
1 

 

Web Programming 2 

Packet #5:  A Couple of Projects 
 
Objectives:  Apply the material that we learned in the previous packets to common tasks. 
 
Project 1.  Simple shopping site.  Visit Johnny 
Demo’s site to see how a great guy like Johnny did 
this exercise. 
 
Step 1.  When a user first visits the site, they should 
see a drop down list that has been “populated” by the 
information in the products table. 
 
The number next to each item is the current 
inventory.  If the number is zero then that item 
should be disabled so that the user cannot select it.  
The value (in the option tag) associated with each 
item should be the appropriate UPC number.  No 
price information is available. 
 
The form should use the GET method because it is 
(1) this action does not change anything in the 
database and (2) it is a small, non-confidential 
amount of data. 
 
Code and test this portion before moving on.  
Clicking on the button should simply refresh the page 
and do nothing else. 
 
Step 2.  If the user clicks the button then another 
form should appear below the first (as shown in the 
second figure).  In this example the user had selected 
“Errors.”  The drop-down list next to “How many?” 
will normally contain numbers from 1 to 20 unless 
the number of items in inventory is less than 20.  In 
this example the number of errors is 19 so the drop 
down list goes from 1 to 19. 
 
The second form should use the POST method 
because if the user places an order, the contents of 
the database will change.  The action is to simple 
refresh this page. 
 
Code and test this portion.  The bottom form should 
only appear if the “Pick a Product” button has been 
clicked.  The product information displayed in the bottom should reflect what the user selected.  
The Order and Cancel buttons simply refresh the page and cause the bottom form to disappear. 



2 

 

Step 3.  When the user clicks the Order button, we 
want to display a screen like the one shown below. 
 
 

 
Notice: 

 the number of items in the drop down list has decreased. 

 bottom form has disappeared. 

 the message displays all the relevant information. 
 
When the user clicks the Order button, we will send the following information back to the server: 
 - the upc value of the product because this is the primary key for the PRODUCTS table.  
This will allow us to identify and update one unique record in the database. 
 - the number of items they want to purchase. 
 - the unit price of the item being ordered. 
 - the current number in inventory (before processing the order).  We will need this value 
when we update the number in the database.   
 
To send the data back to the server we will use input elements of type hidden.  For example, the 
following statement adds an element to the form but it is not displayed in the form (though it can 
easily be seen if you view the source code). 
 <input type= "hidden"  value= "123"  name="upc"> 
 
The php code to update the table should come before the code that generates the product list.  It 
can follow this format. 

if ( isset ( $_POST["btnOrder"] ) ){ 
 Read the data from the second form 

 connect to the database and update the table. 

 close the connection to the database 

} 
 
Continued on the next page. 



3 

 

Add some php code so that if the user clicks the Cancel 
button, the bottom form disappears the message “Your 
order has been cancelled.” appears. 
 
 
 
General reminders: 

 Use number_format function to properly format 
the numbers. 

 Disable any products in the product list where the 
inventory is zero. 

 When the user selects a product and clicks the 
“Pick a Product” button, the selected product 
should be the displayed item in the drop down 
list.  If they cancel a purchase then the first item 
will be displayed. 

 Check that the source code (as viewed from the client’s browser) does not contain any 
HTML errors. 

 
 
IMPORTANT DISCLAIMER!  This is just a simple exercise.  We have not done any input 
checking on the server side.  There are other important details that we are not addressing, besides 
security issues. 
****************************************************************************** 
 
 

Checkboxes in HTML.  A checkbox is an simple 

element to include in a form.  Here is an example: 
 
<!DOCTYPE HTML><html><head><meta charset="utf-8"> 
<title>Exercise</title></head><body> 
<h1>Checkboxes</h1> 
<form method="get" action="some_page.php"> 
<p>Please send me a pizza with the following extras<br> 
sauage <input type="checkbox" name="chk_sausage"  
                       value="sausage"><br> 
mushrooms <input type="checkbox" name="chk_mush"  
                      value="mushrooms"></p> 
<p><input type="submit" value="Submit"></p> 
</form> 
</body></html> 
 
The user can check both boxes, only one box or not click either of them.  However, the value of 
a checkbox is only sent to the server if the user selected it. 
 
 
 
 



4 

 

Arrays in HTML.  Well, actually there are no arrays in HTML.  However, we can name 

elements of a form in such a way that PHP will treat 
those elements as an array.   
 
Exercise 2. Notice that the names of the form elements 
include “[]” at the end.  This allows PHP to treat like 
arrays.  Copy, upload, and run this exercise. 
 

<!DOCTYPE HTML><html><head> 
<meta charset="utf-8"><title>Exercise</title> 
<style type="text/css"> 
 table{border-collapse:collapse} 
 td{border: solid 1px black } 
</style></head><body> 
<h1>Arrays and Forms</h1> 
<form method="get" action="ex2.php"> 
<table><tr> 
<td>Name <input type="text" name="name[]" ></td> 
<td>Senior <input type="checkbox" name="senior[]" value="12"></td> 
</tr><tr> 
<td>Name <input type="text" name="name[]" ></td> 
<td>Senior <input type="checkbox" name="senior[]" value="12"></td> 
</tr><tr> 
<td>Name <input type="text" name="name[]" ></td> 
<td>Senior <input type="checkbox" name="senior[]" value="12"></td> 
</tr></table> 
<p><input type="submit" value="Submit"></p> 
</form> 
</body></html> 
 
Here is the code for ex2.php. 
 
<!DOCTYPE HTML><html><head><meta charset="utf-8"> 
<title>Exercise</title></head><body><h1>Results</h1> 
<?php 
$names = $_GET[ "name" ]; 
$seniors = $_GET[ "senior" ]; 
for ( $i = 0; $i < count( $names ); $i++ ){ 
 print "Name #$i is ".$names[$i]."<br>"; 
} 
print "<br>"; 
for ( $i = 0; $i < count( $seniors ); $i++ ){ 
 print "Senior #$i is ".$seniors[$i]."<br>"; 
} 
if ( count( $seniors ) == 0 ) 
 print "<p>There were no seniors.</p>"; 
?> 
</body></html> 



5 

 

Things to notice about the exercise/code on the previous page. 

 We can use just one $_GET statement to read in all the names and another to read in all 
checkbox values. 

 If a textbox is left empty in the form, it has no effect on the $names array - its length is 
still three. 

 There’s a problem.  In the form the first and last students were seniors.  The PHP page 
implies that the first two students are seniors.  The reason is that the array contains only 
those values that were selected.  The next exercise shows a way to solve this. 

 
 
 
Exercise 3. Here is the code for the html page.  The page 
looks exactly like the one in exercise 2 but the source code 
for the form contains a significant difference - the names of 
the checkboxes include index numbers. 
 
 
<h1>Arrays and Forms</h1> 
<form method="get" action="ex3.php"> 
<table> 
<tr> 
<td>Name <input type="text" name="name[]" ></td> 
<td>Senior <input type="checkbox" name="senior[0]"  
                              value="12"></td> 
</tr> 
<tr> 
<td>Name <input type="text" name="name[]" ></td> 
<td>Senior <input type="checkbox" name="senior[1]" value="12"></td> 
</tr> 
<tr> 
<td>Name <input type="text" name="name[]" ></td> 
<td>Senior <input type="checkbox" name="senior[2]" value="12"></td> 
</tr> 
</table> 
<p><input type="submit" value="Submit"></p> 
</form> 
 
 
 
Write the PHP page so that results similar to this can 
be displayed. 
 
 
 
 
 
 
 



6 

 

Exercise 4.  This is a rather lengthy assignment.  There is a table, named ACCOUNTS, with 
three fields: username, password, bio, and admin.  The bio field allows the user to enter text up 
to 65,000 characters.  The admin indicates if the user has admin privileges (i.e. the ability to 
create and delete new records).  
 

The name of the database is mrsawye1_comments.  For the login and members pages use 

_____________________ for the user name and ___________________ for the password. 

 

You will write four php pages.  You will also be using 
sessions so be sure to start each page with 
 session_start(); 
 
Step 1.  The first is the login page and it should look 
something like the one shown.  When the user clicks the 
Login button, the page should call itself.   
 
If the login button was clicked you should read the 
username, password, and whether admin was checked or 
not.  Use code similar to this:  
 
 $sql = "SELECT username, password, admin 
  FROM ACCOUNTS 
  WHERE  username='$user' and  
       password='$pass'"; 
 $result = mysqli_query($link, $sql  ) or exit( mysqli_error($link) ); 
 $num = mysqli_affected_rows($link); 
 $row = mysqli_fetch_array( $result, MYSQLI_NUM ); 
 
If the number of affected rows equals zero then either the username and/or the password are 
invalid.  Stay on the page and display an error message. 
 
If their username and password are in the database and they did not check the Admin box then 
save the username and password in $_SESSION and redirect them to the members page. 
 
If they checked the Admin box but do not have admin privileges, display an error message and 
stay on the login page. 
 
If they checked the Admin box and do have admin privileges, then redirect them to the admin 
page. 
 
I have already added two records to the table.  Ask me for the passwords. 

username password bio admin 

doctor   1 

nigel   0 

Important.  Do NOT confuse these usernames and passwords with the usernames and passwords 
used to connect to the database. 



7 

 

Step 2.  Write the members page.  It should look something like the one shown.  It will allow the 
user to edit their username, password, and bio fields.  The user will also be able to see the names 
and bios for all other users (but not be able to change them). 
 
The first thing this 
page should do is 
check that the 
$_SESSION variables 
were set (indicating 
that the user logged 
in).  If not, redirect 
them back to the login 
page. 
 
You must populate the 
form with the data 
from the database.  
Use a WHERE 
condition on the 
SELECT statement to 
get just the data you 
need. 
 
If the user clicks the 
Update button you 
need to update 
username, password, 
and bio fields where 
the username and 
passwords fields equal 
the old values.  Be 
sure to update the 
session variables as 
well. 
 
Check out Johnny’s site for formatting and html help. 
 
Here is the code for the two links at the bottom. 
 
<p><a href="logout.php?login=yes">Log out and go back to the login page</a></p> 
<p><a href="logout.php?login=no">Log out and go back to the index page</a></p> 
 
The logout page contains no html.  It simply unsets and destroys the session and then redirects 
you to either your login page for this exercise or your index page. 
 
 
 
 



8 

 

Step 3.  Write the admin page. 
 
For this page use _____________________ for the user name and ___________________ for 

the password.  This user is allowed to select, update, insert, and delete records.  The other user is 

only allowed to select and update records. 

 
The first thing this page should do is check that the $_SESSION variables were set (indicating 
that the user logged in).  If not, 
redirect them back to the login 
page. 
 
There are two forms.  The first one 
obviously allows you to add new 
users with or without admin 
privileges. 
 
The code for this should be fairly 
straightforward.  Remember to 
store only a 1 or a 0 in the admin 
field. 
 
The second form has a table that 
lists all the accounts except for the 
person who has logged in - can’t 
have you deleting yourself, now can 
we? 
 
The values for each checkbox 
should match the user name next to 
that checkbox.  All user names will 
be unique and you should use the 
user name to identify which record 
you want to delete. 
 
Name the checkboxes something 
like ck[] so that in your php code 
you can easily loop through the 
selected users.  A portion of your 
php code should look something 
like this: 
 
for ( $i = 0; $i < count( .... 
 $sql = "DELETE FROM ACCOUNTS WHERE username = ... 
 mysqli_query($link, $sql  ) or exit( mysqli_error($link) ); 
} 
 


