
Anaphora Resolution in ExtrAns

Diego Mollá, Rolf Schwitter

Centre for Language Technology,

Macquarie University,

Sydney, Australia

fdiego,rolfsg@ics.mq.edu.au

Fabio Rinaldi, James Dowdall, Michael Hess

Institute of Computational Linguistics,

University of Zurich,

Zurich, Switzerland

frinaldi,dowdall,hessg@cl.unizh.ch

Abstract

The true power of anaphora resolution al-

gorithms can only be gauged when em-

bedded into specific Natural Language

Processing (NLP) applications. In this

paper we describe the anaphora resolu-

tion module from ExtrAns, an answer ex-

traction system. The anaphora resolution

module is based on Lappin and Leass’

original algorithm, which used McCord’s

Slot Grammar as the inherent parser. We

report how to port Lappin and Leass’ algo-

rithm to Link Grammar, a freely available

dependency-based parsing system that is

used in a range of NLP applications. Fi-

nally, we report on how the equivalence

classes that result from the anaphora reso-

lution algorithm are incorporated into the

logical forms used by ExtrAns.

1 Introduction

Research in anaphora resolution has been very in-

tense during several periods in the past and present.

Several anaphora resolution modules have been im-

plemented in the past (Mitkov et al., 2002; Grosz

et al., 1995; Kennedy and Boguraev, 1996), and

a number of NLP applications use anaphora reso-

lution components. In particular, several question-

answering systems have implemented anaphora res-

olution in several ways (Jong-Hoon et al., 2001;

Vicedo and Ferrández, 2000).

In this paper we consider the role of Anaphora

Resolution in ExtrAns, a Question Answering sys-

tem targeted specifically at technical documenta-

tion. After an initial application to the Unix man-

pages (Mollá et al., 2000), ExtrAns was used in the

Aircraft Maintenance Manual (AMM) of the Air-

bus A320 (Rinaldi et al., 2002), and currently we

are targeting the Linux HowTos. ExtrAns translates

documents and questions into a flat semantic repre-

sentation using a comprehensive linguistic analysis.

The system resolves pronominal references, disam-

biguates ambiguous structures, and includes mod-

ules capable of dealing with peculiarities of tech-

nical terminology (Rinaldi et al., 2003; Dowdall et

al., 2002). ExtrAns derives the answers to questions

by logical proofs from the document collection. A

schematic representation of the architecture of the

system can be seen in Figure 1.

Document sentences and questions are syntacti-

cally processed by Link Grammar, a parsing system

that consists of a robust dependency-based parser

and a wide-coverage grammar for English (Sleator

and Temperley, 1993). In the current version of Extr-

Ans, anaphora resolution is restricted exclusively to

pronominal cases since it is less clear how the ex-

plicit resolution of definite noun phrases and espe-

cially associative references might improve the an-

swer extraction process without making use of com-

plex external resources (e.g. domain/world knowl-

edge, ontologies).

The resolution algorithm we are going to present

in this paper is an adaptation of a purely syntactic

approach. The theory behind the anaphora resolu-

tion module of ExtrAns is based on (Lappin and Le-

ass, 1994), but it has been fine-tuned in several ways

for the answer extraction task. Its major advantage

 Knowledge

Base

Document
Pre-

Processing

Linguistic Analysis

MLF

Generator
parsing pruning

anaphora

resolution

Figure 1: Schematic view of the Architecture of ExtrAns

against other algorithms is that it can be adapted to

use the resources that are available in a state-of-the-

art answer-extraction system such as ExtrAns. In

particular it uses syntactic information, such as that

produced by Link Grammar, rather than resorting to

parser-free approaches like (Kennedy and Boguraev,

1996). We will see in the following sections that

the type of syntactic information required for the

anaphora resolution algorithm is different from the

one provided by Link Grammar, but it is possible to

largely re-create the necessary information.

Another advantage of the use of Lappin and Le-

ass’ algorithm is that it does not use semantic infor-

mation, in contrast with (van der Sandt and Geurts,

1991; Pinkal, 1991), nor real-world knowledge, in

contrast with (Hobbs, 1978). Nor does it model in-

tentional or global discourse structure, in contrast

with (Grosz, 1981). Thus, the result is computed

in relatively short time and uses less resources.

Lappin and Leass’ anaphora resolution model has

the following components (Lappin and Leass, 1994,

536):

� An intrasentential syntactic filter for ruling out

anaphoric dependence of a pronoun on an NP

on syntactic grounds.

� A morphological filter for ruling out anaphoric

dependence of a pronoun on an NP due to non-

agreement of person, number, or gender fea-

tures.

� A procedure for identifying pleonastic (seman-

tically empty) pronouns.

� An anaphor binding algorithm for identifying

the possible antecedent binder of a reflexive or

reciprocal pronoun within the same sentence.

� A procedure for assigning values to several

salience parameters for an NP.

� A procedure for identifying anaphorically

linked NPs as an equivalence class.

� A decision procedure for selecting the pre-

ferred element of a list of antecedent candidates

for a pronoun.

Each one of these steps has been adapted to Extr-

Ans, as we will discuss in the following sections.

2 Anaphora Resolution in ExtrAns

2.1 Emulation of the Slot Grammar

Lappin and Leass’ algorithm relies heavily on the

output of the parser, a Prolog clausal implementation

of Slot Grammar (McCord et al., 1992). The result-

ing syntactic analysis includes the head-argument

and head-adjunct relations of the phrase structure

that the Slot Grammar assigns to the sentence or

phrase. These relations (also called slots) include

“subject”, “agent”, “object”, “indirect object”, and

“prepositional object”.

Since Slot Grammar is dependency-based, it is

possible to approximate its behaviour by means of

the dependency structures returned by Link Gram-

mar. However, Link Grammar does not show the

direction of dependencies explicitly. This informa-

tion is easily recovered by examining the link types

and occasionally some specific local arrangements

of the link structures, and it has been added in a post-

processing module of ExtrAns’ parser (Mollá et al.,

2000).

Given a dependency structure such as the one pro-

vided by ExtrAns’ parser module, we can explore

the labels of the links to compute the relations listed

above: 1

1It is possible that the algorithm tries to find the value of the
slot of a particular word several times (if the word is a candidate
for coreference for several pronouns, for example). To speed
up processing, the algorithm first checks if the information has
already been computed. If not, the slot is computed and the
result is stored in the noun-related data structure and returned.

Figure 2: An example of Anaphora Resolution in ExtrAns

Subject (subj). Check if the link is S2 [subject]

or SI [inverted subject]. Alternatively, check if the

word is actually the subject of a relative clause (links

B [external subject/object] and RS [subject relative

pronoun] in a specific pattern).

Agent (agent). Check if the word is the main

noun of a PP headed by by, and the sentence is pas-

sive.

Direct (obj) and indirect object (iobj). This

is decided by the link O [object]. The object clos-

est to the verb is the direct object, and the rest are

indirect objects.

Prepositional object (pobj). The object of a PP

can be found by checking if the link is J [object of a

PP] or U [idiomatic noun].

2.2 The syntactic filter on pronoun-NP

coreference

The filter uses a set of syntactic rules to prune and

remove anaphoric dependencies which are syntacti-

cally impossible. Lappin and Leass use the follow-

ing terminology:

Immediate containment. A phrase P is imme-

diately contained in a phrase Q iff P is either an

argument or an adjunct of Q. In terms of ExtrAns,

P is directly dependent on Q. Note that the algo-

rithm must also check if P or Q is a member of a

coordination.

Containment. A phrase P is contained in a

phrase Q iff:

1. P is immediately contained in Q, or

2See http://www.link.cs.cmu.edu/link/ for a summary of the
link types used by Link Grammar.

2. P is immediately contained in some phrase R,

and R is contained in Q.

Argument domain. P is in the argument domain

of a phrase N iff P andN are both arguments of the

same head. Since Link Grammar does not differ-

entiate between arguments and adjuncts, the rule is

implemented so that P and N are both immediately

contained in the same head.

Adjunct domain. P is in the adjunct domain of

N iff N is an argument of a head H , P is the object

of a preposition PREP , and PREP is an adjunct

ofH . In terms of Link Grammar, this means that N

and PREP are both immediately contained in H .

NP domain. P is in the NP domain of N iff N is

the determiner of a noun Q and:

1. P is an argument of Q, or

2. P is the object of a preposition PREP and

PREP is an adjunct of Q.

In terms of Link Grammar, the definitions of “argu-

ment” and “adjunct” merely mean immediate con-

tainment.

Now, we can say that a pronoun P cannot corefer

with a non-reflexive, non-reciprocal noun phrase R

if any of the following conditions hold:

1. P is in the argument domain of R:

///// cp.comr copies.v itp

-Wd �Ss -Ox

This rule does not apply when P is a deter-

miner:

///// the command.nr checks.v itsp arguments

-Wd

�Ds �Ss

-
Op

�Dmc

2. P is in the adjunct domain of R:

///// cp.comr copies.v a.d file.n onto itp

-Wd �Ss

-
MVp

-Os

�Ds -J

3. P is an argument of a head H , R is not a pro-

noun, and R is contained in H:

///// itp returns.vh to the home.n directory.nr

-Wd �Ss*b -
MVp

-Js

� Ds

�AN

4. P is in the NP domain of R:

///// cp.comr ’s.p use.nq of itp is.v interesting.a

-Wd

�D*u

�YS

� Ss

-
Mp
-J -Paf

5. P is the determiner of a noun Q, and R is con-

tained in Q, or R is Q:

///// itsp execution.nq of cp.comr is.v interesting.a

-Wd

�D*u

� Ss

-
Mp

-Js -Paf

Note that the example above is ruled out by

rule 3 because of our lax definition of argu-

ment.

Apart from the original rules, we have added the

following rules. A pronoun P cannot corefer with a

noun R if:

1. P is R. This rule is pretty obvious.

2. P is contained in R. This rule handles some

of the cases that were not ruled out by the rules

above because of our particular definition of ar-

gument and adjunct dependency.

2.3 Tests for agreement

In the original algorithm, the agreement features of

an NP are number, person, and gender. In the tech-

nical domain of ExtrAns, the pronoun resolution has

been implemented only for neuter pronouns, and

therefore gender and person are irrelevant. Thus, we

use the number only.

To compute the number agreement of a word, we

use the label of the link of the word to its head. The

algorithm checks whether the link has a suffix s or m

(indicating singular), or whether the suffix is p (in-

dicating plural). 3

2.4 Identifying pleonastic pronouns

Pleonastic pronouns are pronouns that do not carry

any meaning, like in the phrase it is likely that.

To identify them, we use Link Grammar’s link la-

bels. The following link labels indicate the use of a

pleonastic pronoun:

SF is a special connector used to connect “filler”

subjects like it and there to finite verbs: THERE

IS a problem, IT IS likely that

SFI connects “filler” subjects like it and there to

verbs in cases with subject-verb inversion: IS

THERE a problem?, IS IT likely that ...?

One stage in the process of anaphora resolution

consists in identifying all the nouns in the sentence,

including pronouns. The algorithm intentionally ig-

nores both SF and SFI, as a result pleonastic pro-

nouns are not selected.

2.5 The treatment of lexical anaphors

According to Lappin and Leass, a lexical anaphor

is either a reciprocal or a reflexive pronoun. The

syntactic rules of coreference of lexical anaphors do

not check if the coreferent nouns are incompatible.

Instead, the rules check if the noun can corefer with

the lexical anaphor. Two assumptions are that the

noun and the anaphor appear in the same sentence,

and the noun must appear before the anaphor.

To compute the possibility of coreference, it is

necessary to rank the slot information of the noun

and the anaphor, as follows:

subj > agent > obj > (iobj—pobj)

In other words, a subject occupies a higher argu-

ment slot than an object, and the slot position of an

indirect object and a prepositional object are equiv-

alent.

A noun R is a possible antecedent binder for a

lexical anaphor P iff R and P do not have incom-

patible agreement features, and one of the following

conditions holds:

3In some cases, the link label does not provide the informa-
tion. When this happens, the number of the word is unspecified
(using an unbound Prolog variable).

1. P is in the argument domain of R, and R fills a

higher argument slot than P :

///// cp.comr copies.v itselfp

-Wd �Ss -O

2. P is in the adjunct domain of R:

///// cp.com copies.v a.d file.nr onto itselfp

-Wd �Ss

-
MVp

-Os

�Ds -J

3. P is in the NP domain of R:

///// cp.comr ’s.p copy.nq of itselfp is.v interesting.a

-Wd

�Ds

�YS

� Ss

-
Mp
-J -Paf

4. R is an argument of a verb V , and there is an

NPQ in the argument domain or in the adjunct

domain of R such that:

(a) P is an argument of Q, or

(b) P is an argument of a preposition PREP

and PREP is an adjunct of Q:

///// the command.nr creates.vv a.d link.nq to itselfp

-Wd

�Ds �Ss

-Os

�Ds -
Mp
-J

In this rule, we need to determine that V is a

verb. We do that by checking the tag assigned

by the parser (’.v’ in the examples above). If

the parser gives a wrong tag or no tag at all,

the verb is not recognised. For that reason,

the anaphora in the following sentence is not

recognised:

///// the command.nrmakes? a.d link.n to itselfp

-Wd

�Ds �Ss

-Os

�Ds -
Mp
-J

5. P is a determiner of a noun Q, and:

(a) Q is in the argument domain of R and R

fills a higher argument slot than Q, or

(b) Q is in the adjunct domain of R

2.6 The salience parameters

Salience is a measure that indicates how likely a par-

ticular noun is to corefer with a specific pronoun or

lexical anaphor. The salience of a noun is a combi-

nation of several factors. Lappin and Leass’ salience

factors are based on (Alshawi, 1987), though the ac-

tual factors and values are more specific to the task

of pronominal anaphora resolution.

Salience factors can be classified into two types:

independent factors and dependent factors. The

salience of a noun will be the sum of the weights

of all the salience factors that apply to it.

2.7 Independent salience factors

Independent salience factors are those that do not de-

pend on the syntactic relation between the pronoun

and the noun. The following salience factors used

by Lappin and Leass have been implemented: 4

Subject. The noun is the head of a subject.

Agent. The noun is an agent in a passive sentence.

Existential emphasis. The noun is in an existen-

tial construction, such as in “there are only a few

restrictions on LQL query construction for Word-

Smith”.5

Accusative. The noun is the object.

Indirect object. The noun fills indirect object

slot.

Oblique complement. The noun fills the prepo-

sitional object slot.

Head noun. The noun is not contained in another

noun, using the Slot Grammar notion of “contain-

ment within a phrase” (it is either an argument or an

adjunct of a noun).

Non-adverbial. The noun is not contained in an

adverbial PP demarcated by a separator. 6

2.8 Dependent salience factors

Dependent salience factors may or may not apply to

a specific noun, or they may apply with a different

value, depending on the syntactic relation with the

pronoun. The factors implemented in ExtrAns are:

Cataphora penalty. Cataphora (when the pronoun

appears in the sentence before the noun) is to be

discouraged, by adding a rather large negative

value to the accumulated score.

4Table 1 lists the weight values selected for the independent
salience factors.

5This is checked by exploring the label of the link that con-
nects the word to its head: it should match O?t, where ?

matches any link label suffix.
6ExtrAns uses the link labels J and U to determine if a noun

is in a PP, and Xc and Xd to determine the existence of a sepa-
rator.

Factor type Weight

Subject 80

Agent 80

Existential emphasis 70

Accusative 50

Indirect object 40

Oblique complement 40

Head noun 80

Non-adverbial 50

Table 1: Weight values for independent salience fac-

tors

Parallel roles reward. If both the noun and the

pronoun fill the same slot, the probability of be-

ing coreferent is higher.

Recency reward. Intrasentential coreference is to

be encouraged.

The actual values of the dependent salience fac-

tors are listed in Table 2. The values are the same as

Factor type Weight

Cataphora -275

Parallel roles 35

Recency 100

Table 2: Weight values for dependent salience fac-

tors

in the original algorithm (Lappin and Leass, 1994)

except for the case of cataphora, where we decided

to increase the penalty by 100 units (up from -175).

2.9 Equivalence classes

Coreference between the pronoun and the noun is

signaled by classifying both words as belonging to

the same equivalence class. An equivalence class

represents the set of the words that point to the same

instance in the world of the application domain. 7

7Membership of the same equivalence class is expressed in
the original algorithm by means of the predicate coref(u,y),
which is inserted in the logical form of the sentence. For Extr-
Ans, however, we decided not to use additional predicates to ex-
press coreference chains. Instead, variable substitution is made.
Thus, if u corefers with y, then all the predicates in the sentence
that have y as an argument will replace y with u.

Lappin & Leass’ algorithm assigns a salience to

the equivalence classes. How they do it, though, is

not clear. In ExtrAns, the equivalence class salience

is that of the class representative (for the time being,

the most recent element of the equivalence class).

An interesting possibility worth considering is the

computation of the equivalence class salience based

on when the last new word was introduced to the

equivalence class. In other words, we can update the

equivalence class salience on the basis of the current

focus.

2.10 Decision procedure

With the modifications detailed in the previous sec-

tions, the implementation of Lappin and Leass’

anaphora resolution algorithm is straightforward:

1. Create the list of antecedents:

(a) Create an initial list of IDs for all the NPs

in the sentence.

(b) Compute the independent salience factors

of every ID.

(c) Group the antecedents in equivalence

classes according to their coreference (for

the obvious cases, like names or command

arguments).

2. For every pronoun in the sentence:

(a) Compute the list of possible antecedent

candidates (the most recent of each equiv-

alence class) A.

(b) Compute the list of incompatible refer-

ences B, according to syntactic and agree-

ment grounds.

(c) Compute the list of possible references of

reflexive pronouns C, according to syntac-

tic and agreement grounds.

(d) The final list of candidates is (A�B)\C.

(e) Compute the dependent salience factors of

the final candidates.

(f) Select the candidate with higher salience

(the sum of independent and dependent

salience factors). If there are several with

the same salience, choose the candidate

closest to the anaphor.

(g) Add the pronoun to the equivalence class

of the selected candidate.

3 Evaluation

In order to evaluate the effectiveness of the refer-

ence resolution algorithm we selected arbitrarily 50

sentences of the Aircraft Maintenance Manual cor-

pus which contained at least one pronoun. The to-

tal number of pronouns to be resolved was 60. We

then manually examined the logical forms generated

by ExtrAns to verify if the pronouns had been re-

solved correctly: we found that it was only 26 (43%)

of the pronouns. However, the reference resolution

algorithm is only responsible for some of the fail-

ures, other processing factors produced the rest. For

instance, the most frequent cause of an error is a

wrong parse (in a few cases the parser failed alto-

gether). We therefore re-examined the cases were

the pronoun was not resolved correctly and could

filter out 18 sentences were the failure was clearly

caused by reasons external to the reference resolu-

tion algorithm.

This left us with 32 sentences and 36 pronouns, of

which 26 were resolved correctly. After manual ex-

amination 3 cases were then excluded because they

were judged genuinely ambiguous, like the follow-

ing: “Do not take the repair kit to the repair area

until it is ready to use”.

So we have 26 pronouns correctly resolved out of

33, which results in an accuracy of 79%. This is

lower than the result reported by (Lappin and Leass,

1994) of 86%. But, of course, our data is too small

to be representative.

We then examined in detail what happened for

each pronoun type:

It: Out of 28 anaphoric it, 21 were correctly solved.

Thus, the result is of 75% correct resolutions.

Its: Of 3 cases, only 1 was correctly solved.

Itself: Out of 3 cases, 2 were correctly solved.

Them: There were 2 cases, all of them solved cor-

rectly.

Of interest is the fact that the pronoun its had a

rather low success ratio. Lappin and Leass did not

report on the success ratio of individual pronouns,

and our data is too small to draw any conclusion.

Further tests are necessary, and if considered neces-

sary, the algorithm should be modified to enhance

the results.

4 Discussion

The original algorithm can be applied to intersen-

tential anaphora in the same way as for intrasen-

tential. We only need to consider a few additional

points. First of all, syntactic restrictions do not cross

sentence boundaries. Thus, in theory, any noun

in the previous sentence can corefer with a non-

reflexive pronoun in the current sentence. Also, re-

flexives cannot corefer with nouns in previous sen-

tences. Finally, the more sentence boundaries be-

tween the pronoun and the noun, the less likely

the noun corefers with the pronoun. This is imple-

mented by degrading (halving) the salience of the

noun for every sentence boundary that is crossed.

The implementation of the anaphora resolution al-

gorithm in ExtrAns allows for the possibility of in-

tersentential anaphora only with the previous sen-

tence. The reason for this restriction is twofold.

First, it is very rare for a pronoun to corefer with a

noun more than one sentence away. We did not find

any case in the test corpus. Second, to compute the

salience of a noun, it is necessary to know the syn-

tactic structure of the sentence where the word ap-

pears, e.g. for the parallel roles reward. This means

that we need to keep that information available to-

gether with other information regarding the noun.

Since this information is very unlikely to be used at

all, it is not practical to keep the information in the

system.

ExtrAns’ semantic interpreter uses the informa-

tion from the anaphora resolution algorithm to

merge the variables of the logical form predicates

that correspond to words belonging to the same

equivalence class.

For example, without information about equiva-

lence classes, the semantic interpreter would pro-

duce the following logical form for the sentence

“The APU Generator is installed in the APU com-

partment, it is attached to the APU gearbox by a

button hole flange”:8

object(APU_generator,o1,[x2]),

evt(install,e4,[a4,x2]),

object(anonym_object,o5,[a4]),

in(e4,x8),object(APU_compartment,o2,[x8]),

object(it,o3,[x1]),evt(attach,e3,[x12,x1]),

object(button_hole_flange,o4,[x12]),

to(e3,x7), object(APU_gearbox,o6,[x7]).

8See (Mollá et al., 2000) for details about the logical forms

Since the anaphora resolution algorithm groups

APU generator and it into the same equivalence

class, the semantic interpreter replaces x1 with x2

and produces the following logical form:

object(APU_generator,o1,[x2]),

evt(install,e4,[a4,x2]),

object(anonym_object,o5,[a4]),

in(e4,x8),object(APU_compartment,o2,[x8]),

object(it,o3,[x2]),evt(attach,e3,[x12, x2]),

object(button_hole_flange,o4,[x12]),

to(e3,x7),object(APU_gearbox,o6,[x7]).

This way, a question like “How is the APU gener-

ator attached to the APU gearbox?” prompts Extr-

Ans to return the answer shown in Figure 2.

5 Conclusion

In this paper we have presented the approach

adopted for Anaphora Resolution in ExtrAns, a

Question Answering System specifically developed

to target technical documentation. The particular na-

ture of the domain constraints the types of anaphoras

that need to be targeted.

We think that technical documentation provides

an important and interesting application for real-

world Question Answering systems and certainly

Anaphora Resolution has an important role to play.

References

Hiyan Alshawi. 1987. Memory and Context for Language In-
terpretation. Cambridge University Press, Cambridge.

James Dowdall, Michael Hess, Neeme Kahusk, Kaarel Kalju-
rand, Mare Koit, Fabio Rinaldi, and Kadri Vider. 2002.
Technical terminology as a critical resource. In Interna-
tional Conference on Language Resources and Evaluations
(LREC-2002), Las Palmas, 29–31 May. 9

B. J. Grosz, K. J. Aravind, and S. Weinstein. 1995. Center-
ing: A Framework for Modeling the Local Coherence of
Discourse. Computational Linguistics, 21(2):203–255.

Barbara J. Grosz. 1981. Focusing and description in natural
language dialogues. In Aravind K. Joshi, Bonnie L. Webber,
and Ivan A. Sag, editors, Elements of Discourse Understand-
ing, chapter 3, pages 84–105. Cambridge University Press,
Cambridge.

Jerry R. Hobbs. 1978. Resolving pronoun references. Lin-
gua, 44:311–338. Also in Grosz, Barbara J. & Karen Sparck
Jones & Bonnie Lynn Webber (1986), Readings in Natural
Language Processing, Kaufmann, Los Altos, CA.

9
http://www.cl.unizh.ch/CLpublications.

html

O. Jong-Hoon, L. Kyung-Soon, C. Du-Seong, W. S. Chung, and
C. Key-Sun. 2001. TREC-10 Experiments at KAIST: Batch
Filtering and Question Answering. In Proc. of TREC-10,
Gaithersburg, Maryland.

Christopher Kennedy and Branimir Boguraev. 1996. Anaphora
for everyone: pronominal anaphora resolution without a
parser. In Proceedings of the 16th International Conference
on Computational Linguistics, Copenhagen, Denmark.

Shalom Lappin and Herbert J. Leass. 1994. An algorithm for
pronominal anaphora resolution. Computational Linguis-
tics, 20(4):535–561.

Michael McCord, Arendse Bernth, Shalom Lappin, and Wlodek
Zadrozny. 1992. Natural language processing within a slot
grammar framework. International Journal on Artificial In-
telligence Tools, 1(2):229–277.

R. Mitkov, R. Evans, and C. Orasan. 2002. A new, fully au-
tomatic version of Mitkov’s knowledge poor pronoun reso-
lution method. In Proc. of CICLing 2002, pages 168 – 186,
Mexico City, Februrary.

Diego Mollá, Rolf Schwitter, Michael Hess, and Rachel
Fournier. 2000. Extrans, an answer extraction system.
Traitment Automatique des Langues, 41(2):495–522.

Manfred Pinkal. 1991. On the syntactic-semantic analysis of
bound anaphora. In Proc. of the Fifth Conference of the Eu-
ropean Chapter of the Association for Computational Lin-
guistics (EACL), Berlin.

Fabio Rinaldi, James Dowdall, Michael Hess, Diego Mollá, and
Rolf Schwitter. 2002. Towards Answer Extraction: an ap-
plication to Technical Domains. In ECAI2002, European
Conference on Artificial Intelligence, Lyon, 21–26 July. 9

Fabio Rinaldi, James Dowdall, Michael Hess, Kaarel Kalju-
rand, and Magnus Karlsson. 2003. The Role of Techni-
cal Terminology in Question Answering. In Proceedings
of TIA-2003, Terminologie et Intelligence Artificielle, pages
156–165, Strasbourg, April. 9

Daniel D. Sleator and Davy Temperley. 1993. Parsing English
with a link grammar. In Proc. Third International Workshop
on Parsing Technologies, pages 277–292.

Rob A. van der Sandt and Bart Geurts. 1991. Presupposition,
anaphora, and lexical content. In Otthein Herzog and Claus-
Rainer Rollinger, editors, Text Understanding in LILOG:
Integrating Computational Linguistics and Artificial Intel-
ligence - final report on the IBM Germany LILOG project,
volume 546 of Lecture Notes in Computer Science, pages
259–296. Springer-Verlag, Berlin.

J. L. Vicedo and A. Ferrández. 2000. A Semantic Ap-
proach to Question Answering Systems. In Proc. of TREC-9,
Gaithersburg, Maryland.

