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Abstract  This paper provides a practical evaluation of some leading density forecast scoring 

rules in the context of forecast surveys.  We analyse the density forecasts of UK inflation 

obtained from the Bank of England’s Survey of External Forecasters, considering both the 

survey average forecasts published in the quarterly Inflation Report, and the individual 

survey responses recently made available by the Bank.  The density forecasts are collected in 

histogram format, and the ranked probability score (RPS) is seen to have clear advantages.  

Missing observations are a feature of forecast surveys, and we propose an adjustment to the 

RPS, based on the Yates decomposition, to improve its comparative measurement of 

forecaster performance in the face of differential non-response.  As an alternative combined 

density forecast, a trimmed mean scores better than the published survey average. 
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1. Introduction 

 

Probability forecasting is the process of attaching a numerical probability to an uncertain 

future event, and scoring rules measure the quality of probability forecasts by a numerical 

score based on the forecast and the eventual outcome.  The earliest example of such a rule, 

introduced by Brier (1950) and subsequently bearing his name, concerns the situation in 

which, on each of a series of occasions, an event can occur in only one of a small number of 

mutually exclusive and exhaustive categories, and a forecast consists of a set of probabilities, 

one for each category, that the event will occur in that category.  The Brier score is then given 

as the mean over occasions of the squared differences between the forecast probabilities and 

an indicator variable that takes the value 1 in the category in which the event occurred and 0 

in all other categories.  Much of the theoretical work underpinning probability forecast 

construction and evaluation originally appeared in the meteorological literature, and the 

example in Brier’s article concerned the verification of probability forecasts of rain or no-rain 

in given periods, which has only two categories and is sometimes called an event probability 

forecasting problem.  The mathematical formulation adopted by Brier has also resulted in the 

use of the name “quadratic probability score” (QPS), which is used below, although it is 

potentially misleading, because a family of quadratic scoring rules exists, of which the Brier 

score is just one member (Stael von Holstein and Murphy, 1978). 

 

 In many forecasting applications the focus of attention is the future value of a 

continuous random variable, and the presentation of a density forecast or predictive 

distribution – an estimate of the probability distribution of the possible future values of the 

variable – is becoming increasingly common.  Tay and Wallis (2000) survey applications in 

macroeconomics and finance, and more than half of the inflation targeting central banks, 

worldwide, now present density forecasts of inflation in the form of a fan chart.  The best-

known series of density forecasts in macroeconomics dates from 1968, when the American 

Statistical Association and the National Bureau of Economic Research jointly initiated a 

quarterly survey of macroeconomic forecasters in the United States, known as the ASA-

NBER survey; Zarnowitz (1969) describes its original objectives.  In 1990 the Federal 

Reserve Bank of Philadelphia assumed responsibility for the survey and changed its name to 

the Survey of Professional Forecasters (SPF).  Survey respondents are asked not only to 

report their point forecasts of several variables but also to attach a probability to each of a 

number of pre-assigned intervals, or bins, into which output growth and inflation, this year 
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and next year, might fall.  In this way, respondents provide density forecasts of these two 

variables, in the form of histograms.  The probabilities are then averaged over respondents to 

obtain survey average density forecasts, again in the form of histograms, which are published.  

More recently the Bank of England (since 1996) and the European Central Bank (since 1999) 

have conducted similar surveys with similar density forecast questions, and they also share 

the practice of the SPF in making the individual responses to the survey, suitably 

anonymised, available for research purposes.  The empirical applications in the present paper 

extend the explorations of the Bank of England Survey of External Forecasters (SEF) dataset 

by Boero, Smith and Wallis (2008a,b,c). 

 

 The Brier score and its covariance decomposition (Yates, 1982, 1988), discussed 

below, are used by Casillas-Olvera and Bessler (2006) in a comparative evaluation of the 

published survey average density forecasts from the SEF and the density forecasts of the 

Bank of England’s Monetary Policy Committee (MPC).  However, the Brier score’s set-up in 

terms of distinct classes or categories, in relation to a set of histogram bins, neglects the 

ranking or ordering of the bins in terms of the values of the underlying continuous variable.  

For four-bin histograms where the outcome falls in the bin that has been assigned probability 

0.3 and the other bins have probability 0.5, 0.1 and 0.1, for example, the Brier score is 

indifferent to the location of these last three probabilities, but forecasts that placed 0.5 in a 

bin adjacent to the bin in which the outcome fell would generally be regarded as better 

forecasts than those that did not.  The Ranked Probability Score introduced by Epstein 

(1969), a further member of the class of quadratic scoring rules, takes account of the ordering 

of the categories, but appears not to have been previously used in the evaluation of density 

forecasts expressed as histograms.  On the other hand, its extension to continuous 

distributions, the continuous ranked probability score (CRPS), has recently attracted attention 

in the meteorological literature (Gneiting and Raftery, 2007). 

 

 Gneiting and Raftery’s (2007) review of scoring rules, their characterisations and 

properties, includes a leading alternative to the quadratic scores, namely the logarithmic 

score.  Originally proposed by Good (1952), this is defined as  

 ( ) ( )logS , logt tf x f x=  

for density forecast f of the random variable tX  evaluated at the outcome tx .  The 

logarithmic score has many attractive features, but it is inappropriate for our present dataset 
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of density forecasts reported as histograms.  From time to time in the individual survey 

responses it happens that the outcome falls in a histogram bin to which the respondent has 

assigned zero probability, so that the log score is undefined.  To assign an arbitrarily large 

value to the score on such occasions is an unsatisfactory solution, since the ranking of 

competing forecasts is sensitive to the chosen value.  On the other hand zero-probability 

forecast outcomes are readily accommodated by the quadratic scores. 

 

 In this paper we compare and contrast the Brier and Epstein rules, or QPS and RPS, in 

applications to survey density forecasts of UK inflation.  Section 2 contains a formal 

presentation of the rules and discussion of the decompositions that have been proposed.  

Section 3 extends the study of Casillas-Olvera and Bessler (2006) by considering both of the 

rules and a longer sample period.  Section 4 turns to the individual respondents to the Bank of 

England’s survey and again uses both rules to evaluate their forecast performance: it is seen 

that the RPS is preferred.  Incomplete data are a feature of this survey, like all forecast 

surveys, and an adjusted score, RPS*, is proposed, to standardise comparisons in the face of 

missing observations caused by differential non-response.  An alternative combined forecast 

to the published survey average density forecast is also considered.  Section 5 concludes. 

 

 

2. Quadratic Scoring Rules 

 

2.1. The Brier and Epstein rules 

We consider a categorical variable whose sample space consists of a finite number K of 

mutually exclusive events, and for which a probability forecast of the outcome at time t is a 

vector of probabilities ( )1 ,...,t Ktp p .  We have in mind applications in which the categories 

are the K bins of a histogram of a continuous random variable X, and we define indicator 

variables ,  1,...,ktd k K= , which take the value 1 if the outcome tx  falls in bin k, otherwise 

0ktd = .  Also in mind are time series forecasting applications, in which each forecast of the 

outcome at times 1,...,t T=  is formed at some previous time.  For a sample of forecasts and 

realisations of the categorical variable, the Brier score is given as 

 ( )2
1 1

1
QPS

T K

kt kt

t k

p d
T = =

= −∑∑ .        (1) 
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The range is usually stated as 0 QPS 2≤ ≤ , although the extreme values are obtained in 

extreme circumstances in which, in every period, all the probability is assigned to a single bin 

and the outcome either does or does not fall into it.  More generally, there is a non-zero lower 

bound that corresponds to a best fit.  If the bin probabilities are constant over 

time, ,kt ks kp p p= =  say, ,  1,...,t s k K≠ = , this is obtained for any forecast sequence in 

which the relative bin frequencies  

 
1

1
,  1,...,

T

k kt

t

d d k K
T =

= =∑  

match the probabilities kp , whereupon the score achieves its minimum value 

 2
min

1

QPS 1
K

k

k

p
=

= −∑  . 

Note that this is indifferent to the ordering of the time series of observations. 

 

 The Brier score is also indifferent to the fact that, in the histogram context, there is a 

natural ordering of the categories, or an implicit measure of the distance between them, which 

should be taken into account, as noted above.  To do this, Epstein’s (1969) proposal replaces 

the density functions implicit in the Brier score with their corresponding distribution 

functions (Murphy, 1971).  Defining these as 

 
1 1

,    ,    1,...,
k k

kt jt kt jt

j j

P p D d k K
= =

= = =∑ ∑ , 

with 1Kt KtP D= = , the ranked probability score is 

 ( )2
1 1

1
RPS

T K

kt kt

t k

P D
T = =

= −∑∑ .        (2) 

The RPS penalises forecasts less severely when their probabilities are close to the actual 

outcome, and more severely when their probabilities are further from the actual outcome.  

Like the Brier score, its minimum value is 0, occurring in the same extreme circumstance of 

the outcomes falling in bins whose forecast probability is 1.  Similarly, the maximum value 

of the RPS occurs when some 1ktp =  and the outcome falls in a different bin, but the actual 

value depends on how far from the kth bin that is.  In extremis, with the outcomes and the 

unit-probability bins being located at opposite ends of the range, this value is 1K − . 

 

 



 5

2.2. Decompositions of the scores 

Several decompositions or partitions of the Brier score and, by extension, the Epstein score 

have been proposed, with the aim of obtaining information about different aspects of forecast 

performance.  Early contributions focused on the event probability forecasting problem and 

used a simplified version of the Brier score given in equation (1), which we denote QPSE, 

namely 

 ( )2
1

1
QPSE

T

t t

t

p d
T =

= −∑ .        (3) 

Here tp  is the forecast probability, and 1td =  if the event occurs or zero if it does not.  The 

QPSE score is equal to half of the value obtained from equation (1) with 2K = , since it 

neglects the complementary non-occurrence of the event, whose forecast probability is 1 tp− . 

 

 Sanders (1963) requires that all probabilities be expressed in tenths and partitions the 

T forecasts into eleven subsets of size jT , say, in which the forecast probability is 

10,  0,...,10jp j j= = .  To consider QPSE subset-by-subset we rearrange the summation in 

equation (3) as 

 ( )
10 2

0

1
QPSE

j

j jt

j t T

p d
T = ∈

= −∑ ∑ . 

Expanding the terms in the inner summation gives 

 ( ) ( ) ( ) ( ) ( )2 2 2 2
1

j j

j jt j j j jt j j j j j j

t T t T

p d T p d d d T p d d d
∈ ∈

⎡ ⎤− = − + − = − + −⎢ ⎥⎣ ⎦∑ ∑ , 

where jd  is the relative frequency of occurrence of the event over the jT  occasions on which 

the forecast probability is jp .  Summing the first term on the right-hand side over j and 

dividing by T gives the component of QPSE that measures what is variously called validity, 

reliability or calibration.  A plot of jd  against jp  is called a reliability diagram or calibration 

curve: for a “well-calibrated” forecaster this is close to a diagonal line.  The sum over j of the 

second term on the right-hand side, divided by T, involves only the outcome indicators but 

nevertheless reflects forecaster behaviour, because the indicators are sorted into classes 

according to the forecaster’s probabilities.  Sanders (1963) refers to this term as a measure of 

the “sharpness” of the forecasts, using a term introduced by Bross (1953, Ch.3); “resolution” 
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and “refinement” are also in use.  Its maximum value is obtained when each jd  is 0.5, that is, 

the forecaster’s probabilities have not succeeded in discriminating high-probability and low-

probability occurrences of the event, and sharpness is lacking. 

 

 The second term in Sanders’ decomposition can be further partitioned as 

 ( ) ( ) ( )
10 10 2

0 0

1 1
1 1j j j j j

j j

T d d d d T d d
T T= =

− = − − −∑ ∑ , 

where d  is the overall rate of occurrence of the event (Murphy, 1973).  This separates out 

the variance or uncertainty of the indicator variable, ( )1d d− , which depends only on 

nature’s determination of the occurrence or otherwise of the event.  Murphy argues that the 

remainder can then more appropriately be called resolution, since it measures the degree to 

which the relative frequencies for the 11 subcollections of forecasts differ from the overall 

relative frequency of occurrence of the event: high resolution improves (lowers) the QPS. 

 

 This three-component decomposition is used in a study of the Bank of England 

Monetary Policy Committee’s density forecasts of inflation and growth by Galbraith and van 

Norden (2008).  An event probability forecast is derived from a published density forecast by 

calculating the forecast probability that the variable in question exceeds a given threshold.  

The resulting probabilities take continuous values, rather than the discrete values assumed in 

the preceding derivations, and one could simply group the probabilities into bins.  Instead, 

Galbraith and van Norden use a kernel estimator to obtain a smoothed calibration curve. 

 

 Calculating above-threshold and below-threshold probabilities from a density forecast 

in effect reduces the MPC’s density forecast, which has the two-piece normal functional 

form, to a two-bin histogram.  The Bank’s forecast survey questionnaire most often specifies 

a six-bin histogram, and generalisations of these decompositions of the QPS for 2K >  are 

available in the literature.  However, they depend on similar discretisation and grouping of 

the forecasts to that used in the above derivations, although with six categories and 

probabilities stated in tenths (or similarly rounded) the number of possible forecasts is 3003, 

from Murphy’s (1972) equation (1).  Many of these possible configurations are of little 

practical relevance to the SEF individual dataset, where the forecast histograms are almost 

invariably unimodal, although the tail probabilities in the first and/or last open-ended bins are 
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sometimes sufficiently large to give the impression of an additional local peak.  Nevertheless 

the number of distinct configurations observed in the SEF histograms analysed in Section 4 is 

typically close to the time series sample size, and a decomposition of the individual scores 

into reasonable estimates of forecast reliability and resolution is not practicable. 

 

 A decomposition of the QPS which does not require such a grouping of forecasts into 

distinct subcollections is the covariance decomposition due to Yates (1982, 1988), obtained 

as follows: 

 ( ) 22

1 1 1 1

1 1
( ) ( ) ( )

T K K T

kt kt kt k kt k k k

t k k t

p d p p d d p d
T T= = = =

⎡ ⎤− = − − − + −⎣ ⎦∑∑ ∑ ∑  

            ( ) ( ) ( ) ( )2

1

var var 2cov ,
K

k k k k k k

k

p d p d p d
=

⎡ ⎤= + + − −⎢ ⎥⎣ ⎦∑ . (4) 

Yates (1988) notes that the second term in this last expression, the sum of the outcome 

indicator sample variances var( ) (1 )k k kd d d= − , is outside the forecaster’s influence, while 

the third term, the sum of squared “biases”, indicates the miscalibration of the forecasts.  He 

offers further algebraic rearrangement of the first and fourth terms, as in the initial event-

probability derivation with 2K =  (Yates, 1982), although their interpretations do not readily 

generalise to the case 2K > . 

 

 The Yates decomposition is reported by Casillas-Olvera and Bessler (2006) in their 

comparative study of the MPC and SEF survey average density forecasts, noted above and 

extended in the next section.  The contribution of the variance of d to the total QPS varies 

over subperiods, but is the same for the two forecasts under consideration, as indicated by the 

above derivation.  When working with the forecasts supplied by individual respondents to the 

survey, however, we face the familiar problem of individual non-response, which differs 

across individuals, so that the data have the form of an unbalanced panel.  Thus the individual 

scores are calculated over different subsamples of the maximum possible T observations, and 

it is no longer the case that the contribution of the variance of d is the same for all individual 

forecasters.  Since this term remains outside the forecasters’ influence, to evaluate 

comparative forecast performance we propose an adjusted score, denoted QPS*, obtained by 

replacing the individual subsample outcome variance component of the QPS by the full-

sample outcome variance. 
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 We are not aware of a comparable covariance decomposition of the RPS, although the 

(mostly meteorological) literature contains much discussion of extensions of the previous 

reliability-resolution-uncertainty decomposition to the RPS and its continuous generalisation.  

Nevertheless it is clear that the derivation in equation (4) applies equally well to the RPS 

given in equation (2), on replacing lower-case p and d by upper-case P and D.  As a result, a 

similar variance of D term can be identified that is a function of the outcomes alone.  For 

comparing forecast performance in the face of differential non-response we again propose an 

adjusted score RPS*, obtained by replacing the individual-specific measure of outcome 

variance in the RPS by its full-sample equivalent. 

 

 

3. The SEF average and MPC density forecasts of inflation: QPS and RPS 

 

In this section we extend Casillas-Olvera and Bessler’s (2006) comparative evaluation of the 

average density forecasts of inflation, two years ahead, from the Survey of External 

Forecasters, and the Monetary Policy Committee’s fan chart forecasts of inflation for the 

same horizon.  We increase their time series sample size, of 14 quarterly forecasts, to 36, and 

we consider the RPS as well as the QPS.  Both forecasts are published in the Bank of 

England’s quarterly Inflation Report, although to obtain numerical values of the parameters 

of the two-piece normal distribution on which the MPC’s fan charts are based, it is necessary 

to consult the Bank’s spreadsheets. 

 

 The Bank of England’s quarterly Survey of External Forecasters began in 1996.  The 

institutions covered in the survey include City firms, academic institutions and private 

consultancies, and are predominantly based in London.  The sample changes from time to 

time as old respondents leave or new survey members are included, and not every institution 

responds every quarter, nor answers every question.  Although there is no record of the 

response rate, the publication of summary results in the Inflation Report always includes the 

number of responses on which each reported statistic is based; typically this is in the low 

twenties. 

 

 Initially the SEF questionnaire asked for forecasts of inflation in the last quarter of the 

current and following years.  Such questions eventually deliver sequences of fixed-event 

forecasts, analysed by Boero, Smith and Wallis (2008c), but not quarterly series of fixed-
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horizon forecasts.  However, in 1998 a third question was added, asking for forecasts two 

years ahead, and this marks the start of the series analysed below.  (At this time a second 

variable, GDP growth, was also added.)  In May 2006 all three questions were switched to a 

fixed-horizon format, focusing on the corresponding quarter one, two and three years ahead.  

In the UK’s inflation targeting policy regime, the Government chooses the targeted measure 

of inflation and its target value, and the SEF has sought forecasts of the same variable, 

namely the Retail Prices Index excluding mortgage interest payments (RPIX) until the end of 

2003, then the Consumer Prices Index (CPI).  Thus forecasts collected in the eight quarters 

through 2002-3 have to be evaluated against outcomes in 2004-5 for the previous target 

variable, not the then-current target variable.  At the time of writing, outcome data are 

available to the end of 2008, hence we use the surveys from 1998Q1 to 2006Q4, a total of 36.  

The histograms in the first five of these surveys have four bins  (<1.5, 1.5-2.5, 2.5-3.5, >3.5), 

then the two interior bins were further divided and from 1999Q2 there are six bins  

(<1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, >3.5); finally in 2004Q1 the whole grid was shifted 

downwards by 0.5, following the change in the target from 2.5% RPIX inflation to 2% CPI 

inflation.  For comparative purposes we convert the MPC’s fan chart forecasts at the two-year 

horizon to sets of probabilities for the same bins, using the MPC’s parameterisation of the 

two-piece normal distribution (Wallis, 2004, Box A). 

 

Table 1.  Scores of SEF average and MPC density forecasts of inflation 

 

 SEF MPC 

QPS 0.711 0.759 

   

RPS 0.566 0.596 

      Note:  36T = ; forecasts of inflation two years 

      ahead published 1998Q1-2006Q4. 

 

 The scores of the two forecasts are shown in Table 1.  It is seen that the survey 

average forecast has a smaller QPS than the MPC forecast, strengthening Casillas-Olvera and 

Bessler’s finding for the first 14 of these 36 quarterly observations.  The RPS gives the same 

ranking of the two forecasts, although the two RPS values are slightly closer together than the 

two forecasts’ QPS values.  The RPS values are smaller than the QPS values, since the 

forecast densities are unimodal and, most of the time, the outcomes fell towards the centre of 
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these distributions: the positioning of relatively high probabilities close to the bin in which 

the outcome fell is acknowledged by the RPS, but not by the QPS. 

 

 To study the comparative behaviour of the two scores in greater detail we turn to 

Figure 1, which illustrates observation-by-observation the components of the calculation, 

namely the histogram probabilities and the location of the inflation outcome, for the SEF 

average forecast and MPC forecast in the upper and lower panels respectively.  The coloured 

segments of the vertical columns show, with reference to the left-hand scale, the allocation of 

forecast percentage probabilities to the histogram bins.  For most of the period there are six 

bins, and the colours follow a rainbow array.  The key to the figure records the RPIX 

inflation range for each bin; from 2004Q1 all these numbers should be reduced by 0.5, 

following the switch to CPI inflation.  For the first five observations there are four bins, with 

the two interior bins combining, pairwise, the four interior bins of the six-bin grid, as 

described above: their colours are intermediate, in the same spectral sense, between the 

separate colours of their corresponding pairs.  The large black dots show in which bin the 

inflation outcome, two years later, fell.  There is no inflation scale in Figure 1, and the dots 

are simply placed in the centre of the probability range of the appropriate bin; this is the same 

bin for both forecasts, since we have calculated the MPC’s probabilities as if the MPC was 

answering the SEF questionnaire, as noted above.  Readers wishing to see a plot of actual 

inflation outcomes should consult Figure 2.  The QPS and RPS for each observation are 

shown with reference to the right-hand scale; these points are joined by solid and dashed lines 

respectively, and their mean values over the 36 observations are the content of Table 1. 

 

 For most of the period, the inflation outcomes fell in one of the two central bins of the 

histograms, and the RPS is smaller than the QPS because it correctly acknowledges the 

appropriate unimodal shape of the densities, for both forecasts.  The SEF scores are generally 

smaller than the MPC scores in these circumstances, because the SEF densities have smaller 

dispersion.  However the last three forecasts provide an interesting contrast.  The outcomes, 

with CPI inflation in excess of 3%, fell in the upper open-ended bin, and the MPC’s greater 

tail probabilities result in its lower scores.  The difference with the SEF is more marked in the 

case of the RPS, where the MPC correctly benefits from greater probabilities not only in the 

upper bin, but also in the adjoining bin.  However these three observations are not sufficient 

to offset the overall lower scores of the SEF average forecasts, as indicated by the sample 

means in Table 1.  Nevertheless these different episodes illustrate the advantage of the RPS in 
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better reflecting probability forecast performance in categorical problems which have a 

natural ordering, such as these density forecast histograms, and its continued use is 

recommended. 

 

 The inclusion of Figure 2 for the benefit of readers who are unfamiliar with the UK’s 

inflationary experience over this period also allows us to relate a further comparison between 

the SEF average forecasts and the MPC’s forecasts.  Figure 2 shows the inflation outcomes, 

2000Q1-2008Q4, together with point forecasts made two years earlier, namely the MPC 

density forecast means as published on the Bank’s spreadsheets and the corresponding means 

calculated from the SEF average histograms.  The general tendency of the external forecasts 

to stay close to the inflation target irrespective of the inflation experience at the time the 

forecasts were made is often taken to be an indication of the credibility of the MPC and the 

inflation targeting policy regime.  Viewed simply as forecasts, however, as in the analysis of 

the MPC’s forecasts by Groen, Kapetanios and Price (2009), we find that their respective 

forecast RMSEs are 0.65 (MPC) and 0.61 (SEF), which matches the ranking of these 

forecasts given in Table 1 by the scoring rules. 

 

 

4. Scoring the individual SEF respondents 

 

4.1. QPS and RPS for regular respondents 

The dataset of individual SEF responses made available by the Bank of England gives each 

respondent an identification number, so that their individual responses, including non-

response, can be tracked over time, and their answers to different questions can be matched.  

The total number of respondents appearing in the dataset is 48, but there has been frequent 

entry and exit, as in other forecast surveys, and no-one has answered every question since the 

beginning.  To avoid complications caused by long gaps in the data, and to maintain degrees 

of freedom at a reasonable level, we follow the practice of US SPF researchers and conduct 

our analyses of individual forecasters on a subsample of regular respondents.  For the present 

purpose we define “regular” as “more than two-thirds of the time”, which gives us a 

subsample of 16 individual respondents, who each provided between 25 (two individuals) 

and 36 (one individual) of the 36 possible two-year-ahead density forecasts of inflation over 

the 1998Q1-2006Q4 surveys. 
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 We first extend the QPS-RPS comparison of the previous section to the individual 

level.  Each regular respondent’s scores are calculated from their available forecasts and 

outcomes, thus T in equations (1) and (2) is between 25 and 36.  A scatter diagram of the 

results is presented in Figure 3, which also includes the SEF average density forecast as a 

point of reference, plotted at the values given in Table 1.  Bearing in mind the difference in 

scales, it is seen that all 16 points lie below the “ 45°” line, thus Section 3’s finding for the 

SEF average forecast that the RPS is less than the QPS extends to these individual forecasts, 

for the same general reasons discussed above.  The scatter of points is positively sloped, and 

the correlation between the QPS and RPS of the regular respondents is 0.87.  Nevertheless 

there are some small reversals of rankings: whenever the line joining two points has a 

negative slope, the QPS and RPS disagree about the ranking of the corresponding individuals. 

 

 For detailed individual scrutiny we first pick out individual 26, who is the only ever-

present regular respondent, and is highly ranked (3
rd

) on both scores, and is an outlier in one 

further respect.  Whereas almost three-quarters of all the individual forecasts in the sample 

(357 out of 485) utilise all available histogram bins, there are 21 forecasts which have non-

zero entries in only two bins, and 17 of these are individual 26’s forecasts.  The upper panel 

of Figure 4 shows the observation-by-observation components of the score calculations for 

individual 26 as in Figure 1; on the five occasions when inflation fell in outer bins with zero 

forecast probabilities, the large black dots are placed on the boundary of the grids.  These 

include two quarters with inflation below 2% (the 2000Q2,Q3 forecasts) and two with 

inflation above 3% (the 2006Q2,Q4 forecasts).  For each of these four observations the QPS 

takes approximately the same value, in the range 1.50-1.58, suggesting that the four forecasts 

are of approximately equal quality.  On the other hand the RPS gives a well-separated 

ranking of these forecasts:  2006Q2 is clearly worst, followed by 2006Q4, whereas 

2000Q2,Q3 are rather better.  Given the location of the various probabilities forming the 

histograms, this latter view is correct, and the QPS’s indifference to this question again 

emphasises its inadequacy as an indicator of the quality of these density forecasts. 

 

4.2. Missing data 

For comparison we include in the lower panel of Figure 4 the corresponding data for 

individual 25, who has the best RPS result, as shown in Figure 3.  Although the first seven 

forecasts do not score as well as those of individual 26, the local peaks in the latter’s RPS at 

the zero-probability outcomes have much diminished counterparts in individual 25’s scores.  
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Also very noticeable, however, is that individual 25’s last two forecasts are missing, whereas 

these observations make relatively high contributions to individual 26’s overall RPS. 

 

 To place such comparisons on an equal basis, one might consider calculating the 

scores over the subsample of observations common to both forecasters, thus in the above case 

simply using the first 34 datapoints for both individuals.  However this neglects available 

information on the forecast performance of the individual who has responded more often.  

Moreover to make multiple comparisons among our 16 regular respondents this is not a 

practical solution.  Although none of these respondents is missing more than 11 of the 36 

possible forecasts, the more-or-less random occurrence of the missing forecasts means that 

there are only three occasions when all 16 individual forecasts are available.  Overall, 91 of 

the possible 16 36 576× =  forecasts are missing, comprising 77 cases of complete non-

response to the questionnaire, and 14 cases of an incomplete questionnaire being returned, 

known as item non-response to survey practitioners.  There is no evidence that the process 

leading to missing forecasts depends on either forecasts or inflation outcomes, and the 

missing data can be called missing at random and the observed data observed at random 

using terms introduced by Rubin (see Little and Rubin, 2002).  Neither imputation-based 

methods nor model-based methods for handling incomplete data, as discussed by Little and 

Rubin, appear applicable in the present context, although we note an interesting application to 

the construction of combined point forecasts in the face of missing data in the US SPF by 

Capistran and Timmermann (2007). 

 

 Instead, as discussed at the end of Section 2, we focus on the components of the score 

that reflect forecaster performance, by correcting the score for variation in the outcome 

variance term identified in the Yates decomposition (equation (4), or its generalisation to the 

RPS).  To retain comparability with the uncorrected score, we replace the outcome variance 

calculated over an individual’s subsample by the full-sample outcome variance.  Thus the 

score for individual 26, who has no missing observations, does not change.  (For the purpose 

of this calculation we assume six histogram bins throughout, and there is no difficulty in 

assigning the first five outcomes accordingly.) 

 

 The results are shown in Figure 5, as a scatter diagram of RPS and adjusted RPS 

(denoted RPS*) values.  Points lying above the 45°  line represent individuals whose score 

has increased as a result of the adjustment, and their previous lower score might be 
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considered to be the result of having missed some hard-to-forecast occasions.  This adjective 

certainly applies to the last three inflation outcomes in our sample, and individuals 2, 25 and 

27 did not respond on two of these occasions, while individual 8 missed all three.  The 

adjustment corrects for the smaller outcome variance in their respective subsamples and 

increases their scores, resulting in a more accurate picture of their relative forecast 

performance.  In particular, the adjustment moves individual 25 from 1
st
 to 4

th
 position in the 

ranking, and individual 8 from 8
th

 to 14
th

. 

 

 As a final illustration at the individual level the data for the two respondents whose 

scores are decreased most as a result of the adjustment are shown in Figure 6.  Individual 9, 

in the upper panel, has the same number of missing observations – ten – as individual 8, but 

these correspond to outcomes that fell in the central bins of the histograms.  Thus the 

subsample outcome variance is greater than the full-sample variance and the adjustment 

reduces the score.  Nevertheless individual 9 remains ranked in last place, as a result of the 

excessive dispersion of the forecast histograms, in particular the high probabilities attached to 

forecast outcomes in the lowest, open-ended bin, which did not materialise.  On the other 

hand for individual 31, in the lower panel of Figure 6, who has eleven missing observations 

similarly distributed, the adjustment changes the ranking, from 6
th

 on RPS to the top ranked 

position on RPS*.  The scores for the four forecasts made between 2002Q3 and 2003Q2 are 

unusually small, as a result of placing rather high probabilities in the bins into which inflation 

duly fell, and zeroes in the outer bins.  Throughout, unlike individual 9, individual 31 placed 

small, or zero, probabilities in the lower open-ended bin, and the latter’s relative scores 

benefited from this choice, except in 2000Q2,Q3. 

 

 The overall effect of these adjustments for differential non-response is to reduce the 

dispersion of the individual scores.  The ( )var kD  terms in the Yates decomposition are 

outside the forecasters’ influence, and assuming that these are independent of the factors that 

result in individual non-response from time to time, the adjusted score RPS* that corrects for 

the differential impact of these terms gives a better comparative summary of individual 

forecast performance.  There remains considerable dispersion in the RPS* scores, however, 

and this heterogeneity in individual density forecasting performance mirrors the finding of 

considerable heterogeneity in point forecasting performance in this survey by Boero, Smith 

and Wallis (2008b). 
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4.3. Forecast combination 

The idea that combining different forecasts of the same event might be worthwhile has gained 

wide acceptance since the seminal article of Bates and Granger (1969), although the resulting 

literature has been mostly concerned with point forecasts, as was that article.  The relative 

neglect, until recently, of density forecast combination is surprising, given that the first article 

on the US survey of forecasters (Zarnowitz, 1969) included a survey average density forecast 

constructed as a simple average of respondents’ forecast histograms: this appeared in the 

same year as Bates and Granger’s article.  The practice of reporting survey average forecast 

histograms continues to this day, as seen above.  Recent contributions on density forecast 

combination more generally include Wallis (2005), Hall and Mitchell (2007) and Geweke 

and Amisano (2009). 

 

 Density forecast combination as yet lacks an optimality result comparable to that of 

Bates and Granger (1969) for point forecast combination.  They showed that a linear 

combination of two competing point forecasts using the optimal (variance minimising) 

weight in general has a smaller expected squared forecast error than either of the two 

competing forecasts.  The only case in which no improvement in forecast performance in this 

sense is possible is that in which one forecast is already the optimal forecast (with minimum 

expected squared error), whereupon the optimal weights are 1 and 0.  On the other hand, for 

two density forecast histograms we can show that the expected QPS of any linear 

combination of two forecasts exceeds that of the better forecast, thus combining a reasonably 

well-performing forecast with an inferior forecast makes matters worse.  This might accord 

with one’s intuition, but for point forecasts this intuition was overturned by Bates and 

Granger’s result and many subsequent empirical studies. 

 

 In the light of the continued use of simple averages of survey forecast histograms and 

the location of its score in the middle of the cluster of individual scores seen in Figure 3, we 

investigate the applicability of a different result from the empirical point forecast 

combination literature, namely that trimmed means often outperform other combinations: for 

a recent survey see Timmermann (2006).  The heterogeneity of individual performance 

among the 16 regular forecasters considered above suggests that improvement in the scores 

of an average forecast might be obtained if some of the individuals with higher scores were 

excluded from the average. 
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 To mimic a real-time setting for the exercise we divide our sample period into 

“training” and “evaluation” subperiods.  The first subperiod is used to identify the eight 

individuals with lowest RPS* scores.  Remembering that in order to calculate the score for a 

given forecast we have to wait two years for the outcome to materialise we set the total length 

of this period at five years, thus selection into the trimmed sample is based on the RPS* 

scores over the first 12 forecasts.  A trimmed average forecast is then constructed from the 

forecast histograms of these individuals, and its observation-by-observation data are shown in 

Figure 7.  For the first five years this is an ex-post construction which could not have been 

done at the time, whereas over the second subperiod, the final four years, we have an ex-ante 

forecast which can be evaluated by comparing its scores to those of the published SEF 

average shown in Figure 1.  Over these 16 quarters, the mean RPS is 0.683 for the SEF 

average and 0.616 for the trimmed average, thus some gains are available from this device. 

 

 We end this section with an observation on the respective empirical literatures on 

point and density forecast comparison and combination.  Smith and Wallis (2009) note that 

there are two strands in the point forecast comparison literature, one concerned with 

comparisons across individual participants in forecast surveys and the other with comparisons 

of competing forecast models and methods constructed by interested researchers.  Greater 

heterogeneity in individual forecast performance is often found in analyses of surveys of 

economic forecasters than in comparisons of forecasts from competing statistical models.  

The corresponding density forecast comparison literature is as yet sparse, but we already 

notice a similar outcome.  As a summary measure of the dispersion of individual RPS* scores 

shown in Figure 5 we obtain a coefficient of variation of 0.143.  Geweke and Amisano (2009) 

construct six competing forecasting models for the daily S&P 500 returns from the ARCH, 

stochastic volatility and Markov mixture families.  The fitted models yield continuous 

densities whose logarithmic scores are reported in their Table 1: their coefficient of variation 

is 0.051.  Whether the forecasting models that researchers construct for comparative purposes 

continue to exhibit less diversity than respondents to forecast surveys remains to be seen. 

 

 

5. Conclusion 

 

This paper provides a practical evaluation of some leading density forecast scoring rules in 

the context of forecast surveys.  We analyse the forecasts of UK inflation obtained from the 
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Bank of England’s Survey of External Forecasters, considering both the survey average 

forecasts published in the quarterly Inflation Report, and the individual survey responses 

recently made available by the Bank.  The density forecasts are collected as a set of 

probabilities that future inflation will fall in one of a small number of preassigned ranges, and 

thus are examples of categorical forecasts in which the categories have a natural ordering.  

The ranked probability score was initially proposed as an alternative to the quadratic 

probability score for precisely these circumstances, and our exercise makes its advantages 

clear. 

 

 Missing observations are endemic in surveys, and we have two answers to this 

problem in the present context.  First, in common with much other research on forecast 

surveys, our study of individual forecast performance is conducted on a subsample of regular 

respondents.  In our case these are the 16 respondents who are each missing less than one-

third of the possible two-year-ahead forecasts collected between 1998Q1 and 2006Q4.  Their 

forecast scores have considerable dispersion, part of which is due to differences in the 

inflation outcomes over the different subperiods for which individuals provided their 

forecasts.  Accordingly, and secondly, we propose an adjustment to the score, based on the 

Yates decomposition, which corrects for the differential impact of the component of the score 

that depends only on the outcome and not on the forecast, and hence gives a clearer measure 

of forecaster performance.  We recommend the adjusted ranked probability score, denoted 

RPS*, to other analysts of forecast surveys facing the familiar problems of non-response. 

 

 Density forecast combination is receiving increasing attention, which parallels several 

themes in the well-established point forecast combination literature.  One such theme 

concerns the sensitivity of a simple mean of several forecasts to extreme forecasts, and the 

use of a trimmed mean, obtained by removing the worst-performing forecasters from the set 

before the mean is calculated, as an alternative.  In a similar exercise, we identify the eight 

better-performing forecasters over the first three years of our surveys, remembering that we 

have to wait a further two years for the outcome data, and then find that the average forecast 

of these eight outperforms the published survey average forecast over the remaining four 

years of our sample period.  The Survey of External Forecasters provides an input to the 

Monetary Policy Committee’s quarterly forecasting round, and the use of trimmed means for 

this purpose is seen to have advantages.  On the other hand, the survey is also used as an 

indicator of current sentiment about future macroeconomic developments and the credibility 
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of monetary policy, and it might be argued that, for this purpose, no-one’s view should be 

discarded. 

 

 Our previous article analysing the point forecasts of inflation and GDP growth from 

the SEF (Boero, Smith and Wallis, 2008b) found considerable heterogeneity among 

individual respondents, shown by the failure of standard tests of equality of idiosyncratic 

error variances and evidence of different degrees of asymmetry in forecasters’ loss functions.  

Similar dispersion of forecast scores from their density forecasts of inflation again indicates 

that some respondents are better at forecasting than others.  This leads us to close this paper 

with the same final thought as that article, that “several of our findings prompt questions 

about the individual forecasters’ methods and objectives, the exploration of which would be 

worthwhile”. 
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Figure 1.  Forecast probabilities two years ahead, inflation indicators, QPS and RPS 

Upper panel: SEF average forecast;  lower panel: MPC forecast 
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Figure 2.  Inflation, 2000Q1-2008Q4, and mean forecasts made two years earlier 
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Figure 3.  QPS and RPS for 16 regular respondents and the SEF average (filled square) 
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Figure 4.  Forecast probabilities two years ahead, inflation indicators, QPS and RPS 

Upper panel: individual 26;  lower panel: individual 25 
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Figure 5.  RPS and RPS* for 16 regular respondents 
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Figure 6.  Forecast probabilities two years ahead, inflation indicators, QPS and RPS 

Upper panel: individual 9;  lower panel: individual 31 
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Figure 7.  Forecast probabilities two years ahead, inflation indicators, QPS and RPS 

SEF trimmed average forecast 
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