2 Step two: string layout / 16.15.3 Step three: Deciding the consensus / 16.16
Final comments on top-down, bottom-up sequencing / 16.17 The shortest superstring
problem / 16.17.1 Basic Definitions / 16.17.2 The objective function for superstrings /
16.17.3 Cyclic strings and cycle covers / 16.17.4 How cycle covers define superstrings
/ 16.17.5 Factor-of-four approximation / 16.17.5.1Error analysis of the algorithm /
16.17.6 Improvement to a factor of three / 16.17.6.1 Error analysis / 16.17.7 Efficient
implementation / 16.17.7.1 Non-trivial cycle cover / 16.16.7.2 How to form the ma-
trix efficiently / 16.18 Sequencing by hybridization / 16.18.1 Reduction to Euler paths
/ 16.18.2 Continuity of compatible strings / 16.18.3 Last comments on SBH / 16.19
Exercises

Chapter 17 Strings and Evolutionary Trees

17.1 Ultrametric trees and ultrametric distances / 17.1.1 Introduction / 17.1.2 Evolu-
tionary trees as ultrametric trees / 17.1.3 How to test for an ultrametric tree / 17.1.4
How are ultrametric data obtained? / 17.1.4.1 Laboratory-based methods / 17.1.4.2
Sequence-based methods / 17.1.4.3 Final comments / 17.2 Additive-distance trees /

49



17.2.1 Introduction / 17.2.2 Algorithms for the additive tree problem / 17.2.2.1 Com-
pact additive trees / 17.3 Parsimony: character-based evolutionary reconstruction /
17.3.1 Introduction / 17.3.2 Where do character data come from? / 17.3.3 Perfect
Phylogeny / 17.3.4 An O(nm)-time algorithm for the perfect phylogeny problem /
17.3.5 Tree compatibility: an application of perfect phylogeny / 17.3.6 Generalized
perfect phylogeny / 17.4 The centrality of the ultrametric problem / 17.4.1 The ad-
ditive tree problem viewed as an ultrametric problem / 17.4.2 The perfect phylogeny
problem viewed as an ultrametric problem / 17.5 Maximum parsimony, Steiner trees
and Perfect Phylogeny / 17.5.1 Basic definitions / 17.5.2 Approximations to maximum
parsimony / 17.6 Phylogenetic Alignment, again / 17.6.1 The Fitch-Hartigan minimum
mutation problem / 17.6.2 Phylogenetic alignment used to compute PAM matrices /
17.7 Connections between multiple alignment and tree construction / 17.8 Exercises

Chapter 18 Three short topics

18.1 Matching DNA to protein with frameshift errors / 18.1.1 Matching a string to
a network / 18.1.2 DNA /protein matching cast as network matching / 18.2 Gene
prediction / 18.2.1 Exon assembly / 18.3 Molecular computation: Computing with
(not about) DNA strings / 18.3.1 Lipton’s approach to the Satisfiability Problem /
18.3.2 Critique / 18.4 Exercises

Chapter 19 Models of genome-level mutations

19.1 Introduction / 19.1.1 Genome rearrangements give new evolutionary insights /
19.2 Genome rearrangements with inversions / 19.2.1 Definitions and initial facts /
19.2.2 The heuristics / 19.2.2.1 Improving the guarantee / 19.3 Signed inversions /
19.4 Exercises

Chapter 20 Epilogue - Where Next?
Chapter 21 Glossary

Index

Complezity Theory Retrospective I

Lane A. Hemaspaandra and Alan L. Seluia.n, editors

Springer-Verlag, New York, 1997
ISBN 0-387-94973-9 _
http://www.springer-ny.com/catalog/np/mar97np/DATA/0-387-94973-9.html
Blurb (in Lieu of the Preface)

Complexity theory is a flourishing area of research that continues to provide one of the richest
sources of research problems in computer science. This volume, a collection of articles written by

50



experts, provides a survey of the subject, a comprehensive guide to research, and a provocative
look to the future.

The editors’ aim has been to provide an accessible description of the current state of complexity
theory and to demonstrate the breadth of techniques and results that make the subject exciting.
Papers are on traditional topics ranging from sublogarithmic space to exponential time, on new
combinatorial techniques and recent successes such as interactive proof systems, and on the newly
emerging arcas of quantum and biological computing. As a result, researchers and students in
computer science will find this book an excellent starting point for study of the subject and a
useful source of the key known results.

Table of Contents

Preface
1 Time, Hardware, and Uniformity — David Mix Barrington, Neil Immerman

1.1 Introduction / 1.2 Background: Descriptive Complexity / 1.3 First Uniformity
Theorem / 1.4 Variables That Are Longer Than log(n) Bits / 1.5 Uniformity: The
Third Dimension / 1.6 Variables That Are Shorter Than log(n) Bits / 1.7 Conclusions

2 Quantum Computation — Andre Berthiaume

2.1 The Need for Quantum Mechanics / 2.2 Basic Principles of Quantum Mechanics
/ 2.2.1 Probability Amplitudes / 2.2.2 Qubits and How to Observe Them / 2.2.3 Di-
gression on Quantum Cryptography / 2.2.4 Evolution of a Quantum System / 2.2.5
Quantum Registers / 2.3 Computing with Quantum Registers / 2.4 Separating T'wo
Classes of Functions / 2.5 Shor’s Factoring Algorithm / 2.6 Building a Quantum Com-
puter

3 Sparse Sets versus Complexity Classes — Jin-Yi Cai and Mitsunori Ogihara

3.1 Introduction / 3.2 Earlier Results for Turing Reductions / 3.2.1 Sparse Sets and
Polynomial Size Circuits-/ 3.2.2 The Karp-Lipton Theorem / 3.2.3 Long’s Extension
/ 3.3 Earlier Results for Many-One Reductions / 3.3.1 The Isomorphism Conjecture
for NP / 3.3.2 Mahaney’s Theorem / 3.4 Bounded Truth Table Reduction of NP /
3.4.1 Extensions / 3.5 The Hartmanis Conjecture for P / 3.5.1 Ogihara’s Language
and Randomized NC2? / 3.5.2 Deterministic Construction / 3.5.3 The Finale: NC!
Simulation / 3.6 Conclusions

4 Counting Complexity — Lance Fortnow

4.1 Introduction / 4.2 Preliminaries / 4.3 Counting Functions / 4.3.1 Algebraic Prop-
erties of Counting Functions / 4.3.2 A Randomized sign Function / 4.3.3 Counting
Functions and the Polynomial-Time Hierarchy / 4.4 Counting Classes / 4.4.1 Classify-
ing Counting Classes / 4.2 Counting Operators / 4.3 The Polynomial-Time Hierarchy
/ 4.4 Closure Properties of PP / 4.5 Relativization / 4.6 Other Work / 4.6.1 Cir-
cuits / 4.6.2 Lowness / 4.6.3 Characterizing Specific Problems / 4.6.4 Interactive Proof
Systems / 4.6.5 Counting in Space Classes / 4.6.6 Other Research

51



5 A Taxonomy of Proof Systems — Oded Goldreich

5.1 Introduction / 5.2 A Technical Exposition / 5.2.1 Interactive Proof Systems / 5.2.2
MIP and PCP / 5.2.3 Computationally Sound Proof Systems / 5.2.4 Other Types of
Proof Systems / 5.2.5 Comparison / 5.3 The Story / 5.3.1 The Evolution of Proof Sys-
tems / 5.3.2 PCP and Approximation / 5.3.3 Interactive Proofs and Program Checking
/ 5.3.4 Zero-Knowledge Proofs

6 Structural Properties of Complete Problems for Exponential Time — Steven Homer

6.1 Introduction / 6.2 Strong Reductions to Complete Sets / 6.3 Immunity for Com-
plete Problems / 6.4 Differences between Complete Sets / 6.5 Other Properties and
Open Problems / 6.5.1 Properties of »Weak” Complete Sets / 6.5.2 Polynomial-Time
Complete Recursively Enumerable Sets / 6.5.3 A Short List of Open Problems

7 The Complexity of Obtaining Solutions for Problems in NP and NL — Birgit Jenner
and Jacobo Toran

7.1 Introduction / 7.2 Computing Optimal Solutions: The Class FPY P / 7.3 Bounded
Queries to NP / 7.4 Computing Solutions Uniquely: The Class NPSV / 7.5 Nonadap-
tive Queries to NP: The Class FP;tY P / 7.6 A Look inside Nondeterministic Logspace
/ 7.7 Conclusions

8 Biological Computing — Stuart A. Kurtz, Stephen R. Mahaney, James S. Royer, and Janos
Simon

8.1 Introduction / 8.2 The One-Molecule Processor / 8.3 A Brief Introduction to Bio-
chemistry / 8.3.1 DNA, RNA, and Proteins / 8.3.2 Protein Synthesis / 8.4 Computa-
tional Molecules / 8.4.1 CNA / 8.4.2 tCNA / 8.4.3 The Synthesis of tCNA / 8.5 The
Microarchitecture of CNA Computers / 8.6 A Brief Discussion of Adleman’s Model
Versus Our Model / 8.7 Conclusions

9 Computing with Sublogarithmic Space — Maciej Liskiewicz and Ruediger Reischuk

9.1 Are Sublogarithmic Space Classes of Any Interest? / 9.2 The Alternating Subloga-
rithmic Space World / 9.3 Adding Randomness / 9.4 Special Limitations of Machines
with a Sublogarithmic Space Bound / 9.4.1 Technical Preliminaries / 9.4.2 Inputs with
a Periodic Structure / 9.4.3 Fooling ATMs / 9.5 A Survey of Lower Space Bound Proofs
/ 9.5.1 Languages for Separating the Levels of the Alternation Hierarchy / 9.5.2 ATMs
with a Constant Number of Alternations / 9.5.3 Unbounded Alternation / 9.5.4 Clo-
sure Properties / 9.5.5 Lower Bounds for Context-Free Languages / 9.6 Conclusions
and Open Problems

10 The Quantitative Structure of Exponential Time — Jack H. Lutz

92



10.1 Introduction / 10.2 Preliminaries / 10.3 Resource-Bounded Measure / 10.4 Incom-
pressibility and Bi-Immunity / 10.5 Complexity Cores / 10.6 Small Span Theorems /
10.7 Weakly Hard Problems / 10.8 Upper Bounds for Hard Problems / 10.9 Nonuniform
Complexity, Natural Proofs, and Pseudorandom Generators / 10.10 Weak Stochastic-
ity / 10.11 Density of Hard Languages / 10.12 Strong Hypotheses / 10.13 Conclusions
and Open Directions

11 Polynomials and Combinatorial Definitions of Languages — Kenneth W. Regan

11.1 Introduction / 11.2 Polynomials / 11.3 Representation Schemes and Language
Classes / 11.4 Strong versus Weak Representation / 11.5 Known Upper and Lower
Bounds on Degree / 11.6 Polynomials for Closure Properties / 11.7 Probabilistic Poly-
nomials / 11.8 Other Combinatorial Structures /

12 Average-Case Computational Complexity Theory — Jie Wang

12.1 Introduction / 12.2 Average Polynomial Time / 12.3 Average-Case Completeness
/ 12.3.1 Polynomial-Time Reductions / 12.3.2 Polynomial-Time Computable Distri-
butions / 12.3.3 Uniform Distributions / 12.3.4 Distribution Controlling Lemma /
12.3.5 Distributional NP-Completeness / 12.3.6 Average Polynomial-Time Reductions
/ 12.3.7 Distributional Search Problems / 12.4 Randomization / 12.4.1 Flat Distribu-
tions and Incompleteness / 12.4.2 Randomized Average Polynomial Time / 12.4.3 Ran-
domizing Reductions and Completeness / 12.4.4 Polynomial-Time Sampling / 12.4.5
Randomized Turing Reductions / 12.5 Hierarchies of Average-Case Complexity / 12.5.1
Average-Time Hierarchies / 12.5.2 Fast Convergence of Average Time / 12.5.3 Aver-
aging on Ranking of Distributions / 12.6 A Brief Survey of Other Results

Index

Models of Computation
Ezploring the Power of Computing

John E. Savage

Brown University

Addison Wesley Longnlan, 1998
ISBN: 0-201-89539-0

Preface (Abridged)

Theoretical computer science treats any computational subject for which a good model can be
created. Research on formal models of computation was initiated in the 1930s and 1940s by
Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language
translators, and operating systems were under development and therefore became the subject and

93



basis for a great deal of theoretical work. The power of computers of this period was limited by slow
processors and small amounts of memory, and thus theories (models, algorithms, and analysis) were
developed to explore the efficient use of computers as well as the inherent complexity of problems.
The former subject is known today as algorithms and data structures, the latter computational
complexity.

The focus of theoretical computer scientists in the 1960s on languages is reflected in the first
textbook on the subject, Formal Languages and Their Relation to Automnata by John Hopcroft and
Jeffrey Ullman. This influential book led to the creation of many language-centered. theoretical
computer science sources; many introductory theory courses today continue to reflect the content
of this book and the interests of theoreticians of the 1960s and early 1970s.

Although the 1970s and 1980s saw the development of models and methods of analysis directed
at understanding the limits on the performance of computers, this attractive new material has not
been made available at the introductory level. This book is designed to remedy this situation.

This book is distinguished from others on theoretical computer science by its primary focus
on real problems, its emphasis on concrete models of machines and programming styles, and the
number and variety of models and styles it covers. These include the logic circuit, the finite state
machine, the pushdown automaton, the random-access machine, memory hierarchies, the PRAM
(parallel random-access machine), the VLSI (very large-scale integrated) chip, and a variety of
parallel machines. T

The book covers the traditional topics of formal languages and automata and complexity classes
but also gives an introduction to the more modern topics of space-time tradeoffs, memory hier-
archies, parallel computation, the VLSI model, and circuit complexity. These modern topics are
integrated throughout the text as illustrated by the early introduction of P-complete and NP-
complete problems. The book provides the first textbook treatment of space-time tradeoffs and
memory hierarchies as well as a comprehensive introduction to traditional computational complex-
ity. Its treatment of circuit complexity is modern and substantive, and parallelism is integrated
throughout.

Table of Contents
1 Overview of the Book 1

1 The Role of Theory in computer Science 3

1.1 A Brief History of Theoretical Computer Science 4 / 1.2 Mathematical Preliminaries
7 / 1.3 Methods of Proof 14 / 1.4 Computational Models 16 / 1.5 Computational
Complexity 23 / 1.6 Parallel Computation 27 /

II General Computational Models 33

2 Logic Circuits 36

2.1 Designing Circuits 36 / 2.2 Straight-Line Programs and Circuits 36 / 2.3 Normal-
Form Expansions of Boolean Functions 42 / 2.4 Reductions Between Functions 46 / 2.5
Specialized Circuits 47 / 2.6 Prefix Computations 55 / 2.7 Addition 58 / 2.8 Subtraction
61 / 2.9 Multiplication 62 / 2.10 Reciprocal and Division 68 / 2.11 Symmetric Functions
74 / 2.12 Most Boolean Functions Are Complex 77 / 2.13 Upper bounds on Circuit
Size 79

54



3 Machines with Memory 91

3.1 Finite State Machines 92 / 3.2 Simulating FSMs with Shallow Circuits 100 / 3.3
Designing Sequential Circuits 106 / 3.4 Random-Access Machines 110 / 3.5 Random-
Access Memory Design 115 / 3.6 Computational Inequalities for the RAM 117 / 3.7
Turing Machines 118 / 3.8 Universality of the Turing Machine 121 / 3.9 Turing Machine
Circuit Simulations 124 / 3.10 Design of a Simple CPU 137

4 Finite-State Machines and Pushdown Automata 153

4.1 Finite-State Machine Models 154 / 4.2 Equivalence of DFSMs and NFSMs 156
/ 4.3 Regular Expressions 158 / 4.4 Regular Expressions and FSMs 160 / 4.5 The
Pumping Lemma for FSMs 168 / 4.6 Properties of Regular Languages 170 / 4.7 State
Minimization 171 / 4.8 Pushdown Automata 177 / 4.9 Formal Languages 181 / 4.10
Regular Language Recognition 184 / 4.11 Parsing Context-Free Languages 186 / 4.12
CFL Acceptance with Pushdown Automata 192 / 4.13 Properties of Context-Free
Languages 197

5 Computability 209

5.1 The Standard Turing Machine Model 210 / 5.2 Extensions to the Standard Turing
Machine Model 213 / 5.3 Configuration Graphs 218 / 5.4 Phrase-Structure Languages
and Turing Machines 219 / 5.5 Universal Turing Machines 220 / 5.6 Encodings of
Strings and Turing Machines 222 / 5.7 Limits on Language Acceptance 223 / 5.8
Reducibility and Unsolvability 226 / 5.9 Functions Computed by Turing Machines 230

68 Algebraic and Combinatorial Circuits 237

6.1 Straight-Line Programs 238 / 6.2 Mathematical Preliminaries 239 / 6.3 Matrix
Multiplication 244 / 6.4 Transitive Closure 248 / 6.5 Matrix Inversion 252 / 6.6 Solving
Linear Systems 262 / 6.7 Convolution ant the FFT Algorithm 263 / 6.8 Merging and
Sorting Networks 270

7 Parallel Computation 281

7.1 Parallel Computation Models 282 / 7.2 Memoryless Parallel Computers 282 / 7.3
Parallel Computers with Memory 283 / 7.4 The Performance of Parallel Algorithms
289 / 7.5 Multidimensional Meshes 292 / 7.6 Hypercube-Based Machines 298 / 7.7
Normal Algorithms 301 / 7.8 Routing in Networks 309 / 7.9 The PRAM Model 311 /
7.10 The BSP and LogP Models 317

IIT Computational Complexity 325

8 Complexity Classes 327

55



8.1 Introduction 328 / 8.2 Languages and Problems 328 / 8.3 Resource Bounds 330
/ 8.4 Serial Computational Models 331 / 8.5 Classification of Decision Problems 334
/ 8.6 Complements of Complexity Classes 343 / 8.7 Reductions 349 / 8.8 Hard and
Complete Problems 350 / 8.9 P-Complete Problems 352 / 8.10 NP-Complete Problems
355 / 8.11 The Boundary Between P and NP 363 / 8.12 PSPACE-Complete Problems
365 / 8.13 The Circuit Model of Computation 372 / 8.14 The Parallel Random-Access
Machine Model 376 / 8.15 Circuit ’Complexity Classes 380

9 Circuit Complexity 391

9.1 Circuit Models and Measures 392 / 9.2 Relationships Among Complexity Measures
394 / 9.3 Lower-Bound Methods for General Circuits 399 / 9.4 Lower-Bound Methods
for Formula Size 404 / 9.5 The Power of Negation 409 / 9.6 Lower-Bound Methods for
Monotone Circuits 412 / 9.7 Circuit Depth 436

10 Space-Time Tradeoffs 461

10.1 The Pebble Game 462 / 10.3 Space Lower Bounds 464 / 10.4 Grigoriev’s Lower-
Bound Method 468 / 10.5 Applications of Grigoriev’s Method 472 / 10.6 Worst-Case
Tradeoffs for Pebble Games 482 / 10.7 Upper Bounds on Space 483 / 10.8 Lower Bound
on Space for General Graphs 484 / 10.9 Branching Programs 488 / 10.10 Straight-Line
Versus Branching Programs 495 / 10.11 The Borodin-Cook Lower-Bound Method 497
/ 10.12 Properties of “nice” and “ok” Matrices 501 / 10.13 Applications of the Borodin-
Cook Method 504

11 Memory-Hierarchy Tradeoffs 529

11.1 The Red-Blue Pebble Game 530 / 11.2 The Memory-Hierarchy Pebble Game 533
/ 11.3 1/O-Time Relationships 535 / 11.4 The Hong-Kung Lower-Bound Method 537
11.5 Tradeoffs Between Space and I/O Time 539 11.6 Block I/O in the MHG 555 /
11.7 Simulating a Fast Memory in the MHG 558 / 11.8 RAM-Based I/O Models 559 /
11.9 The Hierarchical Memory Model 563 / 11.10 Competitive Memory Management
567

12 VLSI Models of Computation 575

12.1 The VLSI Challenge 576 / 12.2 VLSI Physical Models 578 / 12.3 VLSI Compu-
tational Models 579 / 12.4 VLSI Performance Criteria 580 / 12.5 Chip Layout 581 /
12.6 Area-Time Tradeoffs 586 / 12.7 The Performance of VLSI Algorithms 592 / 12.8
Area Bounds 597

56



The Theory of Computation

Bernard M. Moret
University of New Mexico

Addison Wesley Longman, 1998
ISBN 0-201-25828-5

Preface

Theoretical computer science covers a wide range of topics, but none is as fundamental and as
useful as the theory of computation. Given that computing is our field of endeavor, the most basic
question that we can ask is surely “What can be achieved through computing?”*”

In order to answer such a question, we must begin by defining computation, a task that was
started last century by mathematicians and remains very much a work in progress at this date.
Most theoreticians would at least agree that computation means solving problems through the
mechanical, preprogrammed execution of a series of small, unambiguous steps. From basic philo-
sophical ideas about computing, we must progress to the definition of a model of computation,
formalizing these basic ideas and providing a framework in which to reason about computation.
The model must be a framework in which to reason about computation. The model must be both
reasonably realistic (it cannot depart too far from what is perceived as a computer nowadays)
and as universal and powerful as possible. With a reasonable model in hand, we may proceed to
posing and resolving fundamental questions such as “What can and cannot be computed?’*” and
“How efficiently can something be computed?* *” The first question is at the heart of the theory of
computability and the second is at the heart of the theory of complexity.

In this text, I have chosen to give pride of place to the theory of complexity. My basic reason is
very simple: complexity is what really defines the limits of computation. Computability establishes
some absolute limits, but limits that do not take into account any resource usage are hardly limits in
a practical sense. Many of today's important practical questions in computing are based on resource
problems. For instance, encryption of transactions for transmissions over a network can never
be entirely proof against snoopers, because an encrypted transaction must be decrypted by some
means and thus can always be deciphered by someone determined to do so, given sufficient resources.
However, the real goal of encryption is to make it sufficiently “hard" * ”—that is, sufficiently resource-
intensive—to decipher the message that snoopers will be discouraged or that even determined
spies will take too long to complete the decryption. In other words, a good encryption scheme
does not make it impossible to decode the message, just very difficult—the problem is not one of
computability but one of complexity. As another example, many tasks carried out by computers
today involve some type of optimization: routing of planes in the sky or of packets through a
network so as to get planes or packets to their destination as efficiently as possible; allocation of
manufactured products to warehouses in a retail chain so as to minimize waste and further shipping;
processing of raw materials into component parts (e.g., cutting cloth into patterns pieces or cracking
crude oil into a range of oils and distillates) so as to minimize waste; designing new products to
minimize production costs for a given level of performance; and so forth. All of these problems are
certainly computable: that is, each such problem has a well-defined optimal solution that could be
found through sufficient computation (even if this computation is nothing more than an exhaustive
search through all possible solutions). Yet these problems are so complex that they cannot be
solved optimally within a reasonable amount of time; indeed, even deriving good approximate
solutions for these problems remains resource-intensive. Thus the complexity of solving (exactly

o7



or approximately) problems is what determines the usefulness of computation in practice. It is no
accident that complexity theory is the most active area of research in theoretical computer science
today.

Yet this text is not just a text on the theory of complexity. I have two reasons for covering
additional material: one is to provide a graduated approach to the often challenging results of
complexity theory and the other is to paint a suitable backdrop for the unfolding of these results.
The backdrop is mostly computability theory—clearly, there is little use in asking what is the com-
plexity of a problem that cannot be solved at all! The graduated approach is provided by a review
chapter and a chapter on finite automata. Finite automata should already be somewhat familiar
to the reader; they provide an ideal testing ground for the ideas and methods need in working
with complexity models. On the other hand, I have deliberately omitted theoretical topics (such as
formal grammars, the Chomsky hierarchy, formal semantics, and formal specifications) that, while
interesting in their own right, have limited impact on everyday computing—some because they are
not concerned with resources, some because the models used are not well accepted, and grammars
because their use in compilers is quite different from their theoretical expression in the Chomsky
hierarchy. Finite automata and regular expressions (the lowest level of the Chomsky hierarchy) are
covered here but only by way of an introduction to (and contrast with) the universal models of
computation used in computability and complexity. ..

Of course, not all results in the theory of complexity have the same impact on computing.
Like any rich body of theory, complexity theory has applied aspects and very abstract omes. I
have focused on the applied aspects: for instance, I devote an entire chapter on how to prove
that a problem is hard but less than a section on the entire topic of structure theory (the part of
complexity theory that addresses the internal logic of the field). Abstract results found in this text
are mostly in support of fundamental results that are later exploited for practical reasons.

Since theoretical computer science is often the most challenging topic studied in the course of a
degree program in computing, I have avoided the dense presentation often favored by theoreticians
(definitions, theorems, proofs, with as little text in between as possible). Instead, I provide intuitive
as well as formal support for further derivations and present the idea behind any line of reasoning
before formalizing said reasoning. I have included large numbers of examples and illustrated many
abstract ideas through diagrams; the reader will also find useful synopses of methods (such as
steps in an NP-completeness proof) for quick reference. Moreover, this text offers strong support
through the Web for both students and instructors. Instructors will find solutions for most of the
250 problems in the text, along with many more solved problems; students will find interactive
solutions for chosen problems, testing and validating their reasoning process along the way rather
than delivering a complete solution at once. In addition, I will also accumulate on the Web site
addenda, errata, comments form students and instructors, and pointers to useful resources, as well
as feedback mechanisms—I want to hear from all users of this text suggestions on how to improve it.
The URL for the Website is http://www.cs.unm.edu/~moret/computation/; my email address
is moret@cs.unm.edu.

Table of Contents
1. Introduction 1

1.1 Motivation and Overview 1 / 1.2 History 5

2. Preliminaries 11

58



2.1 Numbers and Their Representation 11 / 2.2 Problems, Instances, and Solutions 12
/ 2.3 Asymptotic Notation 17 / 2.4 Graphs 20 / 2.5 Alphabets, Strings, and Languages
25 / 2.6 Functions and Infinite Sets 27 / 2.7 Pairing Functions 31 / 2.8 Cantor"s Proof:
The Technique of Diagonalization 33 / 2.9 Implications for Computability 35 / 2.10
Exercises 37 / 2.11 Bibliography 42

. Finite Automata and Regular Languages 43

3.1 Introduction 43 / 3.2 Properties of Finite Automata 54 / 3.3 Regular Expressions
59 / 3.4 The Pumping Lemma and Closure Properties 70 / 3.5 Conclusion 85 / 3.6
Exercises 86 / 3.7 Bibliography 92

. Universal Models of Computation 23

4.1 Encoding Instances 9'4 / 4.2 Choosing a Model of Computation 97 / 4.3 Model
Independence 113 / 4.4 Turing Machines as Acceptors and Enumerators 115 / 4.5
Exercises 117 / 4.6 Bibliography 120

. Computability Theory 121

5.1 Primitive Recursive Functions 122 / 5.2 Partial Recursive Functions 134 / 5.3
Arithmetization: Encoding Turing Machine 137 / 5.4 Programming Systems 144 / 5.5
Recursive and R. E. Sets 148 / 5.6 Rice's Theorem and the Recursion Theorem 155 /
5.7 Degrees of Unsolvability 159 / 5.8 Exercises 164 / 5.9 Bibliography 167

. Complexity Theory: Foundations 169
6.1 Reductions 170 / 6.2 Classes of Complexity 178 / 6.3 Complete Problems 200 / 6.4
Exercises 219 / 6.5 Bibliography 223

. Proving Problems Hard 225

7.1 Some Important NP-Complete Problems 226 / 7.2 Some P-Completeness Proofs
253 / 7.3 From Decision to Optimization and Enumeration 260 / 7.4 Exercises 275 /
7.5 Bibliography 284

. Complexity Theory in Practice 285

8.1 Circumscribing Hard Problems 286 / 8.2 Strong NP-Completeness 301 / 8.3 The
Complexity of Approximation 308 / 8.4 The Power of Randomization 335 / 8.5 Exer-
cises 346 / 8.6 Bibliography 353

. Complexity Theory: The Frontier 357

59



9.1 Introduction 357 / 9.2 The Complexity of Specific Instances 360 / 9.3 Average-Case
Complexity 367 / 9.4 Parallelism and Communication 372 / 9.5 Interactive Proofs and
Probabilistic Proof Checking 385 / 9.6 Complexity and Constructive Mathematics 396

/ 9.7 Bibliography 403
8. References 407

A. Proofs 421

A.l. Quod Erat Demonstrandum, or What is a Proof? 421 / A.2. Proof Elements 424
/ A.3. Proof Techniques 425 / A.4. How to Write a Proof 437 / A.5. Practice 439

60



