Name:

POLAR COVALENT BONDS

Ionic compounds form repeating ______. Covalent compounds form distinct

Consider adding to NaCl(s) vs. H₂O(s):

Sometimes when atoms of two different elements form a bond by sharing an electron pair there is

sharing of electrons. When this occurs the bond is called a ______ BOND.

The unequal sharing results from the difference in	of the two atoms. The one with the
electronegativity exerts a _	attraction for the electrons

Electronegativity

Recall that electronegativity is "a number that describes the relative ability of an atom, when bonded, to attract electrons". The periodic table has electronegativity values.

We can determine the nature of a bond based on Δ EN (electronegativity difference). Δ EN = higher EN – lower EN **Example: NBr₃**

Basically: a Δ EN below 0.4 = covalent, 0.4 - 1.7 = polar covalent, above 1.7 = ionic

Determine the ΔEN and bond type for these:

HCI,	CrO,	Br ₂ ,	H ₂ O,	CH4,	KCI
------	------	-------------------	-------------------	------	-----

The bonding continuum developed by Pauli, can be used as a guideline to determine if a bond is true covalent polar covalent or ionic.

100% Covalent Bonding		Polar Covalent	Very Polar Covalent	Ionic Bonding	100 % Ionic Bonding
Donung	Covalent		Covalent		Donumg

Increasing Electronegativity Difference

Inter and Intramolecular Forces

Name:

Why do some solids dissolve in water but others do not? Why are some substances gases at room temperature, but others are liquid or solid? What gives metals the ability to conduct electricity, what makes non-metals brittle? Consider a glass of water. Why do molecules of water stay together?

Intramolecular Forces

Forces of electrostatic attraction	a molecule. Occur between the	
of the atoms and their	making up the molecule (i.e.covalent bond	s).
Must be broken by	_ means. Form	substances when
broken		

Intermolecular forces

Forces of attraction be	tween molecule	s (i.e. London dispersion force	es, dipole – dipole interac	ctions
or hydrogen bonds).Th	ese forces are much	than Intramolecular force	es or bonds and are much	ı
to	break. Physical changes (changes of) break or	weaken these forces	
Do	form new substances when broken.			
These forces affect the	and	points of substances	, the	action
and	tension, as well as the	and	of substances	

Types of Intermolecular forces

London Dispersion Forces

London forces result from a type of	dipole. These forces exist betweenmolecule		
They are masked by stronger forces (e.g. dipole-o	dipole) so are sometimes insignificant, but they are important in		
molecules.			
Because electrons are moving around in atoms the	here will be instants when the charge around an atom is not		
The resulting tiny dipoles result in attractions between and/or			
These forces are ba	sed on the simultaneous attraction of the		
of one molecule by the positive	of neighbouring molecules		
The strength of the force is directly related to the	e of electrons and protons in a given		
Molecule. The greater the number of electrons a	nd protons the the force.		
"Van der Waal" force			

SCH3U

Name:

Dipole - Dipole Interactions

Occur between polar molecules having			es are characterized by
oppositely charged	that are du	that are due to an distribution of ch	
the molecule. The polarity of a molecule is determined by both the		oth the polarity of the	bond and
the	of the molecule. These forces are based on the simultaneous attraction of the		
	of one dipole by the	of neighbou	uring molecules.
The strength of the force	is related to the	of the given molec	ule
"Van der Waal" force			

Hydrogen Bonds

These forces are a	of dipole – dipole interaction. Occur between
atoms in one molecule and	electronegative atoms [F, O, and N] where there are usually
unshared pairs of electrons present	
Q- Calculate the EN for HCl and H ₂ O	

The high EN of NH, OH, and HF bonds cause these to be strong forces.

Also, because of the small size of hydrogen, it's positive charge can get very close to the negative dipole of another molecule.

H-Bonding Diagram:

Ionic Forces

Ionic forces may be both inter and intra since a crystalline lattice is formed.

For convenience sake ionic substances are referred to by the smallest ratio of atoms present in the lattice.

Question: Why oil and water do not mix

SCH3U	Name: dicting boiling points using the Strength of Intermolecular forces		
Predi	icting boiling points using the Strength	of intermolecular forces	
Molecules that are isoelectroni	c have the	strength of London dispersion force	25
More polar molecules have	dipole – dipol	e interaction and	
melting and boiling points			
The	_ the number of electrons per molecul	e, the t	the London
forces and hence the	the melting and boi	ling point	

Which would have a higher melting/boiling point? NaCl or HCl

Question: For each, pick the one with the lower boiling point a) $CaCl_2$, CaF_2 b) KCl, LiBr c) H_2O , H_2S . Explain.

Polar Molecules

Polar bonds	cause the whole molecule to be polar	
Polar molecule is a molecule in whic	h the distribut	ion of electrons results in a positive
charge at	end and a negative charge at the	end
Non-polar molecule is a molecule in	which the electrons are	distributed among the atoms,
resulting in no localized charges		
Bond dipoles may or may not cancel	out thereby producing either molecules the	at are, if
they, or	, if they	cancel.
Example1:		

SCH3U

Name:

Predicting Molecular Polarity –General Steps

Go over Tutorial 1 and Table 3 on pg. 106; Pg. 228 (Grade 12 Textbook)

Step 1: Draw a reasonable Lewis structure for the substance.

Step 2: Identify each bond as either polar or nonpolar. (If the difference in electronegativity for the atoms in a bond is greater than 0.4, we consider the bond polar. If the difference in electronegativity is less than 0.4, the bond is essentially nonpolar.)

If there are no polar bonds, the molecule is **nonpolar.**

If the molecule has polar bonds, move on to Step #3.

Step 3: If there is only one central atom, examine the electron groups around it.

If there are no lone pairs on the central atom, and if all the bonds to the central atom are the same, the molecule is **nonpolar.**

If the central atom has at least one polar bond and if the groups bonded to the central atom are not all identical, the molecule is **probably polar**. Move on to Step #4.

Step 4: Draw a geometric sketch of the molecule.

Step 5: Determine the symmetry of the molecule using the following steps.

Describe the polar bonds with arrows pointing toward the more electronegative element. Use the length of the arrow to show the relative polarities of the different bonds. (A greater difference in electronegativity suggests a more polar bond, which is described with a longer arrow.)

Decide whether the arrangement of arrows is symmetrical or asymmetrical

If the arrangement is symmetrical and the arrows are of equal length, the molecule is nonpolar.

If the arrows are of different lengths, and if they do not balance each other, the molecule is **polar**.

If the arrangement is asymmetrical, the molecule is **polar**.

Predicting Molecular Polarity- Exercises

Decide whether the molecules represented by the following formulas are polar or nonpolar. (You may need to draw Lewis structures and geometric sketches to do so.)

a. CO_2 b. OF_2 c. CCI_4 d. CH_2CI_2 e. HCN

Testing concepts

- 1. Which attractions are stronger: intermolecular or intramolecular?
- 2. How many times stronger is a covalent bond compared to a dipole-dipole attraction?
- 3. What evidence is there that nonpolar molecules attract each other?
- 4. Which chemical in table 3 on pg. 113 has the weakest intermolecular forces? Which has the strongest? How can you tell?
- 5. State the difference between London Dispersion forces Dipole-Dipole attractions.
- 6. A) Which would have a lower boiling point: O_2 or F_2 ? Explain.

B) Which would have a lower boiling point: NO or O₂? Explain.

- 7. Which would you expect to have the higher melting point (or boiling point): C_8H_{18} or C_4H_{10} ? Explain.
- 8. What two factors causes hydrogen bonds to be so much stronger than typical dipole-dipole bonds?
- 9. So far we have discussed 4 kinds of intermolecular forces: ionic, dipole-dipole, hydrogen bonding, and London forces. What kind(s) of intermolecular forces are present in the following substances?
- a) NH₃, b) SF₆, c) PCl₃, d) LiCl, e) HBr, f) CO₂ (hint: consider Δ EN and molecular shape/polarity)

- <u>Challenge</u>: Ethanol (CH₃CH₂OH) and dimethyl ether (CH₃OCH₃) have the same formula (C₂H₆O). Ethanol boils at 78 ^[2]C, whereas dimethyl ether boils at -24 ^[2]C. Explain why the boiling point of the ether is so much lower than the boiling point of ethanol.
- 11. Complete Mini- Investigation on pg. 113 and answer questions A-E and Q Why does BP increases as period increases, why are some BP high at period 2?

1. Intramolecular are stronger.

- 2. A covalent bond is 100x stronger.
- 3. The molecules gather together as liquids or solids at low temperatures.
- 4. Based on boiling points, CH_4 (-162) has the weakest forces, H_2O has the strongest (100).
- 5. London forces
 - Are present in all compounds
 - Can occur between atoms or molecules
 - Are due to electron movement not to DEN
 - Are transient in nature (dipole-dipole are more permanent).
 - London forces are weaker

6. A) F₂ would be lower because it is smaller. Larger atoms/molecules can have their electron clouds more easily deformed and thus have stronger London attractions and higher melting/boiling points.

B) O₂ because it has only London forces. NO has a small DEN, giving it small dipoles.

7. C_8H_{18} would have the higher melting/boiling point. This is a result of the many more sites available for London forces to form.

- 8. a large DEN, 2) the small sizes of atoms.
- 9. a) NH₃: Hydrogen bonding (H + N), London.
 - b) SF₆: London only (it is symmetrical).
 - c) PCl₃: DEN=2.9-2.1. Dipole-dipole, London.
 - d) LiCl: DEN=2.9-1.0. Ionic, (London).
 - e) HBr: DEN=2.8-2.1. Dipole-dipole, London.
 - f) CO₂: London only (it is symmetrical)

<u>10. Challenge</u>: In ethanol, H and O are bonded (the large EN results in H-bonding). In dimethyl ether the O is bonded to

C (a smaller EN results in a dipole-dipole attraction rather than hydrogen bonding).

11. Boiling points increase down a group (as period increases) for two reasons: 1) EN tends to increase and 2) size increases. A larger size means greater London forces.

Boiling points are very high for H₂O, HF, and NH₃ because these are hydrogen bonds (high EN), creating large

intermolecular forces