| NAME               | c <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·········· INDEX NO   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| SCHOOL             | on Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CANDIDATE'S SIGNATURE |
|                    | tee <sup>kcs</sup> e <sup>qast</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE                  |
| 233/2<br>CHEMISTRY | £ teet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| (THEORY)           | Wild Committee of the C |                       |
| PAPER 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| JULY/AUGUST 2014 👋 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| TIME: 2 HOURS      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |

## **KURIA WEST SUB-COUNTY JOINT EXAMINATION - 2014**

Kenya Certificate of Secondary Education
CHEMISTRY
PAPER 2
(THEORY)
TIME: 2 HOURS

## **INSTRUCTIONS TO CANDIDATES:**

- Write your name and index number in the spaces provided above.
- **Sign** and write the **date** of examination in the spaces provided **above**.
- Answer all the questions in the spaces provided.
- Mathematics tables and electronic calculators may be used.
- All working **mus**t be clearly shown where necessary.

## FOR EXAMINER'S USE ONLY:

| Maximum<br>Score | Candidate's<br>Score       |
|------------------|----------------------------|
| 12               |                            |
| 12               |                            |
| 12               |                            |
| 10               |                            |
| 11               |                            |
| 13               |                            |
| 10               |                            |
| 80               |                            |
|                  | Score 12 12 12 10 11 13 10 |

This paper consists of 12 printed pages.

Candidates should check to ascertain that all the pages are printed as indicated and that no questions are missing.

Chemistry Paper 2 Turnover

The table **below** shows the ions of elements  $W,\,X,\,Y,\,Z$  and their electron arrangement. 1. (a) The letters do not represent the actual symbols of the element.

| Ion              | Electron configuration |
|------------------|------------------------|
| $\mathbf{W}^{-}$ | 2, 8, 8                |
| $X^{2^+}$        | 2, 8, 8                |
| $Y^{3^+}$        | 2, 8 5 0               |
| $Z^{2}$          | 2,8                    |

Which two elements belong to the same period? Give a reason. (i) (2mks)

For More Free Kest Past Paper

| (ii) | ) In | which | group | of the | periodic | table | does | Y | belong? |
|------|------|-------|-------|--------|----------|-------|------|---|---------|

(1mk)

(1mk)

(iv) What type of bond is formed between 
$${\bf W}$$
 and  ${\bf X}$ . Explain.

(2mks)

(b) (i)

(1mk)

(ii) Draw a dot (•) cross (X) diagram to show bonding in the hydroxonium.  $H_3O^+$  ion (H = 1, O = 8). (2mks)

|     |      | 20th                                                                                    |
|-----|------|-----------------------------------------------------------------------------------------|
| (c) | Alur | ninium chloride and sodium chloride are both chlorides of period 3 elements.            |
|     | Use  | this information to explain the following observations.                                 |
|     | I    | A solution of AlCl <sub>3</sub> in water turns blue litmus paper red while that of sodi |

| I                                 | A solution of AlCl <sub>3</sub> in water turns blue litmus paper red while that of sodium                                                                                                                                                                                                                  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | chloride does hot. (1½mks)                                                                                                                                                                                                                                                                                 |
|                                   | chloride does hot. (1½mks)                                                                                                                                                                                                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                            |
|                                   |                                                                                                                                                                                                                                                                                                            |
|                                   | The melting point of sodium chloride (801°C) is higher than that of AlCl <sub>3</sub> (180°C).  (1½mks)  e standard electrode potentials for elements A, B, C, D and E given below to answer estions that follow. The letters do not represent the actual symbols of the elements.  E <sup>O</sup> (volts) |
|                                   | J <sup>2</sup> /2                                                                                                                                                                                                                                                                                          |
| II                                | The melting point of sodium chloride (801°C) is higher than that of AlCl <sub>3</sub> (180°C).                                                                                                                                                                                                             |
| Pape                              | $(1\frac{1}{2}mks)$                                                                                                                                                                                                                                                                                        |
| and the second second             |                                                                                                                                                                                                                                                                                                            |
| \$°                               |                                                                                                                                                                                                                                                                                                            |
| 4C5*                              |                                                                                                                                                                                                                                                                                                            |
| © *                               |                                                                                                                                                                                                                                                                                                            |
| \$ <sup>5</sup>                   |                                                                                                                                                                                                                                                                                                            |
| 20                                |                                                                                                                                                                                                                                                                                                            |
| $\mathfrak{S}^{0}$ 2. (a) Use the | e standard electrode potentials for elements A, B, C, D and E given below to answer                                                                                                                                                                                                                        |
| the que                           | stions that follow. The letters do not represent the actual symbols of the elements.                                                                                                                                                                                                                       |
| ,                                 | $E^{\Theta}$ (volts)                                                                                                                                                                                                                                                                                       |

- Which element is likely to be hydrogen? Give a reason for your answer. (i) (2mks)
- (ii) Identify the strongest reducing agent. (1mk)
- (iii) In the space provided draw a labeled diagram of the electrochemical cell that would be obtained when half cells of element B and D are combined. (3mks)

| (iv) | Calculate the $E^{\Theta}$ value of the electrochemical cell constructed in (iii) above. (2mks) |
|------|-------------------------------------------------------------------------------------------------|
| , ,  |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |
|      |                                                                                                 |

(b) During the electrolysis of copper (II) sulphate solution using copper electrodes, a current of 0.2A was passed through the cell for 5 hours.

(i) Write the equation of the reaction occurring at the anode.

(1mk)

(ii) Determine the change in mass of the cathode which occurred as a result of the electrolysis process. (Cu = 64, IF = 96500C). (3mks)

- 3. (a) A hydrocarbon contains 85% carbon. Its molecular mass is 68g.
  - (i) Determine its empirical and molecular formula. (C = 12, H = 1). (2mks)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | O.C.                                                                                                                                                |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Draw two po                               | sitional isomers of the hydrocarbon.                                                                                                                | (1mk)                           |
| thore tree to the setting of the set | Write an equ<br>the products<br>Equation. | sitional isomers of the hydrocarbon.  Lee Research as the part of the hydrocarbon.  Attention for the reaction between one of the isomers w formed. | ith chlorine and name<br>(2mks) |
| (b) In an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nameexperiment an                         | organic compound was reacted with absolute ethan                                                                                                    | ol in the presence of           |
| conce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | ric (VI) acid to form a compound whose formula is                                                                                                   | -                               |
| (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Name I                                    | The type of reaction that took place.                                                                                                               | (½mk)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II                                        | The name of the organic compounds to which the                                                                                                      |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                                     | (½mk)                           |
| (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Write the struabove experi                | uctural formula and give the systematic name of the ment.                                                                                           | acid used in the (1mk)          |

(c) Study the flow diagram **below** and answer the questions that follow.



Identify the following compounds.

B \_\_\_\_\_\_

C \_\_\_

 $\mathbf{B}$  \_\_\_\_\_\_ (½mk)

C \_\_\_\_\_\_ (½mk)

**A** \_\_\_\_\_\_ (½mk)

**E**\_\_\_\_\_\_(\frac{1}{2}mk)

(ii) Name the process in steps.

I \_\_\_\_\_\_ (½mk)

(iii) Reagent

**P**\_\_\_\_\_\_(½mk)

 $\mathbf{Q}$  \_\_\_\_\_\_\_ (½mk)

4. (a) Study the flow chart **below** and answer the questions that follow.



Residue V was yellow when hot and white when cold.

Residue V.

| · \         | T 1 4 C  |
|-------------|----------|
| (i)         | Identify |
| <b>\1</b> / | 10CHU1 y |



Write an ionic equation for the reaction of solution II with  $Pb(NO_3)_{2(aq)}$ . (1mk)

(1mk)

For More Free Kest Pactii) Write observations that would be made when ammonia solution is added drop wise till in excess to the colourless solution II. (1mk)

(b) The diagram below represents a set-up for large scale manufacture of hydrochloric acid. Study it and answer the questions that follow:



(i) Name substance X. (1mk)

(ii) What is the purpose of glass beads? (1mk)

| (iii) | Give <b>one</b> source of substance X used in the above process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1mk) |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|       | Contract of the second of the |       |

(2mks)

Pager-

Use the information below to answer the questions that follow.

$$Ca_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CaO_{(s)} \quad \Delta H = -635 \text{ KJ mol}^{-1}$$
 $Ca_{(s)} + O_{2(g)} \rightarrow CaO_{2(g)} \quad \Delta H = -394 \text{ KJ mol}^{-1}$ 
 $Ca_{(s)} + e_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow CaCO_{3(s)} \quad \Delta H = -1207 \text{ KJ mol}^{-1}$ 

Calculate the enthalpy change for the reaction.

$$CaO_{(S)} + CO_{2(g)} \rightarrow CaCO_{3(S)}$$
 (3mks)

(b) State **one** factor that should be considered when choosing a fuel for cooking. (1mk)

(c) The following data was obtained during an experiment to determine the molar heat of combustion of ethanol.

Volume of water used  $= 500 \text{cm}^3$ Initial temperature of water  $= 25^{\circ}\text{C}$ Final temperature of water  $= 44.5^{\circ}\text{C}$ Mass of ethanol + lamp before burning = 121.5 gMass of ethanol + lamp after burning = 120.0 g

| Cal          | 011 | lata | th   |
|--------------|-----|------|------|
| <b>L</b> all | CH  | alc  | 1111 |

(i) heat evolved during the experiment (density of water = 1g/cm³, specific heat capacity of water = 4.2Jg<sup>-1-</sup>K¹). (1mk)

wh. treetche

(ii) motor heat of combustion of ethanol (C = 12, O = 16, H = 1). (2mks)

KCSÉ Past Papers

(d) Write the thermo equation for the complete combustion of ethanol. (1mk)

(e) At 298K and one atmosphere pressure, graphite changes into diamond according to the equation.

$$C_{(graphite)} \rightarrow C_{(diamond)}$$
  $\Delta H = +2.9 \text{ KJ/mol}$ 

In the space provided, sketch a simple energy level diagram for the above change. (2mks)

6. (a) At 25°C 50g of substance X were added to 100g of water to make a saturated solution. What is meant a saturated solution? (1mk)

(b) The table **below** gives the solubilities of substance X at different temperatures.

| Temperature °C                     | 14   | <sup>2</sup> 24 | 33 | 40 | 46 | 52 |
|------------------------------------|------|-----------------|----|----|----|----|
| Solubility g/100g H <sub>2</sub> O | 245× | 36              | 50 | 62 | 72 | 90 |

(i) Plot a graph of the solubility of substance X (vertical axis) against temperature. (3mks)



(ii) Using the graph.

| I | determine th | e solubility of substance X at 20°C. | (2mks) |
|---|--------------|--------------------------------------|--------|

|                 |          | II determine the mass of substance X that remained undissolved given that 90g of                                                                                                                                                                                                                                             |
|-----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |          | substance X were added to 100cm³ of water and warmed to 35°C. (2mks)                                                                                                                                                                                                                                                         |
|                 |          |                                                                                                                                                                                                                                                                                                                              |
|                 |          |                                                                                                                                                                                                                                                                                                                              |
|                 |          | <u> </u>                                                                                                                                                                                                                                                                                                                     |
|                 |          | <del></del>                                                                                                                                                                                                                                                                                                                  |
|                 |          | £ <sup>t</sup> e <sup>e</sup>                                                                                                                                                                                                                                                                                                |
|                 |          |                                                                                                                                                                                                                                                                                                                              |
|                 |          |                                                                                                                                                                                                                                                                                                                              |
|                 |          | 1 <sup>3</sup>                                                                                                                                                                                                                                                                                                               |
|                 |          | III Calculate the molarity of the solution at $30^{\circ}$ C. (Relative formula mass of X = 122.5)                                                                                                                                                                                                                           |
|                 |          | (3mks)                                                                                                                                                                                                                                                                                                                       |
|                 |          | Q <sup>2</sup>                                                                                                                                                                                                                                                                                                               |
|                 |          | zó <sup>x</sup>                                                                                                                                                                                                                                                                                                              |
|                 | <b>₹</b> |                                                                                                                                                                                                                                                                                                                              |
|                 | 105,6    |                                                                                                                                                                                                                                                                                                                              |
|                 | 0        |                                                                                                                                                                                                                                                                                                                              |
| \$ <sup>5</sup> | )        |                                                                                                                                                                                                                                                                                                                              |
| voze,           |          | III Page Real culate the molarity of the solution at 30°C. (Relative formula mass of X = 122.5). (3mks)  In an experiment, soap solution was added to three separate samples of water. The table below shows volumes of soap solution required is form lather with 1000cm³ of each sample of water before and after boiling. |
| 4               | (c)      | In an experiment, soan solution was added to three separate samples of water. The table                                                                                                                                                                                                                                      |
| €0              | (0)      | <b>below</b> shows volumes of soap solution required is form lather with 1000cm <sup>3</sup> of each sample                                                                                                                                                                                                                  |
|                 |          | of water before and after boiling.                                                                                                                                                                                                                                                                                           |

|                                                       | Sample |     |      |  |
|-------------------------------------------------------|--------|-----|------|--|
| Volume of soap before water is boiled (cm³)           | 25.0   | 5.0 | 10.0 |  |
| Volume of soap after water is boiled (cm <sup>3</sup> | 25.0   | 5.0 | 5.0  |  |

| Which water was likely to be soft? Explain.                       | (2 |
|-------------------------------------------------------------------|----|
|                                                                   |    |
| Explain the change in volume of soap solution used in sample III. | (1 |

7. Aluminium is extracted using the electrolytic cell represented by the diagram below.



|         | (a) | Why 18         | s aluminium extracted by electrolytic method?                                                                                                            | (1mk)  |
|---------|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|         |     |                |                                                                                                                                                          |        |
|         |     |                | <u> </u>                                                                                                                                                 |        |
|         |     |                | 14. × × × × × × × × × × × × × × × × × × ×                                                                                                                |        |
|         | (b) |                | the electrodes labeled.                                                                                                                                  |        |
|         |     | X              |                                                                                                                                                          | (½mk)  |
|         |     | Y              | ý<br>                                                                                                                                                    | (½mk)  |
|         | (c) | oThe ch<br>(i) | nief ore from which aluminium is extracted is bauxite.  Name <b>two</b> main impurities present in bauxite.                                              | (2mks) |
| je şire |     |                |                                                                                                                                                          |        |
|         |     | (ii)           | Aluminium oxide is the main component in bauxite with a melting point but electrolysis of molten aluminium oxide is carried out at 800°C. Exis achieved. |        |
|         |     |                |                                                                                                                                                          |        |
|         | (d) | Write 1        | the equations for the reaction taking place at the anode.                                                                                                | (1mk)  |
|         | (e) | One of         | f the electrodes is replaced periodically. Which one and why?                                                                                            | (2mks) |
|         |     |                |                                                                                                                                                          |        |
|         |     |                |                                                                                                                                                          |        |
|         | (f) |                | umin (an alloy of copper, aluminium and magnesium) is preferred to pur<br>construction of aeroplane bodies. Give <b>one</b> property of duralumin that   |        |
|         |     |                |                                                                                                                                                          |        |
|         |     |                |                                                                                                                                                          |        |