
Algorithms on Stings, Trees, and Sequences:
Computer Science and Computational Biology

Dan Gusfield

University of Cali¢ornia, Davis

Cambridge University Press, 1998

ISBN: 0-521-58519-8

Preface (Abridged)

T h e h is tory and mot iva t ion

Although I d idn ' t know it at the time, I began writing this book in the summer of 1988 when I

was part of a computer science research group at the Human Genome Center of Lawrence Berkeley

Laboratory. Our group followed the standard assumption that biologically meaningful results could

come from considering DNA as a one-dimensional character string, abstract ing away the reality of

DNA as a flexible three-dimensional molecule, interacting in a dynamic environment with protein

and RNA, and repeating a life-cycle in which even the classic linear chromosome exists for only a

fraction of the time. A similar, but stronger, assumption existed for protein, holding for example

that all the information needed for correct three-dimensional folding is contained in the protein

sequence itself, essentiaUy independent of the biological environment the protein lives in. This

assumption has recently been modified, but remains largely intact.

For non-biologlsts, these two assllmptions were (and remain) a god-send allowing rapid entry

into an exciting and important field. Statements such as

"The digital information tha t underlies biochemistry, cell biology, and development

can be represented by a simple string of G's, A's, T's and COs. This string is the root

da ta s tructure of an organism's biology."

reinforced the importance of sequence-level investigation.

So without worrying much about the more diIBcult chemical and biological aspects of DNA and

protein, our computer science group was empowered to consider a variety of biologically impor tant

problems defined plrimarily on sequences, or (more in the computer science vernacular) on strings.

We organized our efforts into two high-level tasks. First, to learn the relevant biology, laboratory

protocols, and existing algorithmic methods used by biologists. Second to canvass the computer

science l i terature for ideas and algorithms tha t weren' t already used by biologists, but wkich might

plausibly be of use either in current problems, or in problems tha t we could anticipate arising when

vast quantities of sequenced DNA or protein become available.

Our p r o b l e m

None of us was an expert on string algorithms. At tha t point I had a textbook knowledge of

Knuth-Morris-Pratt~ and a deep confusion about Boyer-Moore (under what circumstances it was

a linear t ime algorithm, and how to do strong preprocessing in linear time). I unders tood the use

of dynamic programming to compute edit distance, but otherwise had little exposure to specific

string algorithm~ in biology. My general background was in combinatorial optimization, al though

I had a prior interest in algorithms for building evolutionary trees and had studied genetics and

molecular biology in order to pursue that interest.

41

What we needed then, but did.u't have, was a comprehensive cohesive text on string algorithrn~

to guide our education. There were at that time several computer science texts cont~niug a chapter

or two on strings, usuany devoted to a rigorous treatment of Knuth-Morris-Prat t and a cursory

t reatment of Boyer-Moore, and possibly an elementary discussion of matching with errors. There

were also some good survey papers that had a somewhat wider scope but didn' t t reat .their topics

in much depth. There were several texts and edited volumes from the biological side on uses of

computers and algorithms for sequence analysis. Some of these were wonderful in exposing the

potential benefits and the pitfalls of using computers in biology, but generally lacked algorithmic

rigor and covered a narrow range of techniques. Finally, there was the sernlnal text Time Warps,

String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison edited by D.

Sankoff and J. Krnskal, that served as a bridge between algorithms and biology, and had many

applications of dynamic programming. But it too was much narrower than our focus, and a bit

dated.

Moreover, most of the available sources from either cornrnunlty focused on string matching, the

problem of searching for an exact or "nearly exact"- copy of a pat tern in a given text. Matching

problems are central, but as detailed in this book, they axe only a part of the many important

computational problems defined on strings. So we recognized that s l ~ m e r a need for a rigor-

ous and fundamental t reatment of the general topic of algorithmA that operate on strings, along

with a rigorous t reatment of specific string algorithm~ of greatest current and potential import in

computations] biology. This book is an at tempt to provide such a dual, and integrated, t reatment .

W h y m i x C o m p u t e r Sc i ence a n d C o m p u t a t i o n a l B i o l o g y in o n e b o o k ?

My interest in computational biology began in 1980, when I started reading papers on bu.i]ding

evolutionary trees. At that point, computational molecular biology was a largely undiscovered area

for computer science, although it was an active area for statisticians and mathematicians (notably

Michael Waterman and David S~n~off who have largely framed the field). But seventeen years

later, computational biology is hot, and many computer scientists are now entering the (now more

hectic, more competitive) field. What should they learn.7

The problem is tha t the emerging field of computational molecular biology is not wen de-

fined and its definition is made more difficult by rapid changes in molecu l~ biology itself. Still,

algorithrn~ that operate on molecular sequence data (strings) are at the heart of computat ional

molecular biology. The big-picture question in computational molecular biology" is how to "do" as

much "real biology" as possible by exploiting molecular sequence data (DNA, RNA and protein).

Getting sequence data is relatively cheap and fast (and getting more so) compared to more tradi-

tional laboratory investigations. The use of sequence data is already central in several subareas of

molecular biology and the full impact of having extensive sequence data is yet to be seen. Hence,

algorithms that operate on strings will continue to be the area of closest intersection and interaction

between computer science and molecular biology. Certainly then, computer scientists need to learn

the string techniques that have been most successfully applied. But that is not enough.

Computer scientists need to learn hmdamental ideas and techniques that will endure long

after today's central motivating applications are forgotten. They need to s tudy methods that

prepare them to frame and tackle future problems and applications. Signi6cant contributions to

computational biology might be made by extending or adapting algorithm~ from computer science,

even when the original algorithm has no clear utility in biology. Therefore, the computer scientist

who wants to enter t h e general field of computational molecular biology and. who learns string

algorithms with that end in mind, should receive a training in string algorithms that is much

broader than a tour through techniques of known present application. So even ff I were to write

42

a book for computer scientists who only want to do computat ional biology, I would still choose to

include a broad range of algorithmic techniques from pure computer science.

In this book, I cover a wide spectrnrn of string techniques, well beyond those of established

utility, but I select ~ o m the many possible illustrations, those techniques that seem to have the

greatest potential application in future molecular biology. Potential application, particularly of

ideas rather than of concrete methods, and to anticipated rather than to existing problems, is a

mat ter of judgment and speculation. No doubt, some of the material contained in this book will

never find direct application in biology, while other material will find uses in surprising ways.

Fonowing the above discussion, this book is a general-purpose rigorous t rea tment of the entire

field of deterministic algorithms that operate on strings and sequences. Many of those algorithms

utilize trees as data- structures, or arise in biological problems related to evolutionary trees, hence

the inclusion of "trees" in the title.

The model reader is a research-level professional in computer science or a graduate or advanced

undergraduate student in computer scienee~ although there are many biologists (and of course

mathematici~nR) with s11~cient algorithmic background to read the book. The book is intended

to be both a reference, and a main text for courses in pure computer science, and for computer

science oriented courses on computational biology.

Explicit discussions of biological applications appear throughout the book, but are more con-

centrated in the last sections of Par t II, and in most of Parts III and IV. I discuss a nlwnber of

biological issues in detail in order to give the reader a deeper appreciation for the reasons tha t

many biological problems have been cast as problems on strings, and for the variety of (often very

imaginative) technical ways that string algorithms have been employed in molecular biology.

This book covers all the classic topics and most of the important advanced techniques in the

field of string algorithm% with three exceptions. It only lightly touches on probabilistic analysis,

does not discuss parallel algorithms, or the elegant, but very theoretical results on algorithms for

infinite alphabets and on algorithms using only constant au.x.iliary space. The book also does not

cover stochastic oriented methods that have come out of the machine learniug comm,mlty, al though

some of the algorithms in this book are extensively used as subtools in those methods. Wi th these

exceptions, the book covers all the major styles of thinlcing about string algorithms. The reader

who absorbs the material in this book will gain a deep and broad understanSing of the field, and

s~Wicient sophistication to undertake original research.

Reflecting my background, the book rigorously discusses each of the topics, usually providing

complete proofs of behavior (correctness~ worst-case t ime and space). More important , it empha-

sizes the ideas and derivations of the methods it presents, ra ther than simply providing an inventory

of available algorithms. To bet ter expose ideas and encourage discovery, I often present a com-

plex algorithm by introducing a naive, inefficient, version and then successively applying additional

insight and implementat ion detail to obtalu the desired result.

The book contains some new approaches I developed to explain certain classic and complex

material. In particular, the preprocessing methods I present for Knuth-Morris-Prat t , Boyer-Moore

and several other linear-time pat tern matching algorithm% differ from the classical methods, both

imiFying and simplifying the preprocessing tasks needed for those algorithms. I also expect that

my (hopefully simpler and clearer) expositions on linear t ime s ~ x tree constructions and on

the constant t ime]east common ancestor algorithm will make those important methods more

available and widely understood. I connect theoretical results from computer science on sublinear-

t ime algorithms, with widely used methods for biological database search. In the discussion of

multiple sequence alignment, I bring together the three major objective functions tha t have been

proposed for multiple alignment, and show a continuity between approyimation algorithrn.q for

43

those three multiple alignment problems. Similarly, the chapter on evolutionary tree construction

exposes the commonality of several distinct problems and solutions in a way tha t is not well known.

Throughout the book, I discuss many computational problems concerning repeated substrings

(a very widespread phenomenon in DNA). I consider several different ways to define repeated

substrings and use each specific definition to explore computational problems and algori thms on

repeated substrings.

In the book I t ry to explain in complete detail, and at a reasonable pace, many complex methods

that have previously been writ ten exclusively for the specialist in string algorithrn~. I avoid detailed

code, as I find it rarely serves to exp]~in interesting ideas, and I provide over 400 exercises to both

reinforce the material of the book, and to develop additional topics.

Table o f C o n t e n t s

Preface

The history and motivation / Why mix Computer Science and Computat ional Biology

in one book? / What the book is / Wha t the book is not / Acknowledgements

I E X A C T S T R I N G M A T C H I N G

The Fundamental String Problem / Exact matching: What ' s the problem? / Impor-

tance of the exact mat~.hi=g problem / Overview of Par t I / Basic string definitions

C h apter 1. Exact Matching: F u n d a m e n t a l Preprocess ing and First A l g o r i t h m s

1.1 The Naive method / 1.1.1 Early ideas for speeding up the naive method / 1.2

The preprocessing approach / 1.3 Fundamental preprocessing of the pat tern / 1.4

Fundamental preprocessing in linear time / 1.5 The simplest linear-time exact matching

algorithm / 1.5.1 Why continue? / 1.6 Exercises /

C h apter 2 Exact Matching: Classical C o m p a r i s o n - B a s e d M e t h o d s

2.1 Introduction / 2.2 The Boyer-Moore Algorithm / 2.2.1 Right to left scan / 2.2.2

Bad character rule / 2.2.2.1 Extended bad character rule / 2.2.2.2 Implementing the

extended bad character rule / 2.2.3 The (strong) good s11¢B~ rule / 2.2.4 Preprocessing

for the good s11~x rule / 2.2.5 The good s11fflx rule in the search stage of Boyer-Moore

/ 2.2.6 The complete Boyer-Moore algorithm / 2.3 The Knuth-Morris-Prat t algorithm

/ 2.3.1 The Knuth-Morris-Prat t shift idea / 2.3.1.1 The Knuth-Morris-Prat t shift rule

/ 2.3.2 Preprocessing for Knuth-Morris-Prat t / 2.3.3 A full implementation of Knuth-

Morris-Pratt / 2.4 Real-time string matching / 2.4.1 Converting Knuth-Morris-Prat t to

a real-time method / 2.4.2 Preprocessing for real-time string matching / 2 . 5 Exercises

C h a p t e r 3 E x a c t M a t c h i n g : A deeper look at classical m e t h o d s

3.1 A Boyer-Moore variant with a "simple" linear time bound / 3.1.1 Key ideas /

3.1.2 One phase in detail / 3.1.2.1 Phase algorithm / 3.1.3 Correctness and linear t ime

analysis / 3.2 Cole's linear worst case bound for Boyer-Moore / 3.2.1 Cole's proof when

the pat tern does not occur in the text / 3.2.1.1 An initial lemma / 3.2.1.2 Return to

44

Cole's proof / 3.2.2 The case when the pat tern does occur in the text / 3.2.3 Adding in

the bad character rule / 3.3 The original preprocessing for Knuth-Morr is-Prat t / 3.3.1

The method does not use fundamental preprocessing / 3.3.2 The easy case / 3.3.3 The

general case / 3.3.4 The complete preprocessing algorithm / 3.3.5 How to compute the

optimized shift values / 3.4 Exact matching with a set of pat terns / 3.4,1 Naive use

of keyword trees for set matching / 3.4.2 The speed-up: generalizing Knuth-Morris-

P ra t t / 3.4.3 Failure functions for the keyword tree / 3.4.4 The failure links speed up

the search / 3.4.5 Linear preprocessing for the failure function / 3.4.6 The full Aho-

Corasick algorithm: relaxing the substring assnmption / 3.4.6.1 Tmplementation / 3.5

Three applications of exact set matching / 3.5.1 Matching against a DNA or protein

library of known pat terns / 3.5.2 Exact matching with wild cards / 3.5.2.1 Correctness

and complexity of the method / 3.5.3 Two dimensional exact matching / 3.6 Regular

Expression Pa t te rn Matching / 3.6.1 Formal Definitions / 3.7 Exercises

C h a p t e r 4 S e m i - N u m e r i c a l S t r i n g M a t c h i n g

4.1 Arithmetic verses comparisons / 4.2 The Shift-And method / 4.2.1 How to construct

array M / 4.2.2 Shlft-And is effective for small patterns / 4.2.3 agrep: the Shift-And

method with errors / 4.2.4 How to compute M_k / 4.3 The match-count problem and

Fast Fourier Transform / 4.3.1 A fast worst-case method for the match-count problem?

/ 4.3.2 Using Fast Fourier Transform for match-counts / 4.3.2.1 The high-level approach

/ 4.3.2.2 Cyclic correlation / 4.3.2.3 Handllng wildcaxds in match-counts / 4.4 Karp-

Rabin fingerprint methods for exact match / 4.4.1 Arithmetic replaces comparisons /

4.4.2 Fingerprints of P and T / 4.4.2.1 Prime moduli limit false matches / 4.4.2.2 The

Central Theorem / 4.4.2.3 Extensions / 4.4.2.4 Even lower limits on error / 4.4.2.5

Checking for error in linear time / 4.4.3 Why fingerprints? / 4.5 Exercises

P A R T I I S u f f i x t r e e s a n d t h e i r u s e s

C h a p t e r 5 I n t r o d u c t i o n to s u f f i x t r e e s

5.1 A short history / 5.2 Basic definitions / 5.3 A motivating example / 5.4 A naive

algorithm to build a sllf~x tree

C h a p t e r 6 L i n e a r t i m e c o n s t r u c t i o n o f su f f i x t r e e s

6.1 Ukkonen's linear t ime su.i~.x tree algorithm / 6.1.1 Implicit suffix trees / 6.1.2

Ukkonen's algorithm at a high level 6.1.3 Implementat ion and speedup / 6.1.3.1 S11mx

].inks: first implementat ion speedup / 6.1.3.2 Following a trail of suffix links to build

I (i+ l) / 6.1.3.3 Single extension algorithm: SEA / 6.1.3.4 Trick nl,mber 1: skip/count

trick / 6.1.4 A simple implementation detail / 6.1.5 Two more little tricks and we're

done / 6.1.5.1 The punch line / 6.1.6 Creating the true s11~x tree / 6.2 Weiner's linear

t ime sufFLX tree algorithm / 6.2.1 A straightforward construction / 6.2.2 Towards a

more efficient implementat ion / 6.2.2.1 Finding Head(i) efficiently / 6.2.3 The basic

idea of Weiner's algorithm / 6.2.3.1 The algorithm in the good case / 6.2.3.2 The two

degenerate cases / 6.2.4 The Full Algorithm for creating T(i) from T(i-t-1) / 6.2.4.1

Correctness / 6.2.4.2 How to update the vectors / 6.2.5 Time analysis of Weiner's

algorithm / 6.2.6 Last comments about Weiner's algorithm / 6.3 McCreight 's su~.x tree

45

algorithm / 6.4 Generalized suffix tree for a set of strings / 6.5 Practical implementat ion

issues / 6.5.1 Alphabet independence: all linears are equal, but some are more equal

than others / 6.6 Exercises

C h a p t e r 7 F i r s t a p p l i c a t i o n s of suffix t r e e s

7.1 APLI : Exact string matching / 7.2 APL2: SllfB~ trees and the exact set matching

problem / 7.2.1 Comparing s,d~i~ trees and key-word trees for exact set matching / 7.3

APL3: The substring problem for a database of patterns / 7.4 APL4: Longest common

substring of two strings / 7.5 APLS: Recognizing DNA cont~mlnation / 7.6 APL6:

Common substrings of more than two strings / 7.6.1 Computing the C(v) n~lmbers /

7.7 APL7: Building a smaller directed graph for exact m~tchi~g / 7.8 APL8: A reverse

role for s-rex trees, and major space reduction / 7.8.1 Matching statistics: duplicating

bounds and reducing space / 7.8.2 Correctness and time analysis for matching statistics

/ 7.8.3 A small but important extension / 7.9 APL9: Space etilcient longest common

substring / 7.10 APL10: All-Pairs S,lSx-Prefix Matching / 7.10.1 Solving the all-pairs

smTLx-prefLx problem in linear time / 7.11 Introduction to repetitive structures in strings

/ 7.11.1 Repetitive structures in biological strings / 7.11.2 Uses of repetitive structures

in molecular biology / 7.12 APL11: Finding all maximal repetitive structures in linear

time / 7.12.1 A linear t ime algorithm to find all ma0~irnal repeats / 7.12.2 Finding

supermaximal repeats in linear time / 7.12.3 Finding all the ma~.imal pairs in linear

time / 7.13 APL12: Circular string linearization / 7.13.1 Solution via svmx trees /

7.14 APL13: S - ~ x Arrays: more space reduction / 7.14.1 S~lmx tree to s~mx array in

linear t ime / 7.14.2 How to search for a pat tern using a s , ~ x array / 7.14.3 A simple

accelerant / 7.14.4 A super-accelerant / 7.14.5 How to obtain the Lcp values / 7.14.6

Where do large alphabet problems arise? / 7.15 APL14: S!lmx trees in genome-scale

projects / 7.16 APL15: A Boyer-Moore approach to exact set matching / 7.16.1 The

search / 7.16.2 Bad character rule / 7.16.3 Good s , m x rule / 7.16.4 How to deterr~i~e i2

and i3 / 7.16.5 An implementation e]imlnating redundancy / 7.17 APL16: Ziv-Lempel

data compression / 7.17.1 Implementation using s,~mx trees / 7.17.2 A one-pass version

/ 7.17.3 The real Ziv-Lempel / 7.18 APL17: M~nim~]m length encoding of DNA / 7.19

Additional applications / 7.20 Exercises

C h a p t e r 8 C o n s t a n t t i m e lowes t c o m m o n a n c e s t o r r e t r i e v a l

8.1 Introduction / 8.1.1 Wha t do ancestors have to do with strings? / 8.2 The sssllmed

machine model / 8.3 Complete binary trees: A very simple case / 8.4 How to solve

lca queries in B / 8.5 First steps in mapping T to B / 8.6 The mapping of T to B /

8.7 The linear time preprocessing of T / 8.8 Answering an lca query in constant t ime

/ 8.9 The binary tree is only conceptual / 8.10 For the purists: how to avoid bit-level

operations / 8.11 Exercises

Chapter 9 More appl icat ions of suffix trees

9.1 Longest common extension: a bridge to inexact matching / 9.1.1 Linear t ime

solution / 9.1.2 Space ei[icient longest common extension / 9.2 Finding all maximal

palindromes in linear time / 9.2.1 Linear time solution / 9.2.2 Complemented and

46

separated palindromes / 9.3 Exact matching with wild cards / 9.4 The k-mismatch

problem / 9.4.1 The solution / 9.5 Appro~rlmate palindromes and repeats / 9.6 Faster

methods for tandem repeats / 9.6.1 The speedup for k-mismatch tandem repeats / 9.7

A linear time solution to the multiple common substring problem / 9.7.1 The method

/ 9.7.2 Time analysis / 9.7.3 Related uses / 9.8 Exercises

PART III Inexact Matching, Sequence Alignment, and Dynamic
Programming

C h a p t e r 10 T h e i m p o r t a n c e of (sub)sequence c o m p a r i s o n in mo lecu l a r biology

C h a p t e r 11 Core s t r ing edits , a l ignmen t s And d y n a m i c p rog r s rn rn ing

11.1 Introduction / 11.2 The edit distance between two strings / 11.2.1 String align-

ment / 11.3 Dynamic programming calculation of edit distance / 11.3.1 The recurrence

relation / 11.3.2 Tabular computation of edit distance / 11.3.3 The traceback / 11.3.3.1

The pointers represent all optimal edit transcripts / 11.4 Edit graphs / 11.5 Weighted

edit distance / 11.5.1 Operation weights / 11.5.2 Alphabet-weight edit distance / 11.6

String similarity / 11.6.1 Computing similarity / 11.6.2 Special cases of similarity /

11.6.3 Alignment graphs for similarity / 11.6.4 Endspace free variant / 11.6.5 Ap-

proximate occurrences of P in T / 11.7 Local alignment: Finding substrings of t~.igh

similarity / 11.7.1 Computing local alignment / 11.7.2 How to solve the local s-flex

alignment problem / 11.7.3 Three final comments on local alignment / 11.8 .Gaps /

11.8.1 Introduction to Gaps / 11.8.2 Why gaps? / 11.8.3 cDNA matching: a concrete

illustration / 11.8.3.1 Processed Pseudogenes / 11.8.4 Choices for gap weights / 11.8.5

Arbitrary gap weights / 11.8.5.1 Time analysis / 11.8.6 Arlene (and constant) Gap

Weights / 11.8.6.1 The recurrences / 11.8.6.2 Time analysis / 11.9 Exercises

Chapter 12 Refining Core String Edits and Alignments

12.1 Computing alignments in only linear space / 12.1.1 Space reduction for computing

similarity / 12.1.2 How to find the optimal alignment in linear space / 12.1.3 The full

idea: Use recursion / 12.1.4 Time analysis / 12.1.5 Extension to local alignment /

12.2 Faster algorithms when the nunlber of differences is bounded / 12.2.1 Where do

bounded difference problems arise? / 12.2.2 Illustrations from molecular biology /

12.2.3 k-di~erence global alignment / 12.2.4 The return of the s11~x tree: k-difference

inexact matching / 12.2.5 The primer (and probe) selection problem revisited / 12.2.5.1

How to solve the k-difference primer problem / 12.3 Exclusion methods: fast expected

r , nniug time / 12.3.1 The BYP method / 12.3.2 Expected time analysis of Algorithm

BYP / 12.3.3 The Chang-Lawler method / 12.3.4 Multiple filtration for k-mismatches

/ 12.3.5 Myers' sublinear-time method / 12.3.6 Final comment on exclusion methods /

12.4 Yet more sufF~-trees, more hybrid dynamic progrR.mmlug / 12.4.1 The P-against-

all problem / 12.4.2 The (threshold) all-against-all problem / 12.4.2.1 Correctness and

time analysis / 12.5 A faster (combinatorial) algorithm for longest common suhsequence

/ 12.5.1 Longest increasing subsequence / 12.5.2 Longest common subsequence reduces

to longest increasing sequence / 12.5.3 How good is the method / 12.5.4 The lcs of more

than two strings / 12.6 Convex Gap weights / 12.6.1 Forward dynamic programming

/ 12.6.2 The basis of the speedup / 12.6.3 Cell pointers and row partition / 12.6.3.1

4?

Preparation for the speedup / 12.6.4 Final implementation details and time analysis /

12.6.4.1 The case of F values is essentia].ly symmetric / 12.7 The Four-Russians speedup

/ 12.7.1 t-blocks / 12.7.2 The Four-Russians idea for the restricted block function /

12.7.2.1 Accounting detail / 12.7.3 The trick: offset encoding / 12.7.3.1 Time analysis

/ 12.7.4 Practical approaches / 12.8 Exercises

C h a p t e r 13 E x t e n d i n g t he core p rob lems

13.1 Parametric Sequence Alignment / 13.1.1 Introduction / 13.1.2 Definitions and

first results / 13.1.3 Parametric alignment with the use of scoring matrices / 13.1.4

Et~cient algorithms for computing a polygonal decomposition / 13.1.4.1 Finding a

polygon of the decomposition / 13.1.4.2 Filling in the parameter space / 13.1.5 Time

analysis and next idea / 13.1.6 Bounding the n~lmber of polygons in the decomposition

/ 13.1.6.1 The special case of global alignment / 13.1.7 Uses for parametric alignment

/ 13.1.7.1 Sensitivity analysis / 13.1.7.2 Et~cient computation of all co-optimals / 13.2

Computing suboptimal alignments / 13.2.1 First definitions and first results / 13.2.2 A

useful re-weighting / 13.2.3 Counting and enumerating near-optimal paths / 13.2.4 An

alternative approach to suboptimal alignment / 13.3 Cb~i~i~g diverse local alignments

/ 13.4 Exercises

C h a p t e r 14 M u l t i p l e S t r i n g C o m p a r i s o n - T h e H o l y Grai l

14.1 Why multiple string comparison? / 14.1.1 Biological basis for multiple string com-

parison / 14.2 Three "big-picture" biological uses for multiple string comparison / 14.3

Family and superfarnily representation / 14.3.1 Family representations and alignments

with profiles / 14.3.1.1 Aligning a string to a profile / 14.3.2 Signature represents-

tions of families / 14.3.2.1 Signatures for Helicase proteins / 14.4 Multiple sequence

comparison for structural inference / 14.5 Introduction to computing multiple string

alignments / 14.5.1 How to score multiple alignments / 14.6 Multiple alignment with

the s11m-of-pairs (SP) objective function / 14.6.1 An exact solution to the SP a].ign-

ment problem / 14.6.1.1 A speed up for the exact solution / 14.6.2 A bounded-error

approximation method for SP alignment / 14.6.2:1 An initial key idea: Alignments

consistent with a tree / 14.6.2.2 The center star method for SP alignment / 14.6.3

Weighted SP alignment / 14.7 Multiple alignment with consensus objective functions

/ 14.7.1 Steiner consensus strings / 14.7.2 Consensus strings from multiple alignment /

14.7.3 Approximating the optimal consensus multiple alignment / 14.8 Multiple align-

ment to a (phylogenetic) tree / 14.8.1 A heuristic for phylogenetic alignment / 14.8.1.1

The error analysis / 14.8.1.2 Computing the minimllm distance lifted alignment /

14.9 Comments on bounded-error approyimations / 14.10 Common multiple alignment

methods / 14.10.1 Iterative paixwise alignment / 14.10.2 Two specific illustrations of

iterative pairwise alignment / 14.10.2.1 Iterative multiple alignment to identify protein

secondary structure / 14.10.2.2 Iterative multiple alignment to build evolutionary trees

/ 14.10.3 Repeated-motif methods / 14.10.4 Two newer approaches to multiple string

comparison / 14.11 Exercises

C h a p t e r 15 Sequence D a t a b a s e and the i r uses - t he M o t h e r L o d e

48

15.1 Success stories of database search / 15.1.1 The first success story / 15.1.2 A more

recent example of successful database search / 15.1.3 Indirect applications of database

search / 15.2 The database industry / 15.3 Algorithmic issues in database search /

15.3.1 Should there be any? / 15.4 Real Sequence Database search / 15.5 FASTA /

15.6 BLAST / 15.6.1 The hit (hot-spot) strategy of BLAST / 15.6.2 The effectiveness

of BLAST / 15.7 PAM: the first major e.rniuo acid substi tution matrices / 15.7.1 PAM

11nlts and PAM matrices / 15.7.2 PAM units / 15.7.3 PAM matrices / 15.7.4 How are

PAM matrices actually derived? / 15.7.5 The use of the PAM matr ix / 15.8 PROSITE

/ 15.9 BLOCKS and BLOSUM / 15.10 The BLOSUM substi tution matrices / 15.11

Additional considerations for database searchlng / 15.11.1 Statistical significance /

15.11.2 A theory of log-odds scores / 15.11.3 Importance of searching protein with

protein / 15.12 Exercises

P A R T IV Currents , Cous ins and C a m e o s

Chapter 16 Maps, Mapping, Sequencing And Superstrings

16.1 A look at some DNA mapping and sequencing problems / 16.2 Mapping and the

genome project / 16.3 Physical versus genetic maps / 16.4 Physical mapping / 16.5

Physical mapping: STS-content mapping and ordered clone libraries / 16.5.1 Recon-

struction of STS order / 16.6 Physical mapping: Radiation-hybrid mapping / 16.6.1

Reconstruction of STS order in radiation hybrids / .16.6.2 Traveling salesman formula-

tion of STS ordering / 16.6.3 Back to STS-content mapping: the case of errors / 16.7

Physical mapping: Fingerprinting for general map construction / 16.8 Computing the

tightest layout / 16.9 Physical mapping: last comments / 16.10 An introduction to

map alignment / 16.10.1 A non-unary dynamic programming approach to map align-

ment / 16.10.2 Extensions of the map alignment model / 16.11 Large-scale sequencing

and sequence assembly / 16.12 Directed sequencing / 16.13 Top-down, bottom-up se-

quencing: The picture using YACs / 16.13.1 Is mapping necessary for sequencing? /

16.13.2 Fragment selection for sequencing / 16.13.3 Some real numbers / 16.14 Shotgun

DNA sequencing / 16.15 Sequence assembly / 16.15.1 Step one: Overlap detection /
16.15.2 Step two: string layout / 16.15.3 Step three: Deciding the consensus / 16.16

Final comments on top-down, bottom-up sequencing 7 16.17 The shortest superstring

problem / 16.17.1 Basic Definitions / 16.17.2 The objective function for superstrings /

16.17.3 Cyclic strings and cycle covers / 16.17.4 How cycle covers define superstrings

/ 16.17.5 Factor-of-four approximation / 16.17.5.1Error analysis of the algorithm /

16.17.6 Improvement to a factor of three / 16.17.6.1 Error analysis / 16.17.7 Efficient

implementation / 16.17.7.1 Non-trivial cycle cover / 16.16.7.2 How to form the ma-

trix efficiently / 16.18 Sequencing by hybridization / 16.18.1 Reduction to Euler paths

/ 16.18.2 Continuity of compatible strings / 16.18.3 Last comments on SBH / 16.19

Exercises

C h a p t e r 17 S t r i n g s a n d E v o l u t i o n a r y Trees

17.1 Ultrametric trees and ultrametric distances / 17.1.1 Introduction / 17.1.2 Evolu-

t ionary trees as ultrametric trees / 17.1.3 How to test for an ultrametric tree / 17.1.4

How are ultrametric data obtained? / 17.1.4.1 Laboratory-based methods / 17.1.4.2

Sequence-based methods / 17.1.4.3 Final comments / 17.2 Additive-distance trees /

49

17.2.1 Introduction / 17.2.2 Algorithms for the additive tree problem / 17.2.2.1 Com-

pact additive trees / 17.3 Parsimony: character-based evolutionary" reconstruction /

17.3.1 Introduction / 17.3.2 Where do character data come fi-om? / 17.3.3 Perfect

Phylogeny / 17.3.4 An O(=m)-time algorithm for the perfect phylogeny problem /

17.3.5 Tree compatibility: an application of perfect phylogeny / 17.3.6 Generalized

perfect phylogeny / 17.4 The centrality of the ultrametric problem / 17.4.1 The ad-

ditive tree problem viewed as an ultrametric problem / 17.4.2 The perfect phylogeny

problem viewed as an ultrametric problem / 17.5 Ma~im,lm parsimony, Steiner trees

and Perfect Phylogeny / 17.5.1 Basic definitions / 17.5.2 Approyimations to ma~rirnllrn

parsimony / 17.6 Phylogenetic Align ment, again / 17.6.1 The Fitch-Hartigan min irnnm

mutation problem / 17.6.2 Phylogenetic alignment used to compute PAM matrices /

17.7 Connections between multiple alignment and tree construction / 17.8 Exercises

C h a p t e r 18 T h r e e sho r t t o p i c s

18.1 Matching DNA to protein with ~arneshift errors / 18.1.1 Matching a string to

a network / 18.1.2 DNA/protein matching cast as network matching / 18.2 Gene

prediction / 18.2.1 Exon assembly / 18.3 Molecular computation: Computing with

(not about) DNA strings / 18.3.1 Lipton's approach to the Satist]ability Problem /

18.3.2 Critique / 18.4 Exercises

C h a p t e r 19 M o d e l s o f genome- leve l m u t a t i o n s

19.1 Introduction / 19.1.1 Genome rearrangements give new evolutionary insights /

19.2 Genome rearrangements with inversions / 19.2.1 Definitions and initial facts /

19.2.2 The heuristics / 19.2.2.1 Tmproving the guaxemtee / 19.3 Signed inversions /

19.4 Exercises

C h a p t e r 20 Ep i logue - W h e r e N e x t ?

Chapter 21 Glossary

Index

Complexity Theory Retrospective II

Lane A. Hemaspaandra and Alan L. Sel~a~a, editors

Springer-Verlag, New York, 1997

ISBN 0-387-94973-9

http://~.springer-ny.com/catalog/np/max97np/DATA/O-387-94973-9.htL1

B l u r b (i n L i e u o f t h e P r e f a c e)

Complexity theory is a flourishing area of research that continues to provide one of the richest

sources of research problemR in computer science. This volllrne, a collection of articles written by

50

experts, provides a survey of the subject, a comprehensive guide to research, and a provocative

look to the future.

The editors' aim has been to provide an accessible description of the current state of complexity

theory and to demonstrate the breadth of techniques and results that make the subject exciting.

Papers are on traditional topics ranging from sublogarithmlc space to exponential time, on new

combinatorial techniques and recent successes such as interactive proof systems, and on the newly

emerging areas of quantum and biological computing. As a result, researchers and students in

computer science will find this book an excellent starting point for study of the subject and a

useful source of the key known results.

Table o f C o n t e n t s

P r e f a c e

1 T i m e , H a r d w a r e , a n d U n i f o r m i t y - - David Mix Barrington, Nell Immerman

1.1 Introduction / 1.2 Background: Descriptive Complexity / 1.3 First Uniformity

Theorem / 1.4 Variables That Are Longer Than log(n) Bits / 1.5 Uniformity: The
Third Dimension / 1.6 Variables That Are Shorter Than log(n) Bits / 1.7 Conclusions

2 Q u a n t u m C o m p u t a t i o n - - Andre Berthia~ime

2.1 The Need for Quantum Mechanics / 2.2 Basic Principles of Quantum Mech~m~cs

/ 2.2.1 Probability Amplitudes / 2.2.2 Qubits and How to Observe Them / 2.2.3 Di-
gression on Quantum Cryptography / 2.2.4 Evolution of a Quantum System / 2.2.5
Quant1~rn Registers / 2.3 Computing with Quantum Registers / 2.4 Separating Two
Classes of Functions / 2.5 Shor's FactoRing Algorithm / 2.6 Building a Quant~m Com-
puter

3 Spa r se Se ts ve r sus C o m p l e x i t y Classes - - Jin-Yi Cai and Mitsunori Ogihara

3.1 Introduction / 3.2 Earlier Results for Tu.ring Reductions / 3.2.1 Sparse Sets and
Polynomial Size Circuits/ 3.2.2 The Karp-Lipton Theorem / 3.2.3 Long's Extension
/ 3.3 Earlier Results for Many-One Reductions / 3.3.1 The Isomorphism Conjecture
for NP / 3.3.2 Mahaney's Theorem / 3.4 Bounded Truth Table Reduction of NP /
3.4.1 Extensions / 3.5 The Hartmanis Conjecture for P / 3.5.10gihara's Language
and Randomized NC 2 / 3.5.2 Deterministic Construction / 3.5.3 The Finale: NC 1
Simulation / 3.6 Conclusions

4 C o u n t i n g C o m p l e x i t y - - Lance Fortnow

4.1 Introduction / 4.2 Preliminaries / 4.3 Counting Functions / 4.3.1 Algebraic Prop-

erties of Counting Functions / 4.3.2 A Randomized sign Function / 4.3.3 Counting
Functions and the Polynomial-Time Hierarchy / 4.4 Counting Classes / 4.4.1 Classify-

ing Counting Classes / 4.2 Counting Operators / 4.3 The Polynornial-Time Hierarchy

/ 4.4 Closure Properties of PP / 4.5 Relativization / 4.6 Other Work / 4.6.1 Cir-

cuits / 4.6.2 Lowness / 4.6.3 Characterizing Specific Problems / 4.6.4 Interactive Proof

Systems / 4.6.5 Counting in Space Classes / 4.6.6 Other Research

51

5 A T a x o n o m y of P r o o f S y s t e m s ~ Oded Goldreich

5.1 Introduction / 5.2 A Technical Exposition / 5.2.1 Interactive Proof Systems / 5.2.2

MIP and P C P / 5.2.3 Computat ionally Sound Proof Systems / 5.2.4 Other Types of

Proof Systems / 5.2,5 Comparison / 5.3 The Story / 5.3.1 The Evolution of Proof Sys-

teIns / 5.3.2 P C P and Approximation / 5.3.3 Interactive Proofs and Program Checking

/ 5.3.4 Zero-Knowledge Proofs

6 S t r u c t u r a l P r o p e r t i e s o f C o m p l e t e P r o b l e m s for E x p o n e n t i a l T i m e ~ Steven Homer

6.1 Introduction / 6.2 Strong Reductions to Complete Sets / 6.3 Tmrmmlty for Com-
plete Problems / 6.4 Differences between Complete Sets / 6.5 Other Properties and
Open Problems / 6.5.1 Properties of "Weak" Complete Sets / 6.5.2 Polynomial-Time
Complete Recursively Enumerable Sets / 6.5.3 A Short List of Open Problems

7' T h e C o m p l e x i t y o f O b t a i n i n g S o l u t i o n s for P r o b l e m s in N P n - d N L - - Birgit Jenner

and Jacobo Toran

7.1 Introduction / 7.2 Computing Optimal Solutions: The Class F P N P / 7.3 Bounded

Queries to NP / 7.4 Computing Solutions Uniquely: The Class NPSV / 7.5 Nonadap-

t i re Queries to 1NP: The Class P p t t N p / 77.6 A Look inside Nondeterminist ic Logspace

/ 7.7' Conclusions

8 B i o l o g i c a l C o m p u t i n g - - Stuart A. Kurtz, Stephen R. Mahaney, James S- Royer, and Janos

Simon

8.1 Introduction / 8.2 The One-Molecule Processor / 8.3 A Brief Introduct ion to Bio-

chemistry / 8.3.1 DNA, RNA, and Proteins / 8.3.2 Protein Synthesis / 8.4 Computa-

t ional Molecules / 8.4.1 CNA /8 .4 .2 tCNA / 8.4.3 The Synthesis of tCNA / 8.5 The

Microarchitectttre of CNA Computers / 8.6 A Brief Discussion of Adleman's Model

Versus Our Model / 8.7 Conclusions

9 C o m p u t i n g w i t h S u b l o g a r i t b m i c S p a c e - - Maciej Liskiewicz and Ruediger Reischuk

9.1 Are Sublogarithmlc Space Classes of Any Interest? / 9.2 The Alternating Subloga-
rithmic Space World / 9.3 Adding Randomness / 9.4 Special LJmitatious of Machines

with a Sublogarithmic Space Bound / 9.4.1 Technical Preliminaries / 9.4.2 Inputs with
a Periodic Structure / 9.4.3 Fooling ATMs / 9.5 A Survey of Lower Space Bound Proofs
/ 9.5.1 Languages for Separating the Levels of the Alternation Hierarchy / 9.5.2 ATMs
with a Constant N11mber of Alternations / 9.5.3 Unbounded Alternation / 9.5.4 Clo-
sure Properties / 9.5.5 Lower Bounds for Context-Free Languages / 9.6 Conclusions
and Open Problems

10 T h e Q u a n t i t a t i v e S t r u c t u r e o f E x p o n e n t i a l T i m e - - Jack H. Lutz

52

10.1 Introduction / 10.2 Prellmlnaries / 10.3 Resource-Bounded Measure / 10.4 Incom-
pressibility and Bi-Immunity / 10.5 Complexity Cores / 10.6 Small Span Theorems /
I0.7 Weakly Hard Problems / 10.8 Upper Bounds for Hard Problems / 10.9 Nonuniform
Complexity, Natural Proofs, and Pseudorandom Generators / 10.10 Weak Stochastic-
ity / 10.11 Density of Hard Languages / 10.12 Strong Hypotheses / 10.13 Conclusions
and Open Directions

11 P o l y n o m i a l s a n d C o m b i n a t o r i a l D e f i n i t i o n s o f L n ~ g u a g e s - - K e n n e t h W. R e g a n

II.I Introduction / 11.2 Polynomials / 11.3 Representation Schemes and Language
Classes / 11.4 Strong versus Weak Representation / 11.5 Known Upper and Lower
Bounds on Degree / 11.6 Polynomials for Closure Properties / 11.7 Probabillstic Poly-
nomials / 11.8 Other Combinatorial Structures /

12 Average-Case C o m p u t a t i o n a l Complex i ty T h e o r y - Jie Wang

12.1 Introduction / 12.2 Average Polynomial Time / 12.3 Average-Case Completeness

/ 12.3.1 Polynomial-Time Reductions / 12.3.2 Polynomial-Time Computable Distri-

butions / 12.3.3 Uniform Distributions / 12.3.4 Distribution Controlling Ler~ma /

12.3.5 Distributional NP-Completeness / 12.3.6 Average Polynomial-Time Reductions

/ 12.3.7 Distributional Search Problems / 12.4 Randomization / 12.4.1 Flat Distribu-

tions and Incompleteness / 12.4.2 Randomized Average Polynomial Time / 12.4.3 Ran-

domizing Reductions and Completeness / 12.4.4 Polynomial-Time Sampling / 12.4.5

Randomized Turing Reductions / 12.5 Hierarchies of Average-Case Complexity / 12.5.1

Average-Time Hierarchies / 12.5.2 Fast Convergence of Average Time / 12.5.3 Aver-

aging on R~.nlc~ug of Distributions / 12.6 A Brief Survey of Other Results

I n d e x

Models of Computation
Ezploring the Power of Computing

John E. Savage

Brown University

Addison Wesley Longman, 1998

ISBN: 0-201-89539-0

Preface (Abridged)

Theoretical computer science treats any computational subject for which a good model can be

created. Research on formal models of computation was initiated in the 1930s and 1940s by

Taring, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language

translators, and operating systems were under development and therefore became the subject and

53

basis for a great deal of theoretical work. The power of computers of this period was lim.ited by slow

processors and small amounts of memory, and thus theories (models, algorithms, and analysis) were

developed to explore the efficient use of computers as well as the inherent complexity of problems.

The former subject is known today as algorithm~ and data structures, the latter computational

complexity.

The focus of theoretical computer scientists in the 1960s on languages is reflected in the f~rst

textbook on the subject, Formal Langu~gea and Their Relation ~o Automata by John Hopcroft and

Jeffrey Ullman. This influential book led to the creation of many language-centered theoretical

computer science sources; many introductory theory courses today continue to reflect the content

of this book and the interests of theoreticians of the 1960s and early 1970s.

Although the 1970s and 1980s saw the development of models and methods of analysis directed

at understandlug the limits on the performance of computers, this attractive new material has not

been made available at the introductory level. This book is designed to remedy this situation.

This book is distinguished from others on theoretical computer science by its primary focus

on real problems, its emphasis on concrete models of machines and programming styles, and the

nllmber and variety of models and styles it covers. These include the logic circuit, the Knite state

machine, the pushdown automaton, the random-access machine, memory hierarchies, the PRAM

(parallel random-access machine), the VLSI (very large-scale integrated) chip, and a variety of

parallel machines. ' -.

The book covers the traditional topics of formal languages and automata and complexity classes

but also gives an introduction to the more modern topics of space-time tradeoffs, memory hier-

archies, parallel computation, the VLSI model, and circuit comPlexity. These modern topics axe

integrated throughout the text as illustrated by the early introduction of P-complet~ and N P -

complete problems. The book provides the first textbook treatment of space-time tradeoffs and

memory hierarchies as well as a comprehensive introduction to traditional computational complex-

ity. Its t reatment of circuit complexity is modern and substantive, and parallelism is integrated

throughout.

T a b l e o f C o n t e n t s

I O v e r v i e w o f t h e B o o k 1

1 T h e R o l e o f T h e o r y in c o m p u t e r S c i e n c e 3

1.1 A Brief History of Theoretical Computer Science 4 / 1.2 Mathematical Preliminaries

7 / 1.3 Methods of Proof 14 / 1.4 Computational Models 16 / 1.5 Computat ional

Complexity 23 / 1.6 Parallel Computation 27 /

II G e n e r a l C o m p u t a t i o n a l M o d e l s 33

2 Logic C i r c u i t s 36

2.1 Designing Circuits 36 / 2.2 Straight-Line Programs and Circuits 3 6 / 2 . 3 Normal-

Form Expausions of Boolean Functions 42 / 2.4 Reductions Between Functions 46 / 2.5

Specialized Circuits 47 / 2.6 Prefix Computations 55 / 2.7 Addition 58 / 2.8 Subtraction

61 / 2.9 Multiplication 62 / 2.10 Reciprocal and Division 68 / 2.11 Symmetric Functions

74 / 2.12 Most Boolean Functions Are Complex 77 / 2.13 Upper bounds on Circuit

Size 79

54

3 M a c h i n e s w i t h M e m o r y 91

3.1 Finite State Machines 92 / 3.2 Simulating FSMs with Shallow Circuits 100 / 3.3
Design;-g Sequential Circuits 106 / 3.4 Random-Access Machines 110 / 3.5 Random-

Access Memory Design 115 / 3.6 Computational Inequalities for the RAM 117 / 3.7

Turing Machines 118 / 3.8 Universality of the Taring Machine 121 / 3.9 'raring Machine

Circuit Simulations 124 / 3.10 Design of a Simple CPU 137

4 F i n i t e - S t a t e M a c h i n e s and P u s h d o w n A u t o m a t a 153

4.1 Finite-State Machine Models 154 / 4.2 Equivalence of DFSMs and NFSMs 156

/ 4.3 Regular Expressions 158 / 4.4 Regular Expressions and FSMs 160 / 4.5 The

P11mping Lemma for FSMs 168 / 4.6 Properties of Regular Languages 170 / 4.7 State

Minimization 171 / 4.8 Pushdown Automata 177 / 4.9 Formal Languages 181 / 4.10

Regular Language Recognition 184 / 4.11 Parsing Context-Free Languages 186 / 4.12

CFL Acceptance with Pushdown Automata 192 / 4.13 Properties of Context-Free

Languages 197

5 C o m p u t a b i l i t y 209

5.1 The Standard Turing Machine Model 210 / 5.2 Extensions to the Standard Tu.ring

Machine Model 213 / 5.3 Configuration Graphs 218 / 5.4 Phrase-Structure Languages

and Tu.ring Machines 219 / 5.5 Universal Tu.ring Machines 220 / 5.6 Encodings of

Strings and Tu.ring Machines 222 / 5.7 Limits on Language Acceptance 223 / 5.8

Reducibility and Unsolvability 226 / 5.9 Functions Computed by Tu.ring Machines 230

6 Algebra ic and Combina to r i a l Circui ts 237

6.1 Straight-Line Programs 238 / 6.2 Mathematical Preliminaries 239 / 6.3 Matrix

Multiplication 244 / 6.4 Transitive Closure 248 / 6.5 Matrix Inversion 252 / 6.6 Solving

Linear Systems 262 / 6.7 Convolution ant the FFT Algorithm 263 / 6.8 Merging and

Sorting Networks 270

7 Para l le l C o m p u t a t i o n 281

7.1 ParMlel Computation Models 282 / 7.2 Memoryless Parallel Computers 282 / 7.3

ParMlel Computers with Memory 283 / 7.4 The Performance of Parallel Algorithms

289 / 7.5 Multidimensional Meshes 292 / 7.6 Hypercube-Based Machines 298 / 7.7

Normal Algorithms 301 / 7.8 Routing in Networks 309 / 7.9 The PRAM Model 311 /

7.10 The BSP and LogP Models 317

III Computational Complexity

8 C o m p l e x i t y C las se s 327

325

55

8.1 Introduction 328 / 8.2 Languages and Problems 328 / 8.3 Resource Bounds 330

/ 8.4 Serial Computational Models 331 / 8.5 Classification of Decision Problems 334
/ 8.6 Complements of Complexity Classes 343 / 8.7 Reductions 349 / 8-8 Hard and

Complete Problems 350 / 8.9 P-Complete Problems 352 / 8.10 NP-Complete Problems

355 / 8.11 The Boundary Between P and NP 363 / 8.12 PSPACE-Complete Problems

365 / 8.13 The Circuit Model of Computation 372 / 8.14 The Parallel Random-Access
Machine Model 376 / 8.15 Circuit 'Complexity Classes 380

9 Ci rcu i t C o m p l e x i t y 391

9.1 Circuit Models and Measures 392 / 9.2 Relationships Among Complexity Measures

394 / 9.3 Lower-Bound Methods for General Circuits 399 / 9.4 Lower-Bound Methods

for Formula Size 404 / 9.5 The Power of Negation 409 / 9.6 Lower-Bound Methods for
Monotone Circuits 412 / 9.7 Circuit Depth 436

I 0 S p a c e - T i m e Tr-adeoffs 461

10.1 The Pebble Game 462 / 10.3 Space Lower Bounds 464 / 10.4 Grigoriev's Lower-

Bound Method 468 / 10.5 Applications of Grigoriev's Method 47'2 / 10.6 Worst-Case

Tradeoffs for Pebble Games 482 / 10.7 Upper Bounds on Space 483 / 10.8 Lower Bound

on Space for General Graphs 484 / 10.9 Branching Programs 488 / 10.10 Straight-Line

Versus Branching Programs 495 / 10.11 The Borodin-Cook Lower-Bound Method 497

/ 10.12 Properties of "nice" and "ok" Matrices 501 / 10.13 Applications of the Borodin-
Cook Method 504

I I M e m o r y - H i e r a r c h y 'l~radeoffs 529

11.1 The Red-Blue Pebble Game 530 / 11.2 The Memory-Hierarchy Pebble Game 533

/ 11.3 I /O-Time Relationships 535 / 11.4 The Hong-Kung Lower-Bound Method 537

11.5 Tradeofl~s Between Space and I /O Time 539 11.6 Block I /O m the MHG 555 /

11.7 Simulating a Fast Memory in the MHG 558 / 11.8 B.AM-Based I /O Models 559 /

11.9 The Hierarchical Memory Model 563 / 11.10 Competitive Memory Management
567

12 V L S I M o d e l s o f C o m p u t a t i o n 575

12.1 The VLSI Challenge 576 / 12.2 VLSI Physical Models 57'8 / 12.3 VLSI Compu-

tational Models 579 / 12.4 VLSI Performance Criteria 580 / 12.5 Chip Layout 581 /

12.6 Area-Time Tradeoffs 58fi / 12.7 The Performance of VLSI Algoritbm~ 592 / 12.8
Area Bounds 597

56

The Theory of Computation

B e r n a r d M. M o t e t

Univers i ty of New Mexico

Add i son Wesley L o n g m a n , 1998

ISBN 0-201-25828-5

P r e f a c e

Theore t i ca l c o m p u t e r science covers a wide range of topics , b u t none is as f u n d a m e n t a l and as

useful as t h e t h e o r y of c o m p u t a t i o n . Given t h a t c o m p u t i n g is our field of endeavor , t he m o s t basic

ques t ion t h a t we can ask is surely " W h a t can be achieved t h r o u g h c o m p u t i n g ? " ""

In o rder to answer such a quest ion, we m u s t beg in by def ining c o m p u t a t i o n , a t a s k t h a t was

s t a r t e d last c e n tu ry by m a t h e m a t i c i a n s and r ema ins very m u c h a work in progress at th is da te .

Mos t theore t i c i ans would at least agree t h a t c o m p u t a t i o n m e a n s solving p r o b l e m s t h r o u g h t he

mechanica l , p r e p r o g r a m m e d execu t ion of a series of small , u n a m b i g u o u s s teps. F r o m basic phi lo-

sophica l ideas a b o u t c o m p u t i n g , we m u s t progress to the def in i t ion of a m o d e l of c o m p u t a t i o n ,

formal iz ing these basic ideas and p rov id ing a f ramework in which to r eason a b o u t c o m p u t a t i o n .

T h e m o d e l m u s t be a f l 'amework in which to reason abou t c o m p u t a t i o n . T h e m o d e l m u s t be b o t h

reasonab ly realist ic (it c anno t depa r t too far fi 'om w h a t is perce ived as a c o m p u t e r nowadays)

a n d as universa l a n d powerfu l as possible. W i t h a reasonable m o d e l in hand , we m a y p roceed to

pos ing and resolving f u n d a m e n t a l ques t ions such as " W h a t can and c a n n o t be c o m p u t e d ? " " a n d

"How efBciently can s o m e t h i n g be c o m p u t e d ? " "" T h e first ques t ion is a t t he hea r t of t h e t h e o r y of

c o m p u t a b i l i t y and t h e second is at t he hea r t of t he theo ry of complexi ty .

In this t ex t , I have chosen to give pr ide of place to the t heo ry of complexi ty . M y basic r eason is

very simple: complex i ty is w h a t really defines t he l imits of c o m p u t a t i o n . C o m p u t a b i l i t y es tabl ishes

some abso lu te l imits , b u t l imits t h a t do no t t ake into account any resource usage are h a r d l y l imi ts in

a p rac t ica l sense. M a n y of today" s i m p o r t a n t prac t ica l ques t ions in c o m p u t i n g are based on resource

p rob lems . For ins tance , enc ryp t i on of t r ansac t ions for t r ansmiss ions over a ne twork can never

be ent i re ly p r o o f aga ins t snoopers , because an e n c r y p t e d t r a n s a c t i o n m u s t be d e c r y p t e d by some

m e a n s and thus can always be dec iphered by someone d e t e r m i n e d to do so, g iven s,,fBcient resources .

However, t he real goal of enc ryp t i on is to m a k e it sufficiently "hard" " " - - t h a t is, sufficiently resource-

in tens ive to dec ipher t h e message t h a t snoopers will be d i scouraged or t h a t even d e t e r m i n e d

spies will t ake too long to comple t e t h e decryp t ion . In o the r words, a g o o d e n c r y p t i o n scheme

does no t m a k e it imposs ib le to decode the message, ju s t very d i fBcu l t - - t he p r o b l e m is no t one of

c o m p u t a b i l i t y b u t one of complexi ty . As ano the r example , m a n y tasks car r ied ou t by c o m p u t e r s

t o d a y involve some t y p e of op t imiza t ion : rou t ing of p lanes in the sky or of packe t s t h r o u g h a

n e twor k so as to get p lanes or packets to the i r de s t i na t i on as efficiently as possible; a l loca t ion of

m a n u f a c t u r e d p r o d u c t s to warehouses in a re ta i l chain so as to rninimi~.e was te and fu r t he r sh ipping;

p rocess ing of raw mate r ia l s into c o m p o n e n t pa r t s (e.g., c u t t i n g c lo th in to p a t t e r n s pieces or cracking

c rude oil into a r ange of oils and dist i l lates) so as to min imize waste; des igning new p r o d u c t s to

mln lmize p r o d u c t i o n costs for a given level of pe r formance ; and so for th . All of these p r o b l e m s are

ce r ta in ly c ompu tab l e : t h a t is, each such p r o b l e m has a well-defined o p t i m a l so lu t ion t h a t could be

found t h r o u g h s , , ~ c i e n t c o m p u t a t i o n (even if this c o m p u t a t i o n is n o t h i n g m o r e t h a n an exhaus t ive

search t h r o u g h all possible solut ions) . Yet these p rob lems are so complex t h a t t h e y c a n n o t be

solved op t ima l l y wi th in a reasonable a m o u n t Of t ime; indeed, even der iv ing good a p p r o x i m a t e

so lu t ions for these p rob lems rema ins resource- intensive. T h u s t h e complex i ty of solving (exac t ly

57

or approximately) problems is what determines the usefnlness of computat ion in practice. I t is no

accident that complexity theory is the most active area of research in theoretical computer science

today.

Yet this text is not just a text on the theory of complexity. I have two reasons for covering

additional material: one is to provide a graduated approach to the often challenging results of

complexity theory and the other is to paint a suitable backdrop for the unfolding of these results.

The backdrop is mostly computabili ty theory--clearly, there is little use in aslring what is the com-

plexity of a problem that cannot be solved at all! The graduated approach is provided by a review

chapter and a chapter on fi.nite automata. Finite au tomata should already be somewhat familiar

to the reader; they provide an ideal testing ground for the ideas and methods need in working

with complexity models. On the other hand, I have deliberately omit ted theoretical topics (such as

formal grammars, the Chomsky hierarchy, formal semantics, and formal specifications) that , while

interesting in their own right, have limited impact on everyday computing ~ome because they are

not concerned with resources, some because the models used are not well accepted, and grammars

because their use in compilers is quite different fTom their theoretical expression in the Chomsky

hierarchy. Finite au tomata and regular expressions (the lowest level of the ChomRky hierarchy) are

covered here but only by way of an introduction to (and contrast with) the u.uiversal models of

computat ion used in computabil i ty and complexity. • -

Of course, not all results in the theory of complexity have the same impact on computing,

Like any rich body of theory, complexity theory has applied aspects and very abstract ones. I

have focused on the applied aspects: for instance, I devote an entire chapter on how to prove

tha t a problem is hard but less than a section on the entire topic of s t ructure theory (the par t of

complexity theory that addresses the internal logic of the field). Abstract results found in this text

are mostly in support of fundamental results that are later exploited for practical reasons.

Since theoretical computer science is often the most challenging topic studied in the course of a

degree program in computing, I have avoided the dense presentation often favored by theoreticians

(de~n;tions, theorems, proofs, with as little text in between as possible). Instead, I provide intuitive

as well as formal support for further derivations and present the idea behind any line of reasoning

before formalizing said reason;ug. I have included large plumbers of examples and i l lustrated many

abstract ideas through diagrams; the reader will also find useful synopses of methods (such as

steps in an NP-completeness proof) for quick reference. Moreover, this text offers strong support

through the Web for both students and instructors. Instructors will find solutions for most of the

250 problems in the text, along with many more solved problems; students will find interactive

solutions for chosen problems, testing and validating their reasoning process along the way ra ther

than delivering a complete solution at once. In addition, I will also acc~,mulate on the Web site

addenda, errata, co~nrnents form students and instructors, and pointers to useful resources, as well

as feedback mechani~rnR--I want to hear fi'om all users of this text suggestions on how to improve it.

The Ulq.L for the Website is h t t p : / / t ~ m , cs .,,,~.edu/~moret/computal:ion/; my email address

is motet@ca, l m . . ode.

T a b l e o f C o n t e n t s

1. I n t r o d u c t i o n 1

i . I Motivation and Overview 1 / 1.2 History 5

2. P r e l i m i n a r i e s 11

58

2.1 Nnmbers and Their Representation 11 / 2.2 Problems, Instances, and Solutions 12

/ 2.3 Asymptotic Notation 17 / 2.4 Graphs 20 / 2.5 Alphabets, Strings, and Languages

25 / 2.6 Functions and l~¢_uite Sets 277 / 2.7 Pairing Functions 31 / 2.8 Cantor" s Proof:

The Technique of Diagonalization 33 / 2.9 Implications for Computability 35 / 2.10

Exercises 37 / 2.11 Bibliography 42

3. F i n i t e A u t o m a t a a n d R e g u l a r L a n g u a g e s 43

3.1 Introduction 43 / 3.2 Properties of Finite Automata 54 / 3.3 Regular Expressions

59 / 3.4 The Pumping LemmR and Closure Properties 770 / 3.5 Conclusion 85 / 3.6

Exercises 86 / 3.7 Bibliography 92

4. U n i v e r s a l M o d e l s o f C o m p u t a t i o n 93

4.1 Encoding Instances 94 / 4.2 Choosing a Model of Computation 97 / 4.3 Model

Independence 113 / 4.4 Turing Machines as Acceptors and Ewlmerators 115 / 4.5

Exercises 117 / 4.6 Bibliography 120

5. C o m p u t a b i l i t y T h e o r y 121

5.1 Primitive Recursive Functions 122 / 5.2 Partial Recursive Functions 134 / 5.3

Arithmetization: Encoding Taring Machine 137 / 5.4 ProgrAmming Systems 144 / 5.5

Recursive and R. E. Sets 148 / 5.6 Rice's Theorem and the Recursion Theorem 155 /

5.77 Degrees of Unsolvability 159 / 5.8 Exercises 164 / 5.9 Bibliography 1677

. C o m p l e x i t y Theo ry : Founda t ions 169

6.1 Reductions 1770 / 6.2 Classes of Complexity 1778 / 6.3 Complete Problems 200 / 6.4

Exercises 219 / 6.5 Bibliography 223

7,. P r o v i n g P r o b l e m s H a r d 225

7.1 Some Important NP-Complete Problems 226 / 7.2 Some P-Completeness Proofs

253 / 7.3 From Decision to Optimization and Enumeration 260 / 77.4 Exercises 275 /

7.5 Bibliography 284

8. C o m p l e x i t y T h e o r y in P r a c t i c e 285

8.1 Circumscribing Hard Problems 286 / 8.2 Strong NP-Completeness 301 / 8.3 The

Complexity of Approximation 308 / 8.4 The Power of Randomization 335 / 8.5 Exer-

cises 346 / 8.6 Bibliography 353

9. C o m p l e x i t y T h e o r y : T h e Front ie r 357,

59

9.1 Introduction 357 / 9.2 The Complexity of Specific Instances 360 / 9.3 Average-Case

Complexity 367 / 9.4 Parallelism and Commlm|cat ion 372 / 9.5 Interactive Proofs and

Probabilistic Proof Checking 385 / 9.6 Complexity and Constructive Mathemat ics 396

/ 9.7' Bibliography 403

8. R e f e r e n c e s 407'

A. P r o o f s 421

A.1. Quod Erat Demonstrandum, or W h a t is a Proof? 421 / A.2. Proof Elements 424

/ A.3. Proof Terhniques 425 / A.4. How to Write a Proof 437 / A.5. Pract ice 439

60

