JUNIOR LYCEUM AND SECONDARY SCHOOL ANNUAL EXAMINATIONS 2009

Directorate for Quality and Standards in Education Educational Assessment Unit

FORM 3						CHI	EMI	STR	Y			1	TIM	E: 11	h 30r	nin
Name:										Cl	ass:					
Useful Data:			of the latomi				-			:16, N	Ig=24	ŀ, S=3	2.			
						PER	IODI	СТА	BLE							
1 2											3	4	5	6	7	0
						1 H										4 He 2
7 Li 9 Be 4					·		•				B 5	12 C 6	14 N 7	16 O 8	19 F 9	20 Ne 10
23											27 Al 13	28 Si 14	31 P 15	32 S 16	35.5 Cl 17	40 Ar 18
39 K Ca 19 20	45 Sc 21	48 Ti 22	51 V 23	52 Cr 24	55 Mn 25	56 Fe 26	59 Co 27	59 Ni 28	63.5 Cu 29	65 Zn 30	70 Ga 31	73 Ge 32	75 As 33	79 Se 34	80 Br 35	84 Kr 36
85 88 Sr 37 38	89 Y 39	91 Zr 40	93 Nb 41	96 Mo 42	99 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 137 Cs Ba 55 56	139 La 57	178 Hf	181 Ta	184 W 74	186 Re	190 Os 76	192 Ir	195 Pt 78	197 Au 79	201 Hg 80	204 Tl 81	207 Pb 82	209 Bi 83	210 Po 84	210 At 85	222 Rn 86

Marks Grid [For Examiners use only]

Question			Sect	tion A			S	Section 1	В	
N°.	1	2	3	4	5	6	7	8	9	
Max Mark	10	10	10	10	10	10	20	20	20	Theory Total
Actual Mark										

symbol

atomic number

85% of Theory Paper	15% Practical	100% Final Score

Section A: Answer **ALL** questions in this section, using the spaces provided. This section carries 60 marks.

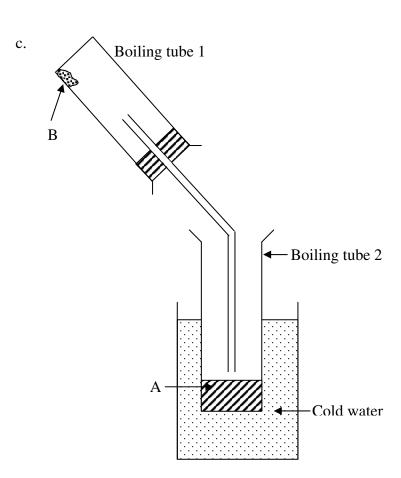
1.	a.	Fill in with	h the words: solvent, solute, solution.						
		When crys	stals of copper sulfate are dissolved in water, the mixture formed is called						
		a	Water is the while copper sulfate is the						
	b.		It into liquids while liquids boil to become gases. erature at which:						
		(i) a sol	id melts is called						
		(ii) a liqu	uid becomes a gas is called						
	c.		tures can be separated by filtration. Underline which of the mixtures be separated by filtration:						
		(i) (ii) (iii) (iv)	sand and water sand and marble chips alcohol and water sugar and table salt.						
	d.		is a mixture of salts and water. When sea water is boiled, the water is b back into						
		water and	collected as water.						
2.	a.	Most elements are either metals or non-metals. Give one example of each.							
		Metal:	Non-metal						
	b.	Fill in the	space with the word metals or non-metals .						
		(i)	Elements that conduct both heat and electricity are usually						
		(ii)	Most elements with a low melting point are						
		(iii)	Most can be hammered to produce thin sheets.						
		(iv)	Most are shiny when freshly cut.						
		(v)	Most solid are brittle and break easily.						
	c.	Write dow (i) (ii) (iii)	a metallic element that reacts with water a non-metallic element present in the air a non-metallic element that reacts with hydrogen to form an acid						

3.	a.	An atom of the element potassium, symbol K, contains 19 protons and 20 neutrons.	
		Write down its:	
		(i) atomic number (ii) mass number	[2]
	b.	Atoms of the same element always contain the same number of	
	0.		
		and the same number of electrons, but not necessarily the same number of	[2]
	c.	A normal sample of chlorine includes amounts of two different atoms with symbols	
		35 Cl and 37 Cl. Fill in the table below:	
		35 Cl 37 Cl 17	
		Number of protons	
		Number of electrons	
		Number of neutrons	
			[3]
	d.	(i) Atoms of the same element with different mass numbers are called	
		(ii) Chlorine is an example of such an element.	
		Another example is	
			[2]
	e.	In a book of chemical data, the mass number of chlorine is given as 35.5. Use this	
		data to state which of the two atoms of chlorine in question c. is more abundant.	
			[1]
		 ·	r_1

4.	a.	Atoms of two or more	e elements chemically bonded together form a	[
	b.	. The element neon has an atomic number of 10.						
		(i) The electr	on configuration of a neon atom is					
		(ii) Neon has	a noble gas election configuration. This means that its					
		outermost	election shell is	[
	c.	(i) An atom of lithi	ium, symbol Li, loses one electron to become an ion. The					
		symbol of a lith	ium ion is					
		(ii) An atom of chlo	orine, symbol Cl, gains one electron to become an ion. The					
		symbol of a chlo	orine ion is					
		(iii) An ion of a met	al, such as lithium, formed by electron loss, is known as a					
			while an atom of a non-metal, such as chlorine,					
		formed by elect	ron gain, is known as an	[
	d.		of lithium and chlorine are 3 and 17 respectively. Use this a dot/cross diagram that illustrates the electron transfer in the chloride.					
				[

-	s of air taken at random from industrial or urban areas show that air is
heavily	polluted with acidic gases that are not normally present in air.
(i)	Name two such air-polluting gases.
(ii)	Name one effect these polluting gases have on the environment.
c. One of	the gases you named in question a. is necessary for the rusting of iron. Give the name of another substance that must be present for iron to rust
(ii)	Give one simple method that can be used to prevent iron from rusting.
()	
` '	warming is a phenomenon that may have serious effects.

a.	Dilute hyd	rochloric acid reacts with zinc granules to liberate hydrogen.
	(i)	Write down an equation for this reaction. (Include state symbols)
	(ii)	Give a simple test that shows that hydrogen is present.
b.	Dilute hyd	lrochloric acid also reacts with sodium hydroxide solution.
	(i)	Such a reaction between an acid and an alkali is known as a
		because neutral molecules of
	(ii)	are formed. Write down an equation for the reaction between dilute hydrochloric
	(11)	acid and sodium hydroxide solution. (Include state symbols).
	(iii)	Which technique of separation would you use to collect the salt
		produced during the reaction in question b.
c.		t colour change takes place when blue litmus paper is placed in dilute rochloric acid?
	(ii) Use	e your answer to question c.(i) to show that polluted rain is acidic.
	b.	(i) (ii) b. Dilute hydraulic (iii) (iii) c. (i) Whath hydraulic (iii)


Section B: Answer **TWO** questions from this section on the separate sheets provided. Each question carries 20 marks.

- 7. This question is concerned with the hydrated salt magnesium sulfate, MgSO₄, 7H₂O.
 - a. Work out the molar mass of:
 - (i) 1 mole of water
 - (ii) 7 moles of water
 - (iii) 1 mole of anhydrous magnesium sulfate
 - (iv) 1 mole of hydrated magnesium sulfate.

[8]

[4]

b. Use your answer to question a. to calculate the percentage composition by mass of water of crystallization in hydrated magnesium sulfate.

- (i) Explain what happens when the boiling tube containing the hydrated salt is heated strongly. Together with your explanation, your answer should include:
 - the name of the substance collected at A.
 - the name of the residue left in the boiling tube at B

[6]

- (ii) Give 1 reason why:
 - Boiling tube 1 must be titled with its mouth downwards.
 - Boiling tube 2 is surrounded with cold water.

[2]

- 8. This question is about the lab. preparation of oxygen and the formation of oxides.
 - a. Describe a method that can be used for the laboratory preparation of oxygen from hydrogen peroxide.

Your answer should include:

- an explanation of the procedure to be adopted
- a well-labelled diagram of the apparatus
- the name of any other substance that is necessary for the reaction to take place.
- b. Magnesium ribbon burns in air with a white flame.
 - (i) Write down an equation to illustrate this reaction. Include state symbols.
 - (ii) Name the product formed and describe its appearance.
 - (iii) The product you named in question b.(ii) was added to some water containing universal indicator. What colour change will take place and what does this show about the product?

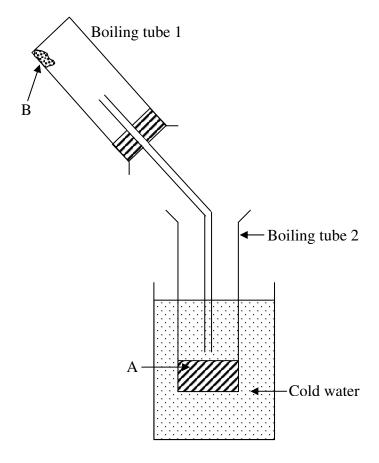
[6]

[8]

- c. (i) Describe briefly what you observe when red-hot charcoal (carbon) is lowered into a gas jar containing oxygen.
 - (ii) Name the gas liberated during this reaction and give a simple test to confirm the presence of the gas.
 - (iii) The gas liberated is bubbled through water containing universal indicator. What colour change will take place and what does this show about this gas?

[6]

- 9. a. 50 dm³ of tap water required 20 dm³ of soap solution to form a lather but after boiling, the same volume of water required only 8 dm³ of soap solution to form a lather.
 - (i) Does the water contain temporary hardness, permanent hardness or both?
 - (ii) Explain why the volume of soap required to form a lather is **less** after boiling.
 - (iii) Name one substance present in the original tap water responsible for causing hardness.
 - [4]


- b. Write a short explanation about **each** of the following:
 - (i) Hard water causes the furring of kettles.
 - (ii) Hard water forms a scum with soap.

[4]

c. Some substances may be classified as:

deliquescent, efflorescent or hygroscopic

- (i) State what each term means.
- (ii) Give one example of each substance.
- (iii) What would you observe when each of the substances you chose in question c. (ii) is exposed to the air.

