Introduction to Nuclear and Particle Physics 1 - Tutorial

S. Paul

Winter semester 2002/03

Exercise 12: Form factor of a homogeneously charged sphere

a. Calculate the form factor of a homogeneous, spherical charge distribution:

$$
\frac{1}{Z} \rho(r)= \begin{cases}\frac{3}{4 \pi R^{3}} & \text { if } r \leq R \\ 0 & \text { if } r>R .\end{cases}
$$

b. Scattering electrons elastically from carbon, one finds a minimum of the differential cross section at $q \approx 1.8 \mathrm{fm}^{-1}$. What is the radius of a carbon nucleus calculated from this, assuming a homogeneous, spherical charge distribution?

Exercise 13 : Charge radii of nuclei

For light nuclei the charge density distribution $\rho(r)$ is well reproduced by a Gaussian distribution $\rho(r)=n \exp \left(-r^{2} / \alpha^{2}\right)$.
a. Calculate the normalization constant n from $\quad \int \mathrm{d}^{3} x \rho(r)=Z \quad$ (proton number).
b. Find an expression for the mean square radius $\quad\left\langle r^{2}\right\rangle=\frac{1}{Z} \int \mathrm{~d}^{3} x r^{2} \rho(r)$ as a function of α.
c. Calculate the charge form factor $\quad F\left(\mathbf{q}^{2}\right)=\frac{1}{Z} \int \mathrm{~d}^{3} x \mathrm{e}^{-i \mathbf{q} \cdot \mathbf{r}} \rho(r)$.

Show that $\left\langle r^{2}\right\rangle=-\left.6 \frac{d}{d q^{2}} F\left(\mathbf{q}^{2}\right)\right|_{\mathbf{q}^{2}=0}$.
d. Estimate the charge radii $\sqrt{\left\langle r^{2}\right\rangle}$ of the nuclei ${ }^{4} \mathrm{He}$ and ${ }^{6} \mathrm{Li}$ from the measured form factors, shown in the figure below.

Exercise 14 : Neutron - proton scattering

The differential cross section for the scattering of slow neutrons from protons has been measured to have the following shape:

a. Show that the interaction potential between neutron and proton cannot be of the Coulomb type $V(r)=\frac{\text { const. }}{r}$.
b. Estimate the range R of the neutron-proton interaction assuming that it is given by a potential

$$
V(r)=\left\{\begin{array}{ll}
\infty & \text { if } r<R \tag{1}\\
0 & \text { if } r \geq R
\end{array} \quad\right. \text { Scattering from a "hard sphere" }
$$

Comment the result.
c. The differential cross sections for proton-proton and neutron-neutron scattering are found to be almost identical. What conclusions can you draw from this?
d. Estimate qualitatively how the differential cross section will change at higher energies.
(Note: Units of cross sections: 1 barn $=10^{-24} \mathrm{~cm}^{2}, 1 \mathrm{mbarn}=10^{-27} \mathrm{~cm}^{2}=0.1 \mathrm{fm}^{2}$)

