
Copyright (c) 2013 Microchip Technology Inc. All rights reserved.



audio_equalizer.h Audio Equalizer (DSP) functions for the PIC32MX and PIC32MZ device families

audio_equalizer_fixedpoint.h Audio Equalizer (DSP) fixed point typedefs.

GraphicEqualizer6x2_Q15.h 16 Bit Filter definition for 6 Bands, with 2 Filters/Band.

GraphicEqualizer6x2_Q31.h 32 Bit Filter definition for 6 Bands, with 2 Filters/Band.

myFilters4x2_Q15.h 16 Bit Filter definition for 4 Bands, with 2 Filters/Band.

myFilters4x2_Q31.h 32 Bit Filter definition for 4 Bands, with 2 Filters/Band.

myFilters4x3_Q15.h 16 Bit Filter definition for 4 Bands, with 3 Filters/Band.

myFilters4x3_Q31.h 32 Bit Filter definition for 4 Bands, with 3 Filters/Band.

myFilters5x2_Q15.h 16 Bit Filter definition for 5 Bands, with 2 Filters/Band.

myFilters5x2_Q31.h 32 Bit Filter definition for 5 Bands, with 2 Filters/Band.

myFilters6x2_Q15.h 16 Bit Filter definition for 6 Bands, with 2 Filters/Band.

myFilters6x2_Q31.h 32 Bit Filter definition for 6 Bands, with 2 Filters/Band.

myFilters7x2_Q15.h 16 Bit Filter definition for 7 Bands, with 2 Filters/Band.

myFilters7x2_Q31.h 32 Bit Filter definition for 7 Bands, with 2 Filters/Band.

myFilters8x2_Q15.h 16 Bit Filter definition for 8 Bands, with 2 Filters/Band.

myFilters8x2_Q31.h 32 Bit Filter definition for 8 Bands, with 2 Filters/Band.

ParametricFilters1x8_Q15.h 16 Bit Filter definition for an 8 filter chain

ParametricFilters1x8_Q31.h 32 Bit Filter definition for an 8 filter chain

ParametricFilters1x8_Q31_Hacked.h 32 Bit Filter definition for an 8 filter chain, with edits to show 16 bit effects

1 Audio Equalizer Filtering Library Help

 1-1



1.1 Introduction 

Audio Equalization Filtering Library

for

Microchip Microcontrollers

This library provides filtering C and assembly functions for  audio equalization using infinite impulse response (IIR) filters.  Filter

architectures for traditional  graphical equalization  and for parametric equalization  are supported. Filters can be designed in

Matlab  (tm),  Octave,  or  any  number  of  dedicated  filter  design  packages.  The  differences  in  use  and  filter  structure  between

graphic equalization filters and parametric equalization filters are discussed in the Library Overview section below.

The  Graphic  Equalizer  Display  Library  is  an  adjunct  (supporting)  library  that  is  often  used  with  this  library.  It  works  on  any

Microchip  device  that  drives  an  LCD  display,  providing  Graphic  Equalizer  displays  (see  below)  for  the  host  application.  The

"Graphic"  part  of  a graphic equalizer  displays signal  strength by frequency.  Graphic Equalizers are used to adjust  the spectral

content of music by providing gain or attenuation to parts of the music based on frequency. It works hand-in-hand with the Audio

Equalizer Filtering Library, which does the actual signal processing (filtering).

Description

Audio equalization filtering is just one part of an overall system that delivers music to the user: 

The blocks in orange are part of this library. The blocks in green are part of the Graphic Equalizer Display library.

As shown above a smart phone can provide music through a Bluetooth or USB interface that is then decoded using the Audio

Decoder.  Raw left/right  samples are then filtered and passed on to an audio amplifier  and DAC to convert  digital  samples into

analog sound.  The Digital  Filter  block also measure frequency band signal  strength  (energy)  and passes this  information onto

the Graphics Formatting block for display on the application LCD.

Graphic Equalizers

As a black box, a graphic equalizer has left/right inputs and left/right outputs: 

1.1 Introduction Audio Equalizer Filtering Library Help

 1-2

1



In this example, frequency bands are centered at 50 Hz, 150 Hz, 300 Hz, ... , 10 KHz, and 12.5 KHz. Signal strength is plotted

for  each frequency band by a stack of  green bars,  more bars meaning a stronger signal.  Below each stack of  green bars is  a

slider  that  is  used  to  adjust  the  filter  gain  for  each  band,  which  is  centered  at  the  frequency  shown.  Moving  the  red  tab  up

increases filter gain, increasing signal strength. Moving the red tab down decreases filter gain, decreasing signal strength.

A typical  band filter  passes signals  centered at  a  frequency (f0)  and attenuates  signals  outside  of  a  pass  band (fL  to  fH).  The

pass band gain, shown below as 0 dB, or unity gain, can be adjusted up or down to increase or decrease signal strength in the

band (fL to fH). 

Graphic  equalizer  filters  adjust  the spectral  content  of  music  by filtering left  and right  stereo signals  through a bank of  parallel

filters,  summing  the  results  to  create  the  output  left  and  right  signals.  Each  filter  passes  part  of  the  signal's  spectrum.  Added

together again after filtering the left/right signals are reconstructed with modified spectral content. Increasing the gain of a filter

will emphasize the signal in that filter's frequency band. Decreasing the gain of a filter will de-emphasize the signal in that filter's

frequency band.

A typical graphic equalizer filter bank can be represented by: 

1.1 Introduction Audio Equalizer Filtering Library Help

 1-3

1



The Audio  Decoder  takes raw binary  music  and decodes it  into  a  stream of  16 or  24 bit  integers,  with  a  pair  of  such integers

representing  a  single  left/right  sample  of  music.  Typically  these  samples  are  played  at  44,100  or  48,000  sample  per  second.

Signals  from  the  left  or  right  channel  are  fed  into  a  bank  of  parallel  band  filters.  The  output  of  each  filter  is  multiplied  by  a

user-adjustable gain and then summed together to create a left or right output signal, which is then sent via a DAC to speakers.

Each  filter  output  is  used  to  update  the  signal  strength  of  each  filter's  output.  It  is  this  data  that  is  displayed  on  the  Graphic

Equalizer screen.

Filters  for  each band are  designed to  overlap  across  the  signal's  spectrum.  The signal's  spectrum can be  divided into  equally

sized band or into bands that increase by a factor of two with each higher frequency band. 

  % Linear spacing: 6 bands from Dc to FS/2, with FS = 44,100 Hz
  FcFilters = [ 0  4410  8820  13230  17640  22050 ];

 
  % Octave spacing of band centers:
  FcFilters = [ 125/2 125 250 500 1000 2000 4000 8000 16000 ];

Parametric Equalizers

Just like a graphic equalizer, as a black box a parametric equalizer has left/right inputs and left/right outputs. But in most cases

the display of signal strength by frequency band is missing. 

1.1 Introduction Audio Equalizer Filtering Library Help

 1-4

1



Examining  the  filtering  structure  of  a  parametric  equalizer  reveals  why  the  signal  strength  display  is  missing.  As  seen  below,

parametric  equalization  is  accomplished  by  a  chain  of  back-to-back  filters,  with  each  filter  having  0  dB  (unity)  gain  outside  of

specified frequency range. 

Here are two parametric equalization filter examples: 

Since the filters are in a back-to-back chain rather in parallel, there is no way to directly measure the signal strength (energy) of a

particular band using a filter's output. Of course signal strength (energy) can be measured using a Fast Fourier Transform (FFT)

but such a calculation is very expensive when filter bands are not equally spaced. Another disadvantage of parametric filters is

that,  unlike  a  graphic  equalization  filter,  there  is  no  easy  way  to  adjust  the  boost  gain  or  cut  attenuation  of  each  filter.  You

essentially  have to design a family  of  parametric  filters,  with  a range of  gains,  and keep them in a look-up table.  With graphic

equalization filtering all you need do is adjust the gain multiplier after each filter to change the filter's gain.

On the other hand, parametric equalization filters can accomplish an overall  gain adjustment across the signal's spectrum with

fewer  filters.  Thus  for  fixed  equalization,  such  as  speaker  correction,  that  don't  need  real-time  gain  adjustments,  parametric

equalization filtering is the preferred approach.

1.1 Introduction Audio Equalizer Filtering Library Help

 1-5

1



1.2 Library Overview 

In music playback adjustments can be made to the music before digital bits are converted into analog voltages that are played by

speakers. These adjustments can correct deficits in the recorded music, mitigate problems in the speakers being used, or simply

correct for the room's acoustics - all focused on improving the user's experience of the music.

This library supports filtering in two bit widths:

• 16 bits (Q15) provides maximum computational efficiency but with reduced filtering accuracy. Careful attention must be paid 
to input signal levels and filter gains to avoid overflow and truncation.

• 32 bits (Q31) provides greater accuracy. It is necessary for 24-bit input signals. 32 bits provides 8 bits (48 dB) headroom for 
24 bit input signals and 16 bits (96 dB) headroom for 16 bit input signals.

Filter examples are provided and filter design tools for Matlab(tm)/Octave are provided to aid in the creation of new filters.

Actual  filter  performance  on  PIC32  devices  can  be  measured  using  validation  tool  projects  and  Matlab(tm)/Octave  processing

scripts provided with the library.

Graphic Equalizers

A traditional  graphic  equalizer  slices  sound  into  several  frequency  bands,  filters  each  band,  and  then  reassembles  the  output

from each band into the final output signal. Typically there are two banks of band filters, one for the left stereo signal and another

for the right stereo signal. The filter for each frequency band attenuates (stops) sound energy outside of some frequency range

while  providing  an  overall  gain  for  the  frequencies  within  the  filter's  passband.  Adjusting  each  band's  gain  allows  the  user  to

adjust the overall frequency response of the system.

Here is a crude, yet still informative, diagram of a 6-band graphic equalizer: 

        XinLeft ---+-->Filter[1]-->(x)----+
                   |    LeftGain[1]-^     V
                   +-->Filter[2]-->(x)-->(+)--+
                   |    LeftGain[2]-^         V
                   +-->Filter[3]-->(x)------>(+)--+
                   |    LeftGain[3]-^             V
                   +-->Filter[4]-->(x)---------->(+)--+
                   |    LeftGain[4]-^                 V
                   +-->Filter[5]-->(x)-------------->(+)--+
                   |    LeftGain[5]-^                     V
                   +-->Filter[6]->(x)------------------->(+)--> YoutLeft
                       LeftGain[8]-^

 
        XinRight---+-->Filter[1]-->(x)----+
                   |   RightGain[1]-^     V
                   +-->Filter[2]-->(x)-->(+)--+
                   |   RightGain[2]-^         V
                   +-->Filter[3]-->(x)------>(+)--+
                   |   RightGain[3]-^             V
                   +-->Filter[4]-->(x)---------->(+)--+
                   |   RightGain[4]-^                 V
                   +-->Filter[5]-->(x)-------------->(+)--+
                   |   RightGain[5]-^                     V
                   +-->Filter[6]->(x)------------------->(+)--> YoutRight
                      RightGain[8]-^

The advantage of this approach is that the filters (filter coefficients) don't  change, only the gain adjustment multiplication factor

changes.

Here's the filter response of a typical bandpass filter: 

1.2 Library Overview Audio Equalizer Filtering Library Help

 1-6

1



Note  that  outside  of  the  filter's  passband  [fL,fH]  the  signal  is  attenuated.  Here's  a  plot  showing  the  response  of  a  four-band

graphic equalizer, with the overall response shown as a dashed red line. 

Parametric Equalizers

Parametric  filters  have  a  different  structure.  Instead  of  separate  band  filters  operating  in  parallel,  a  cascade  of  back-to-back

filters is applied to left and right channels: 

        XinLeft -->Filter[0]-->Filter[1]-->Filter[2]-->Filter[3]--+
                                                              |
         +----------------------------------------------------+
         |
         +-->Filter[4]-->Filter[5]-->Filter[6]-->Filter[7]-->(x)--> YoutLeft
                                                  LeftGain[7]-^

 
        XinRight -->Filter[0]-->Filter[1]-->Filter[2]-->Filter[3]--+
                                                               |
         +-----------------------------------------------------+
         |
         +-->Filter[4]-->Filter[5]-->Filter[6]-->Filter[7]-->(x)--> YoutRight
                                                 RightGain[7]-^

Here the same filters are applied to both left and right channels, but channel-specific filters can be used as well.

Since  the  filters  are  cascaded,  each  filter  must  pass  all  frequencies  while  making  an  adjustment  to  the  signal  at  a  particular

1.2 Library Overview Audio Equalizer Filtering Library Help

 1-7

1



frequency, either providing gain to increase the signal or attenuation to reduce the signal. A cascade of filters adjusts the signal's

frequency response at a set of frequencies. Starting out, you can think of a cascade of all-pass filters, each filter doing nothing

except passing the signal without any gain or attenuation. The overall signal response would then be a flat response of zero dB

from DC to the maximum frequency, like a stretched rubber band at zero dB.

The flat response can then be adjusted, like pulling on the stretched rubber band at various places, to increase or to decrease

the  signal  at  particular  points.  Here  is  the  GUI  for  a  MATLAB (tm)  tool  that  designs  parametric  filters.  Note  how the  signal  is

manipulated at seven distinct locations in the frequency band. 

Microchip  provides  a  parametric  equalization  filter  design  tool  that  works  on  both  Matlab(tm)  and  Octave.  It  has  a  simpler,

text-based control interface: 

This design dialog produced this filter: 

1.2 Library Overview Audio Equalizer Filtering Library Help

 1-8

1



The advantage of cascading filters is that the filters don't need to waste effort attenuating out-of-band frequency but instead just

adjust the frequency response by adding gain to increase the signal or attenuation to decrease the signal. The disadvantage is

that  the  size  of  each  filter's  manipulation  must  be  known  to  design  the  filter's  coefficients.  So  it  is  not  possible  to  adjust  the

cascade's overall frequency response once the coefficients are loaded into firmware.

Of course you could always design a family of filters, with a range of gains/attenuations, and store them in a lookup table. But

that would be far more work than simply adjusting a gain factor, as was seen in the case of the graphic equalizer.

Equalizer Filter Implementation

Up  to  this  point  we  have  treated  each  filter  as  a  black  box.  Now  we  examine  what's  inside  of  each  filter.  For  music  it  is  the

signal's  amplitude  that  carries  its  information,  phase  is  unimportant.  This  allows  the  use  of  Infinite  Impulse  Response  (IIR)

filters for equalization filtering rather than the more computationally expensive Finite Impulse Response (FIR) filters. IIR filters

don't conserve phase, but phase is unimportant.

The  simplest  IIR  filter  is  called  a  BiQuad,  because  it  has  a  bi-quadratic  transfer  function  when  viewed  in  the  Z  domain.  The

equation for a biquad IIR filter is: 

This shows how to calculate the latest output, y(n), using the past three inputs and past two outputs. The best way to calculate

y(n) is the "Transposed Direct Form II", which only needs two memory slots, shown as Z
-1

 blocks below: 

1.2 Library Overview Audio Equalizer Filtering Library Help

 1-9

1



In  the  library's  filtering  functions  the  gain  stages  (>  and  <)  are  multiplies  and  the  Z
-1

 blocks  are  integer  variables.  All  the

mathematics in the filtering primitives (the adding and multiplying) is done in "fixed point" arithmetic, either Q0.15 for 16 bit inputs

or Q0.31 for 32 bit inputs. This implies that the coefficients (the a's and the b's) must fit between -1 <= value < +1. For a1, b0,

and b2, this is no problem, but typically a1 and b1 don't fit into this range. In fact -2 < a1, b1 < +2. Thus we have to divide all the

coefficients  by  an  alpha  factor  to  get  them to  fit  in  the  range  -1  <=  value  <  +1.  We then  have  to  put  the  alpha  factor  back  in

before outputting y. 

In all cases alpha =2 is all you need. This is implemented in software by setting log2Alpha = 1 .

So to prepare a filter to use by the equalization library divide all coefficients by 2 and set log2Alpha = 1.

Specifying Filters

Filters  are  specified  using  the  EQUALIZER_FILTER  or  EQUALIZER_FILTER_32  typedef  to  define  an  array  of  structures.

Since filter definition .H  files are automatically generated by the Matlab(tm)/Octave filter design scripts, the exact details of the

filter structure are of little importance. The only useful modification of these files is to clone a filter set into left and right filters for

use in stereo music filtering.

1.2 Library Overview Audio Equalizer Filtering Library Help

 1-10

1



1.3 Resource Requirements 

Resource Requirements

The  data  memory  and  program  flash  needed  for  filtering  are  so  small  for  most  audio  applications  as  to  inconsequential.  For

example,  the  assembly  routine  AUDIO_EQUALIZER_Cascade8inQ31  uses  only  40  words  of  flash  memory.  The  definition  of

single 16 bit biquad IIR filter only needs seven 32-bit words of RAM, while the equivalent 32-bit IIR biquad filter definition needs

just ten 32-bit words. So for a 8 band graphic equalizer filter structure, with two IIRs/band, needs only 7x8x2 = 112 32-bit words

for filter memory. The equivalent 32-bit structure needs 10x8x2 = 160 words.

However, the processing required to execute the filters on each new left/right stereo sample can easily account for over 50% of

the  processor's  bandwidth.  The  Filtering  Performance  section  below  provides  the  benchmarks  needed  to  estimate  the

processing load for any filter architecture and data rate.

Here  is  a  summary  table  of  the  millions  of  instructions  per  second (MIPS)  required  for  various  Graphic  Equalizer  Equalization

filters, assuming stereo (left/right) data at 44.1 KSPS or 48 KSPS: 

For parametric equalization filters, the following table shows the MIPS required for various filter chain lengths: 

1.3 Resource Requirements Audio Equalizer Filtering Library Help

 1-11

1



Note that the application may not support full filter processing for the desired number of filter bands during debugging. An easy

workaround is to use a less computationally expensive set of filters (i.e. fewer bands) while debugging. After debugging the full

set of filters can be applied when the application is optimized for speed and size (O = s or O = 3 in the compiler).

1.3 Resource Requirements Audio Equalizer Filtering Library Help

 1-12

1



1.4 Glossary of Terms 

Frequently Used but Possibly Obscure Terms:

Band - A part of a signal's frequency spectrum defined by a distinct upper and lower frequency limits, or a center frequency and

bandwidth.

Band Energy - signal strength or energy of a given band, typically measured at the output of the band filter.

Band Energy Units - signal strength or band energy is reported as a voltage squared or absolute voltage. It can be reported in

volts or in dB.

• BAND_ENERGY_RMS_VOLTS - - root mean squared voltage, with value of 1 representing the maximum possible signal

• BAND_ENERGY_RMS_DBFS - in dB re Full Scale using RMS energy estimate

•  BAND_ENERGY_PSEUDORMS_VOLTS, - Pseudo RMS using absolute value instead of voltage squared

• BAND_ENERGY_PSEUDORMS_DBFS - in dB re Full Scale using Pseudo RMS energy estimate

Pseudo RMS - Energy estimated by sum of absolute values instead of voltage squared. The average value is adjusted so that

pseudo RMS of sine wave is same value as the RMS of the same sine wave.

1.4 Glossary of Terms Audio Equalizer Filtering Library Help

 1-13

1



1.5 Release Notes 

Audio Equalizer Filtering Library Version:

0.1Beta Release Date: 18 November 2013

This is the first release of the library. The interface can change in the beta and\or 1.0 release.

1.5 Release Notes Audio Equalizer Filtering Library Help

 1-14

1



1.6 SW License Agreement 

---------------------------------------

(c) 2013 Microchip Technology Inc.

---------------------------------------

Microchip  licenses  this  software  to  you  solely  for  use  with  Microchip  products.  The  software  is  owned  by  Microchip  and  its

licensors, and is protected under applicable copyright laws. All rights reserved.

SOFTWARE  IS  PROVIDED  "AS  IS"  MICROCHIP  EXPRESSLY  DISCLAIMS  ANY  WARRANTY  OF  ANY  KIND,  WHETHER

EXPRESS  OR  IMPLIED,  INCLUDING  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL MICROCHIP BE LIABLE FOR

ANY  INCIDENTAL,  SPECIAL,  INDIRECT  OR  CONSEQUENTIAL  DAMAGES,  LOST  PROFITS  OR  LOST  DATA,  HARM  TO

YOUR EQUIPMENT,  COST OF  PROCUREMENT OF  SUBSTITUTE GOODS,  TECHNOLOGY OR SERVICES,  ANY CLAIMS

BY  THIRD  PARTIES  (INCLUDING  BUT  NOT  LIMITED  TO  ANY  DEFENSE  THEREOF),  ANY  CLAIMS  FOR  INDEMNITY  OR

CONTRIBUTION, OR OTHER SIMILAR COSTS.

To the fullest extent allowed by law, Microchip and its licensors liability shall not exceed the amount of fees, if any, that you have

paid directly to Microchip to use this software.

MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE TERMS.

1.6 SW License Agreement Audio Equalizer Filtering Library Help

 1-15

1



1.7 Using the Library 

This section describes the basic architecture of  the Audio Equalizer  Library and provides information and examples on how to

use it.

Interface Header File: framework/math/audio_equalizer.h

The interface to the Audio Equalizer Library is defined in the "framework/math/audio_equalizer.h" header file.

1.7.1 Configuring the Library 

AUDIO_EQUALIZER_MAX_NBANDS

There is one configuration #define's in the library: AUDIO_EQUALIZER_MAX_NBANDS: 

#define AUDIO_EQUALIZER_MAX_NBANDS 16

defines the maximum number of energy bands that the library can support. For example, if  there are 8 frequency bands in the

graphical equalizer then the number of frequency bands is 2 * 8 = 16, since left and right stereo channels have separate filters

and energy estimates for each band.

The index of energy bands between left and right channels is up to the user. { Left0, Right0, Left1, Right1, ...,LeftN, RightN} or

{Left0,Left1, ... , LeftN, Right0, Right1, ..., RightN} ordering of bands will both work.

1.7.2 Fixed Point Data and Mathematics 

C Language Native Data Types

The C programming language supports integer and floating point data types. It does not support fractional data types. Thus you

can only represent 1/2 as a floating point constant (0.5) but that requires using floating point mathematics. For many embedded

applications floating point mathematics is too slow and needs too much memory to be of practical use.

Fixed Point Addition and Subtraction

Fixed point (Qm.n or Qn) data types and associated mathematics support fractional data without using floating point. It allows the

use of integer data types instead of floating point. The key idea is to think of fractional data as a pair of numbers, the numerator

and  denominator.  A  signed  16  bit  integer  ranges  from  -32768  to  +32767.  So  using  16  bits  you  can  represent  1/2  as

16384/32768. Thus 1/2 is represented by M/N, where M = 16384 and N = 32768.

Now the trick comes that we just do integer math using M and keep N hidden (in our heads). Each fixed point data type has an

implied numerator (N). For example the Q0.15 16 bit fixed point data type has N = 32768.

Adding fixed point fractions simply means adding the numerators: 

    1/2 + 1/4  = 16384/32768 + 8192/32768 = ( 16384 + 8192 )/32768 = 24576/32768 = 3/4

So in C you simply add the numerators and keep the denominator (32768) in your head: 

    1/2 + 1/4  = 16384 + 8192 = 16384 + 8192 = 24576

1.7 Using the Library Audio Equalizer Filtering Library Help Fixed Point Data and Mathematics

 1-16

1



Fixed Point Data Types

Fixed point data types are defined as typedefs in the Audio Equalizer Filtering library file audio_equalizer_fixedpoint.h.

Each  data  type  is  of  the  form  Qm.n,  where  m  is  the  number  of  integer  bits  and  n  is  the  number  of  fractional  bits.  Thus

libq_q15d16_t is a 32 bit format with 1 one sign bit, 15 integer bits, and 16 fractional bits: 

    -3---------2---------1----------
    10987654321098765432109876543210
    ----____----____----____----____
    Siiiiiiiiiiiiiiiffffffffffffffff

With 16 fractional bits the implied denominator N = 65536: 

    float Xfloat;
    libq_q15d16_t Xq15d31;

 
    Xfloat = Xq15d31/65536.0;

The most common data types are the 16-bit libq_q0d15_t (or libq_q15_t): 

    -----1----------
    5432109876543210
    ----____----____
    Sfffffffffffffff

As mentioned above, Q0.15 (or Q15) has an implied N = 32768: 

  float Xfloat;
  libq_q15_t Xq15;

 
  Xfloat = Xq15/32768.0;

And the 32-bit libq_q0d31_t (or libq_q31_t): 

    -3---------2---------1----------
    10987654321098765432109876543210
    ----____----____----____----____
    Sfffffffffffffffffffffffffffffff

Q0.31 (or Q31) has an implied N = 2^31: 

  float Xfloat;
  libq_q31_t Xq31;
  Xfloat = Xq31/((float)2<<31);

Fixed Point Multiplication and Division

Fixed point addition and subtraction is very easy since we just add or subtract numerators. But multiplication and division need

some  tweaks  to  convert  integer  multiplication  and  division  into  fixed  point  multiplication  and  division.  (PIC32  assembly  has

instructions that do fixed point multiplication/division correctly.) Let's look at multiplying 1/2 * 1/4 = 1/8: 

    1/2 * 1/4  = 16384/32768 * 8192/32768 = (16384 * 8192)/(32768*32768) = 
134,217,728/1,073,7431,824 = 1/8

Ignoring the denominators, and just multiplying the numerators we have: 

    1/2 * 1/4  = 16384 * 8192 = 16384 * 8192 = 134,217,728

So the first thing you notice is multiplying two 16-bit integers produces a 32-bit integer (16+16 = 32).

So to convert it back into a 16 bit integer, just shift by 16 bits: 

    1/2 * 1/4  = 16384 * 8192 = 16384 * 8192 = 134,217,728>>16 = 2048

But 

1.7 Using the Library Audio Equalizer Filtering Library Help Fixed Point Data and Mathematics

 1-17

1



    1/8 = 4096/32768

So  we  are  off  by  a  factor  of  two.  Thus  you  have  the  rule  that  you  must  left  shift  integer  multiplication  by  one  bit  to  produce

fractional multiplication. Similarly integer division must be right shifted one bit to produce fractional division.

Here's a code snippet that multiplies two Q0d15 numbers: 

    libq_q15_t A16, B16, C16;
    libq_q31_t Temp32;

 
    Temp32 = A16 * B16;
    C16    = Temp32>>(16-1);

This example can be simplified since 32 bit integers are assigned to 16 bit by copying the lower 16 bits: 

    C16 = (A16 * B16)>>(16-1);

Note that this works because C promotes all 16-bit multiplication into 32 bit. But for 32 bit multiplication you have to explicitly cast

one of the multiplicands into a 64 bit integer: 

    libq_q31_t A32, B32, C32;
    libq_q63_t Temp64;

 
    Temp64 = A32 * (libq_q63_t)B32;
    C32    = Temp64>>(32-1);

Or simply: 

    C32 = (A32 * (lib1_q63_t)B32)>>(32-1);

1.7.3 Core Exception Handling 

Fixed Point Overflow

All mathematics in the library is "fixed point", in which an integer variable is used to represent fractional values without resorting

to floating point. For example, the Q0.15 fixed point type uses a 16-bit signed integer to represent fractional values between -1

and +1.

If  signals  are  too  large  in  amplitude  or  filters  badly  designed  the  assembly  filtering  routines  can  produce  overflow  core

exceptions.  Out  of  the  box  the  "weak"  exception  handler  installed  as  part  of  the  compiler  simply  dumps  the  application  into  a

while(1)  loop  when  any  core  exception  occurs.  Thus  any  application  using  the  default  exception  handler  would  simply  stop

working whenever an overflow occurs.

Dedicated Exception Handler

Instead  the  filtering  application  should  continue  to  work,  even  if  it  produces  badly  filtered  output.  The  snaps,  pops,  and  noise

produced when overflows occur will alert the user that something is amiss. Then the user can reduce band gain until the filters

are not over driven and thus stop the snaps/pops/noise. To support this behavior an exception handler tailored for equalization

filtering must be used instead of the compiler's default.

The  files  audio_eq_exception-handler.c  and  audio_eq_general-exception.S  must  be  include  in  the  application's  MPLAB.X

project. The assembly (.S) files provides additional support for saving and restoring processor registers during exceptions. The .c

file supports recovery from overflow exceptions that allow filtering (and the application) to continue.

1.7 Using the Library Audio Equalizer Filtering Library Help Filtering Performance

 1-18

1



1.7.4 Filtering Performance 

Benchmark Results

Filtering performance was measured using a PIC32MX450F256L processor, with the C test fixture at optimization level zero. The

tables  below show the  instruction  count  for  filtering  a  single  input  sample  to  produce  an  output  sample.  These  results  are  for

filtering alone, without any band energy estimates.

The column "All Filters" shows the instruction count for a single invocation of the filtering primitive. Some primitives can execute

more than one IIR biquad filter, so the "Single Filter" column shows the average cost per IIR biquad for each primitive. (This is

the "All Filters" column divided by the number of IIRs executed with each call.)

Q15 Filtering Primitives: 

Q31 Filtering Primitives: 

1.7 Using the Library Audio Equalizer Filtering Library Help Filtering Performance

 1-19

1



Q15 versus Q31 Performance:

Filtering in 32 bits ranges from 39% to 18% more expensive: 

Filtering for a Graphical Equalizer

If  band  energy  estimates  are  added  to  the  filtering,  as  shown  in  the  documentation  for

AUDIO_EQUALIZER_BandEnergyNSamplesSet, the following results are measured: 

The instruction counts shown are for filtering both channels (left/right) in a stereo signal. These numbers are smaller than twice

the instruction counts shown above because the final gain adjustment built  into all  assembly primitives was not included in the

filtering example tested.

The "Display Surcharge" column shows the additional processing required over just filtering to use every output sample for band

signal strength (energy) measurements.

Estimating Processing Requirements - An Example

Assume that stereo music is decoded at a rate of 44.1 KSPS. Then a 6x2 graphic equalizer with energy estimates will need 998

1.7 Using the Library Audio Equalizer Filtering Library Help Filtering Performance

 1-20

1



instructions for each left/right music sample to produce an output. Left/right music sample arrive at a rate of 44100 samples per

second. So the processing bandwidth required to keep up is given by 

       Processing Bandwidth = 1 left/right samples * 44100 samples/second * 998 intructions/sample = 44,011,800 
instructions/second = 44.01 MIPS

Benchmark Methodology

Benchmarking firmware was run on a PIC32MX450F256L. Here are code snippets that show how benchmarking measurements

were made: 

    uint16_t timerStart, timerEnd, timerOverhead, testCycles;
 
    // Start timer
    asm volatile("mtc0   $0,$9");
    asm volatile("mfc0   %0, $9" : "=r"(timerStart));
 
    FilterInput(XinQ15,XinQ15,&YoutLeft,&YoutRight);
 
    //Stop timer, determine elapsed time.
    asm volatile("mfc0   %0, $9" : "=r"(timerEnd));
    testCycles = 2*(timerEnd - timerStart);  // eval cycles for function under test

Multiple measurements were made, typically over 256 samples. Also, the overhead of simply starting and stopping the timer was

measured by replacing the FilterInput call with blocks of asm("NOP")'s : 

    // Measure timer overhead
    asm volatile("mtc0   $0,$9");  // Start timer
    asm volatile("mfc0   %0, $9" : "=r"(timerStart));
 
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");//5
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");//10
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");//20
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");//30
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");//40
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");
    asm("NOP");asm("NOP");asm("NOP");asm("NOP");asm("NOP");//50
 
    asm volatile("mfc0   %0, $9" : "=r"(timerEnd)); //Stop timer, determine elapsed time.
    timerOverhead = 2*(timerEnd - timerStart) - 50; //Calculate overhead

1.7.5 Application Examples 

Updating a Graphic Equalizer Display

    #include "audio_equalizer.h"
    #include "audio_equalizer_fixedpoint.h"

 
    #include "myStereoFilters6x2_Q15.h"
    #define  NBANDS          6
    #define  NFILTERS          2

 
    uint16_t iBand;
    libq_q0d15_t XinLeft,XinRight,YoutBand, YoutLeft, YoutRight;
    libq_q0d15_t bandEnergyDBFS;

 
    // Define labels
    GRAPHIC_EQUALIZER_LabelsSet("Left","Right",(void*)LARGE_FONT);

1.7 Using the Library Audio Equalizer Filtering Library Help Application Examples

 1-21

1



 
    // Signal strength will be measured in RMS Volts in dB re Full scale, -30 dBFS to 0 dBFS
    GRAPHIC_EQUALIZER_DisplayScaleSet(GFX_EQUAL_SIGNAL_STRENGTH,-30<<16,0<<16);

 
    // Filter gains will range from -10 dB to +10 dB
    GRAPHIC_EQUALIZER_DisplayScaleSet(GFX_EQUAL_FILTER_GAIN,-10<<16,10<<16);

 
    // Draw graphic equalizer display
    GRAPHIC_EQUALIZER_Create( 8, 6, //Xleft,Ytop
                              8, 4, //BarWidth, BarHeight
                              8,16);//nBands, nBars

 
    // Setup to measure signal energy in dB re Full Scale (dBFS)
    AUDIO_EQUALIZER_BandEnergySumsInit(2*NBANDS,BAND_ENERGY_RMS_DBFS);

 
    while ( 1 )
    {
        if ( bGotInput() )
        {
            // Get XinLeft,XinRight

 
            // Execute equalizer filtering and signal strength updates.
            // See Audio Equalizer Filtering Library for example code to implement this.
            FilterInputPlusEnergy(XinLeft,XinRight,&YoutLeft,&YoutRight);

 
            // Send YoutRight,YoutRight
        }//end if ( bGotInput )

 
        if ( bUpdateDisplay() )
        {
            // Memory update for each frequency band, left and right channels
            for ( iBand = 0; iBand < NBANDS; iBand++ )
            {
                // Left channel: Update signal strength
                bandEnergyDBFS = AUDIO_EQUALIZER_BandEnergyGetQ15(iBand,true);
                GRAPHIC_EQUALIZER_BandValueUpdate(GFX_EQUAL_SIGNAL_STRENGTH,GFX_EQUAL_CHANNEL_L
EFT,iBand,bandEnergyDBFS);

 
                // Right Channel: Update signal strength
                bandEnergyDBFS = AUDIO_EQUALIZER_BandEnergyGetQ15(iBand+NBANDS,true);
                GRAPHIC_EQUALIZER_BandValueUpdate(GFX_EQUAL_SIGNAL_STRENGTH,GFX_EQUAL_CHANNEL_R
IGHT,iBand,bandEnergyDBFS);

 
            }//end for ( iBand = 0; iBand < NBANDS; iBand++ )

 
            // Refresh entire display at same time
            GRAPHIC_EQUALIZER_BandDisplayRefresh(GFX_EQUAL_CHANNEL_LEFT, -1); // Refresh all 
bands for Left
            GRAPHIC_EQUALIZER_BandDisplayRefresh(GFX_EQUAL_CHANNEL_RIGHT,-1); // Refresh all 
bands for Right

 
        }//end if ( bUpdateDisplay )

 
     }//end while ( 1 )

Filtering and Measuring Signal Strength (Energy)

#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
 
#include "math/audio_equalizer/audio_equalizer.h"
extern uint16_t AUDIO_EQUALIZER_nSamples;

1.7 Using the Library Audio Equalizer Filtering Library Help Application Examples

 1-22

1



extern libq_q16d15_t AUDIO_EQUALIZER_BandEnergySumQ15[AUDIO_EQUALIZER_MAX_NBANDS];
 
#include "../Filters/myFilters6x2_Stereo_Q15.h"
 
void  FilterInputPlusEnergy(libq_q15_t XinLeft, libq_q15_t XinRight, libq_q15_t *YoutLeft, 
libq_q15_t *YoutRight)
{
    libq_q15_t Yout0,Yout1,Yout2,Yout3,Yout4,Yout5,Yout6,Yout7;
 
    Yout0 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[0], XinLeft );
    AUDIO_EQUALIZER_BandEnergySumQ15[0] += abs(Yout0);
 
    Yout1 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[2], XinLeft );
    AUDIO_EQUALIZER_BandEnergySumQ15[1] += abs(Yout1);
 
    Yout2 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[4], XinLeft );
    AUDIO_EQUALIZER_BandEnergySumQ15[2] += abs(Yout2);
 
    Yout3 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[6], XinLeft );
    AUDIO_EQUALIZER_BandEnergySumQ15[3] += abs(Yout3);
 
    Yout4 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[8], XinLeft );
    AUDIO_EQUALIZER_BandEnergySumQ15[4] += abs(Yout4);
 
    Yout5 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersLeft[10], XinLeft );
    AUDIO_EQUALIZER_BandEnergySumQ15[5] += abs(Yout5);
/* Don't need these bands for 6 band filter
    Yout6 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersLeft[12], XinLeft );
    AUDIO_EQUALIZER_BandEnergySumQ15[6] += abs(Yout6);
 
    Yout7 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersLeft[14], XinLeft );
    AUDIO_EQUALIZER_BandEnergySumQ15[7] += abs(Yout7);
 */
    *YoutLeft = Yout0 + Yout1 + Yout2 + Yout3 + Yout4 + Yout5;// + Yout6 + Yout7;
 
    Yout0 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[0], XinRight );
    AUDIO_EQUALIZER_BandEnergySumQ15[8] += abs(Yout0);
 
    Yout1 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[2], XinRight );
    AUDIO_EQUALIZER_BandEnergySumQ15[9] += abs(Yout1);
 
    Yout2 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[4], XinRight );
    AUDIO_EQUALIZER_BandEnergySumQ15[10] += abs(Yout2);
 
    Yout3 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[6], XinRight );
    AUDIO_EQUALIZER_BandEnergySumQ15[11] += abs(Yout3);
 
    Yout4 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[8], XinRight );
    AUDIO_EQUALIZER_BandEnergySumQ15[12] += abs(Yout4);
 
    Yout5 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersRight[10], XinRight );
    AUDIO_EQUALIZER_BandEnergySumQ15[13] += abs(Yout5);
/* Don't need these bands for 6 band filter
    Yout6 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[12], XinRight );
    AUDIO_EQUALIZER_BandEnergySumQ15[14] += abs(Yout6);
 
    Yout7 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersRight[14], XinRight );
    AUDIO_EQUALIZER_BandEnergySumQ15[15] += abs(Yout7);
 */
    *YoutRight = Yout0 + Yout1 + Yout2 + Yout3 + Yout4 + Yout5;// + Yout6 + Yout7;
 
    AUDIO_EQUALIZER_nSamples += 1;
}

1.7 Using the Library Audio Equalizer Filtering Library Help Application Examples

 1-23

1



Adjusting Band Filter Gains

    #include "audio_equalizer.h"
    #include "audio_equalizer_fixedpoint.h"

 
    #include "myStereoFilters6x2_Q15.h"
    #define  NBANDS          6
    #define  NFILTERS          2

 
    EQUALIZER_FILTER *pMyFilters;
    GFX_EQUAL_CHANNEL myChannel;
    uint8_t           myBand;
    int16_t           iGainAdj;
    libq_q0d15_t      displayGainAdjQ15;

 
    while ( !GainAdjDone )
    {
        switch ( gainAdjStateGet() );
        {
            case GET_CHANNEL:
                myChannel = GetUserChannel();
                if ( GFX_EQUAL_CHANNEL_LEFT == myChannel )
                {
                    pMyFilters = myFiltersLeft;
                }
                else
                {
                    pMyFilters = myFiltersRight;
                }
                break;

 
            case GET_BAND:
                myBand = GetUserBand();
                GRAPHIC_EQUALIZER_ChannelFocus(true,myChannel,myBand);
                bandGain = // Base all gain adjustments on this old value
                    AUDIO_EQUALIZER_FilterGainGetQ15(pMyFilters, NBANDS, NFILTERS,
                                                                 myBand, NFILTERS );
                break;

 
            case APPLY_GAIN_ADJ:
                iGainAdj = GetUserGainAdj(); // -50 dB <= iGainAdj <= +50 dB
                displayGainAdjQ15 = 327*iGainAdj + 16384;
                GRAPHIC_EQUALIZER_BandValueUpdate(GFX_EQUAL_FILTER_GAIN,channel,myBand,displayG
ainAdjQ15);

 
                adjBandGain = AUDIO_EQUALIZER_FilterGainAdjustQ15(bandGain,iGainAdj);
                AUDIO_EQUALIZER_FilterGainSetQ15(pMyFilters, NBANDS, NFILTERS,
                                                             myBand, NFILTERS,
                                                             adjBandGain );

 
                GRAPHIC_EQUALIZER_BandDisplayRefresh(myChannel,myBand);

 
                break;

 
            case GAIN_ADJUST_DONE:
                GRAPHIC_EQUALIZER_ChannelFocus(false,myChannel,myBand);
                GainAdjDone = true;
                break;

 
        }//end switch ( gainAdjStateGet() )

 
    }//end while ( !GainAdjustDone )

1.7 Using the Library Audio Equalizer Filtering Library Help Application Examples

 1-24

1



Customized Exception Handler

The  source  code  in  audio_eq_exception-handler.c  can  be  added  to  the  application's  main.c  file  and  customized  to  provide

application-specific  exception  handling.  In  the  example  below,  five  LEDs  are  used  to  alert  the  user  that  an  exception  has

occurred.

// *****************************************************************************
// *****************************************************************************
// Section: Exception handling
// *****************************************************************************
// *****************************************************************************
/*
    The standard exception handling provided by the compiler's installation is
    insufficient to handle overflow exception that can happen inside of assembly
    IIR routines.

 
    Exceptions are handled by the default code by simply throwing the application
    into a while (1) loop, which simply ends all processing of the application.
    This new code attempts to return control back to the application.

 
    If an overflow exception is trapped a fallback return value is written to
    the $v0 register for use by the IIR primtive that generated the overflow.
    The application can use +1 (0x7FFF) or Zero, or random noise as the fallback
    return value.  See below.
 */
typedef struct _XCPT_FRAME
{
    uint32_t at;
    uint32_t v0;
    uint32_t v1;
    uint32_t a0;
    uint32_t a1;
    uint32_t a2;
    uint32_t a3;
    uint32_t t0;
    uint32_t t1;
    uint32_t t2;
    uint32_t t3;
    uint32_t t4;
    uint32_t t5;
    uint32_t t6;
    uint32_t t7;
    uint32_t t8;
    uint32_t t9;
    uint32_t ra;
    uint32_t lo;
    uint32_t hi;
    uint32_t cause;
    uint32_t status;
    uint32_t epc;

 
} XCPT_FRAME;

 
static enum {
    EXCEP_IRQ      =  0, // interrupt
    EXCEP_AdEL     =  4, // address error exception (load or ifetch)
    EXCEP_AdES     =  5, // address error exception (store)
    EXCEP_IBE      =  6, // bus error (ifetch)
    EXCEP_DBE      =  7, // bus error (load/store)
    EXCEP_Sys      =  8, // syscall
    EXCEP_Bp       =  9, // breakpoint
    EXCEP_RI       = 10, // reserved instruction
    EXCEP_CpU      = 11, // coprocessor unusable
    EXCEP_Overflow = 12, // arithmetic overflow

1.7 Using the Library Audio Equalizer Filtering Library Help Application Examples

 1-25

1



    EXCEP_Trap     = 13, // trap (possible divide by zero)
    EXCEP_IS1      = 16, // implementation specfic 1
    EXCEP_CEU      = 17, // CorExtend Unuseable
    EXCEP_C2E      = 18, // coprocessor 2
} _excep_code;

 
/* EXCEPTION CODE TO LED Map **************************************************
    LED #1 alerts that there has been an exception.
    The remaining LEDs show what type of exception has occurred.

 
                          LEDs-
    Exception:    Index:  1 2345
    ----------    ------  ------
    EXCEP_IRQ       1     1 0001
    EXCEP_AdEL      2     1 0010
    EXCEP_AdES      3     1 0011
    EXCEP_IBE       4     1 0100
    EXCEP_DBE       5     1 0101
    EXCEP_Sys       6     1 0110
    EXCEP_Bp        7     1 0111
    EXCEP_RI        8     1 1000
    EXCEP_CpU       9     1 1001
    EXCEP_Overflow 10     1 1010
    EXCEP_Trap     11     1 1011
    EXCEP_IS1      12     1 1100
    EXCEP_CEU      13     1 1101
    EXCEP_C2E      14     1 1110
    Undefined      15     1 1111

 
 *************************************************************************** */

 
static unsigned int _excep_code;
static unsigned int _excep_addr;

 
#if defined(USE_NEW_EXCEPTION_HANDLER)
void __attribute__((nomips16)) _general_exception_handler (XCPT_FRAME* const pXFrame)
{
    _excep_addr = pXFrame->epc;
    _excep_code = pXFrame->cause;
    _excep_code = (_excep_code & 0x0000007C) >> 2;

 
    // Report Exception using LEDs, port is grounded to light an LED
    PORTACLR = 1<<4; // Turn on "exception alert" LED
    switch ( _excep_code ) // Identify the exception
    {
        case EXCEP_IRQ: // RA5    RA6    RA7    RA9
            PORTACLR =   (0<<5)+(0<<6)+(0<<7)+(1<<9);
            break;

 
        case EXCEP_AdEL:
            PORTACLR =   (0<<5)+(0<<6)+(1<<7)+(0<<9);
            break;

 
        case EXCEP_AdES:
            PORTACLR =   (0<<5)+(0<<6)+(1<<7)+(1<<9);
            break;

 
        case EXCEP_IBE:
            PORTACLR =   (0<<5)+(1<<6)+(0<<7)+(0<<9);
            break;

 
        case EXCEP_DBE:
            PORTACLR =   (0<<5)+(1<<6)+(0<<7)+(1<<9);
            break;

 

1.7 Using the Library Audio Equalizer Filtering Library Help Application Examples

 1-26

1



        case EXCEP_Sys:
            PORTACLR =   (0<<5)+(1<<6)+(1<<7)+(0<<9);
            break;

 
        case EXCEP_Bp:
            PORTACLR =   (0<<5)+(1<<6)+(1<<7)+(1<<9);
            break;

 
        case EXCEP_RI:
            PORTACLR =   (1<<5)+(0<<6)+(0<<7)+(0<<9);
            break;

 
        case EXCEP_CpU:
            PORTACLR =   (1<<5)+(0<<6)+(0<<7)+(1<<9);
            break;

 
        case EXCEP_Overflow:
            PORTACLR =   (1<<5)+(0<<6)+(1<<7)+(0<<9);
            break;

 
        case EXCEP_Trap:
            PORTACLR =   (1<<5)+(0<<6)+(1<<7)+(1<<9);
            break;

 
        case EXCEP_IS1:
            PORTACLR =   (1<<5)+(1<<6)+(0<<7)+(0<<9);
            break;

 
        case EXCEP_CEU:
            PORTACLR =   (1<<5)+(1<<6)+(0<<7)+(1<<9);
            break;

 
        case EXCEP_C2E:
            PORTACLR =   (1<<5)+(1<<6)+(1<<7)+(0<<9);
            break;

 
        default:
            PORTACLR =   (1<<5)+(1<<6)+(1<<7)+(1<<9);
            break;
    }//end switch ( _excep_code )

 
    // Report exception via UART.
    sprintf(ioString," EXCEPTION: %d at %08x :EXCEPTION \r\n",_excep_code, _excep_addr);
    SendDataBuffer(ioString, strlen(ioString) );

 
    if (_excep_code == EXCEP_Overflow)
    {// Provide fallback return value for filtering primitive throwing an overflow exception.
        pXFrame->v0 = 0x7FFF;  // set function output to maximum (saturation)
        pXFrame->v1 = 0x7FFF;  // set intermediate results to maximum (saturation)
        pXFrame->epc = pXFrame->epc + 4; // set return from exception to next instructino 
(skip)
    }

 
    return;

 
    // Double CRAP! The exception handler has thrown an exception!!
    sprintf(ioString," EXCEPTION:EXCEPTION: %d at %08x :EXCEPTION:EXCEPTION \r\n",_excep_code, 
_excep_addr);
    SendDataBuffer(ioString, strlen(ioString) );

 
    while (1) {
        // Wait for the cavalry to arrive...
        asm("NOP");
    }
}

1.7 Using the Library Audio Equalizer Filtering Library Help Application Examples

 1-27

1



1.8 Equalization Filters 

1.8.1 Example Filter Definition Files 

Example Filters

In  the  folder  ./framework/math/audio_equalizer/filters  you  will  find  predefined  filters.  Filters  are  defined  in  .h  files

that can be #included in application source code. (See the code examples in AUDIO_EQUALIZER_BandEnergyUpdateQ15 and

AUDIO_EQUALIZER_BandEnergyNSamplesSet .)

GraphicEqualizer...

Files  starting  with  GraphicEqualizer...  were  designed  in  Matlab  using  the  GraphicEqualizerDesign.m.  File  names

are of the form 

    GraphicEqualizer{NfreqBands}x{NfiltersPerBand}_Q{15|31}.{.h|.jpg|.mat}.

The  dot h  file  initializes  a  filter  structure  so  that  the  filtering  library  can  use  the  filters  defined  in  the  file.  The  dot MAT  file

contains the filter workspace used to design the filters and can be used in validating the filter on PIC32 devices. The dot JPG

files shows the designed filter response, as calculated by the script that designed the filter coefficients.

myFilters...

Files  starting  with  myFilters...  were  designed  in  Matlab  using  the  GraphicEqualizerFilterDesignScript.m.  File

names are of the form 

    myFilters{NfreqBands}x{NfiltersPerBand}_Q{15|31}.{.h|.jpg|.mat}.

The  dot h  file  initializes  a  filter  structure  so  that  the  filtering  library  can  use  the  filters  defined  in  the  file.  The  dot MAT  file

contains the filter workspace used to design the filters and can be used in validating the filter on PIC32 devices. The dot JPG

file shows the designed filter response, as calculated by the script that designed the filter coefficients.

ParametricFilters...

Files  starting  with  ParametricFilter...  were  designed  in  Matlab  using  the  ParametricEqualizerDesign.m.  File

names are of the form 

    ParametricFilter1x{Nfilters}_Q{15|31}.{.h|.jpg|.mat}.

The  dot h  file  initializes  a  filter  structure  so  that  the  filtering  library  can  use  the  filters  defined  in  the  file.  The  dot MAT  file

contains the filter workspace used to design the filters and can be used in validating the filter on PIC32 devices. The dot JPG

file shows the designed filter response, as calculated by the script that designed the filter coefficients.

1.8.2 Matlab/Octave 

Filter Design Tools

Design of new filters is supported by Matlab(tm) and Matlab(tm)/Octave scripts that are provided along with the filtering library.

These tools can design filters for both graphic equalizers and parametric equalizers.

1.8 Equalization Filters Audio Equalizer Filtering Library Help Matlab/Octave

 1-28

1



Matlab

Matlab is available from Mathworks (http://www.mathworks.com). An additional toolbox (Signal Processing Toolbox) is needed to

run the Matlab-only graphic equalizer filter script  GraphicEqualizerFilterDesignScript.m.  Additionally,  the filter design

scripts GraphicEqualizerDesign.m and ParametricEqualizerDesign.m will run from Matlab(tm).

GNU Octave

GNU  Octave  is  a  freeware  clone  of  Matlab  and  supports  basically  all  Matlab  primitives.  It  has  many  add-on  packages  for

subjects  such as  DSP and Mechanical  Engineering.  Octave only  supports  a  command line  (>  prompt)  interface,  but  there  are

GUIs  that  will  run  on  top  of  Octave  to  provide  a  similar  look  and  feel  to  Octave  as  that  of  Matlab.  The  filter  design  scripts

GraphicEqualizerDesign.m and ParametricEqualizerDesign.m will run from GNU Octave as well as Matlab(tm).

GNU Octave GUIs

Octave's user interface is a command window, not a GUI. Several GUIs are available to run on top of Octave so that the user

experience is closer to Matlab's.

• GUI Octave is a freeware GUI, written by Joaquim Varandas. It is available at http://guioctave.software.informer.com .

• Xoctave is a commercial product, available at http://www.xoctave.com .

How To Install GNU Octave:

( Original instructions found here: http://wiki.octave.org/Octave_for_Windows)

1. Download the Octave Windows and Octave Packages binaries at:

http://sourceforge.net/projects/octave/files/Octave%20Windows%20binaries/Octave%203.6.4%20for%20Windows%20MinGW%2

0installer/

2. The two files to download are: Octave3.6.4_gcc4.6.2_20130408.7z Octave3.6.4_gcc4.6.2_pkgs_20130402.7z

3. Create the directory C:\Octave

4. Copy both downloaded archives to C:\Octave

5. Right click on each *.7z file in C:\Octave and select 7-Zip>>Extract Here

6. Copy the following lines into the Octave window and execute them:

pkg rebuild –auto

pkg rebuild –noauto ad

pkg rebuild –noauto nan

pkg rebuild –noauto gsl

pkg rebuild –auto java

7. Enlarge the font in Octave by clicking on the icon in the upper left corner of the window and select Properties. Select font size 
(18 pt)

1.8.3 Graphic Equalization Filter Design Tools 

Introduction

The  Harmony  folder  apps\filters\audio\filter_design  contains  filter  design  tools  in  Matlab(tm)/Octave  that  support

designing new equalization filters.

1.8 Equalization Filters Audio Equalizer Filtering Library Help Graphic Equalization Filter Design Tools

 1-29

1



Designing Filters for Graphic Equalizers Using Matlab(tm)

The Matlab(tm) script GraphicEqualizerFilterDesignScript.m uses the yulewalk function (part of the Signal Processing

Toolbox) to design equally spaced frequency bands between DC and the folding frequency (F0 =Fs/2). Band edges are specified

in  the  vector  fBands,  with  frequencies  normalized  by  F0.  The  desired  filter  amplitude  is  specified  by  mBandsN,  where  N  

specifies the frequency band: 

% Filter specification setups *************************************************
switch ( nBands )
    .
    .
    .
    case {5}
        % Frequencies, including band center and band edges
        %           Edge  Cntr  Edge  Cntr  Edge  Cntr  Edge  Cntr  Edge  Cntr  Edge
        fBands = [    0    .1    .2    .3    .4    .5    .6    .7    .8    .9     1 ];

 
        % Band amplitude desired, with 6 dB at band edges
        mBand1 = [    1     1    .5     0     0     0     0     0     0     0     0 ];
        mBand2 = [    0     0    .5     1    .5     0     0     0     0     0     0 ];
        mBand3 = [    0     0     0     0    .5     1    .5     0     0     0     0 ];
        mBand4 = [    0     0     0     0     0     0    .5     1    .5     0     0 ];
        mBand5 = [    0     0     0     0     0     0     0     0    .5     1     1 ];

 
        % Peak amplitude for each band
        peakAmp =  [       +1.5        +1          +1          +1          +1.5     ];

 
        % Sign used for each band output, alternating signs prevents band edges from
        % being 180 out of phase and producing notch in overall filter response.
        sBands =  [         +1          -1          +1          -1          +1       ];

 
        mBands = [ mBand1; mBand2; mBand3; mBand4; mBand5 ];

The vector peakAmp provides adjustments for the first and last filter bands, so that the overall filter response is a flat as possible.

Band edges can be adjusted if equally-spaced bands are not desired.

Designing Filters for Graphic Equalizers Using Matlab/Octave

The  Harmony  folder  apps\filters\audio\filter_design  contains  filter  design  tools  in  Matlab(tm)/Octave  that  support

designing  parametric  equalization  filters.  Launch  Matlab(tm)/Octave,  change  the  default  directory  to  the  location  of  the  filter

design scripts, and then start the script by entering GraphicEqualizerDesign followed by a return: 

Welcome to Xoctave 3.3.
 Please visit http://www.xoctave.com to get informed about updates and announcements.
>>
>> cd( 'C:\Harmony\apps\filters\audio\filter_design' )
>> GraphicEqualizerDesign % for Graphic Equalizer filters
>>

A dialog window will appear: 

1.8 Equalization Filters Audio Equalizer Filtering Library Help Graphic Equalization Filter Design Tools

 1-30

1



(Note screen shots are from Matlab(tm). Octave produces a slightly different dialog window that is functionally identical.)

The dialog window has inputs for:

• Filter Bit Width (either 16 or 32)

• Sample Rate in Hz

• Number of Biquad IIRs in cascade for each frequency band

• Center Frequencies for Each Filter, in Hz

• Desired Gain for Each Filter, in dB

• Bandwidth, in Hz, for Each Filter

• Signs (+1/-1) used to add filter outputs together

• Shelving Qs for the first (lowpass) and last (highpass) filters

• Plot Command, which determines whether the frequency axis is linear (plot) or logarithmic (semilogx)

Frequencies, gains, bandwidths, signs, and Qs are lined up so that it is easy to edit a filter's parameters. To change the number

of filters used simply delete a column of data. When the parameters are set, select "OK" to generate the filters and display a plot: 

1.8 Equalization Filters Audio Equalizer Filtering Library Help Graphic Equalization Filter Design Tools

 1-31

1



Next a dialog window appears asking if you are done: 

Select  "No"  to  return  to  the  parameters  dialog  screen  for  additional  tweaking  or  "Yes"  to  move  on  to  saving  the  filters  just

generated.

If  you select  "Yes" then a plot  of  the scaled filter  response is  shown, where the total  filter  response has been normalized to a

peak gain of unity (0 dB). This is the filter setup that is saved for use in PIC32 firmware. 

Next  a  dialog  window appears  to  save  the  filter  design  workspace  for  later  reuse  in  designing  more  filters  or  in  validating  the

filters on PIC32 devices. The window allows you to save the .MAT file anywhere on your computer: 

1.8 Equalization Filters Audio Equalizer Filtering Library Help Graphic Equalization Filter Design Tools

 1-32

1



Next you are prompted to save the .h file, which defines the filters for PIC32 firmware: 

To  help  you  keep  track  of  each  iteration  of  filter  design  the  parameters  used  at  each  iteration  are  dumped  to  the

Matlab(tm)/Octave console: 

FILTER DESIGN 1 **************************************
nFilterBits: 16, Fs: 44100 Hz, # Bands: 6
Center Freqs [Hz]:           0          4410          8820         13230         17640         
21000
Filter Gains [dB]:           1             0             0             0            
-1           0.5
Filter BWidth [Hz]:       6000          4750          5500          5500          
4500          4500
LowPass/HighPass Qs:     0.717            NA            NA            NA            NA         
0.717

You can load the setup used for previous filters by loading the workspace .mat file into Matlab(tm)/Octave before launching the

design script.

1.8.4 Parametric Equalization Filter Design 

Designing Filters for Parametric Equalizers

The  Harmony  folder  apps\filters\audio\filter_design  contains  filter  design  tools  in  Matlab(tm)/Octave  that  support

designing  parametric  equalization  filters.  Launch  Matlab(tm)/Octave,  change  the  default  directory  to  the  location  of  the  filter

design scripts, and then start the script by entering ParametricEqualizerDesign followed by a return: 

Welcome to Xoctave 3.3.
 Please visit http://www.xoctave.com to get informed about updates and announcements.
>>
>> cd( 'C:\Harmony\apps\filters\audio\filter_design' )

 
>> ParametricEqualizerDesign % for Parametric Equalizer filters
>>

A dialog window will appear: 

1.8 Equalization Filters Audio Equalizer Filtering Library Help Parametric Equalization Filter Design

 1-33

1



These defaults were first loaded into Matlab(tm)/Octave from a file before executing the script. The file was 

C:\Harmony\framework\math\audio_equalizer\filters\ParametricFilters1x8_Q31.mat

which was produced when the script was used to generate the ParametricFilters1x8_Q31.h file in the same directory. The

dialog window has inputs for:

• Filter Bit Width (either 16 or 32)

• Sample Rate in Hz

• Center Frequencies for Each Filter, in Hz

• Desired Gain for Each Filter, in dB

• Bandwidth, in Hz, for Each Interior Filter

• Shelving Qs for the first and last filter.

     Q = 1/sqrt(2) provides maximally flat pass band up to the cutoff frequency.
     Q < 1/sqrt(2) provides higher pass band attenuation
     Q > 1/sqrt(2) provides additional gain around the cutoff frequency

• Plot Command, which determines whether the frequency axis is linear (plot) or logarithmic (semilogx)

Frequencies,  gains,  bandwidths,  and  Qs  are  lined  up  so  that  it  is  easy  to  edit  a  filter's  parameters.  To  change the  number  of

filters used simply delete a column of data. When the parameters are set, select "OK" to generate the filters and display a plot: 

1.8 Equalization Filters Audio Equalizer Filtering Library Help Parametric Equalization Filter Design

 1-34

1



Next a dialog window appears asking if you are done: 

Select  "No"  to  return  to  the  parameters  dialog  screen  for  additional  tweaking  or  "Yes"  to  move  on  to  saving  the  filters  just

generated. If you select "Yes" then a dialog window appears to save the filter design workspace for later reuse in designing more

filters or in validating the filters on PIC32 devices. The window allows you to save the .MAT file anywhere on your computer: 

Next you are prompted to save the .h file, which defines the filters for PIC32 firmware: 

To  help  you  keep  track  of  each  iteration  of  filter  design  the  parameters  used  at  each  iteration  are  dumped  to  the

Matlab(tm)/Octave console: 

FILTER DESIGN **************************************
nFilterBits: 16, Fs: 44100 Hz, # Bands: 8
Center Freqs [Hz]:         125         250             500            1000            
2000            4000            8000           12000
Filter Gains [dB]:           1         0.5               2               1              
-1              -2              -2              -2
Filter BWidth [Hz]:         NA     176.777         353.553         707.107         
1414.21         2828.43         5656.85              NA
Shelving Qs:          0.707107          NA               NA              NA              
NA              NA              NA        0.707107

1.8 Equalization Filters Audio Equalizer Filtering Library Help Parametric Equalization Filter Design

 1-35

1



A Warning About Filter Bit Widths

If you simply change the filter bit width from 32 to 16 in the above setup, and generate 16-bit wide filters instead of 32-bit, you will

find that the behavior of the first two filters changes dramatically simply because of rounding the coefficients to fixed point values

with 16 instead of 32 bits: 

The takeaway from this is that some types of parametric filters, especially those centered at low frequencies, are very sensitive

to  coefficient  rounding.  But  since using 32 bit  filters  for  an 8-filter  setup is  only  23% more computationally  expensive than the

same setup with 16-bit filters, it is usually not necessary to design and use 16-bit filters.

Note  that  the  change  in  filter  behavior  is  caused  solely  by  the  reduction  in  coefficient  bit  width,  not  because  the  filters  are

calculated using 16-bit math instead of 32-bit. The file 

         C:\Harmony\framework\math\audio_equalizer\filters\ParametricFilters1x8_Q31_Hacked.h

contains 16-bit coefficients scaled up to Q31 for Filters 1 and 2. These coefficients can be run from the 32-bit validation project

and the same validation plot produced as shown above.

1.8.5 Filter Validation Tools 

Introduction

Equalization  filter  designed  with  Matlab(tm)/Octave  or  some  other  tool  must  be  validated  on  the  target  hardware  using  target

signals  to  ensure  that  the  filters  perform  as  expected.  The  folder  ./apps/filters/audio/filter_validation  contains

Matlab(tm)/Octave scripts and PIC2MX firmware in support of this task.

Out of the box, MPLAB.x validation projects will run on PIC32 Bluetooth Audio Development Board. Projects with a _Q15.X suffix

supports 16 bit (Q0.15 or Q15) filters while _Q31.X projects supports 32 bit (Q0.31 or Q31) filters:

• ParametricFilterValidation_Q15.X - Parametric filter validation for Q15 (16-bit) filters

• ParametricFilterValidation_Q31.X - Parametric filter validation for Q31 (32-bit) filters

• GFXFilterValidation_Q15.X - Graphic Equalizer filter validation for Q15 (16-bit) filters

• GFXFilterValidation_Q31.X - Graphic Equalizer filter validation for Q31 (32-bit) filters

On  the  target  board  UART4  is  used  to  transmit  text  data  back  to  a  PC,  which  captures  the  text  into  an  ASCII  flat  file  using

Hyperterminal,  RealTerm,  or  some other  terminal  emulation  utility.  The  captured  text  is  saved to  a  text  file,  which  is  analyzed

1.8 Equalization Filters Audio Equalizer Filtering Library Help Filter Validation Tools

 1-36

1



using  the  Matlab(tm)/Octave  script  ValidateFilterResponseScript.m  or  ValidateParametricFilterResponse.m,

located in the folder ./Matlab-Octave.

A UART4 transmit pin can be found on pin 4 of the J4 connector on the PIC2 Bluetooth Audio Development Board. This pin can

be connected to  the receive pin  of  a  PICKit  Serial  Analyzer  (PKSA) that  has been programmed for  USART communication.  A

typical bench-top setup is shown below: 

Collecting Filter Data

The  filters  to  be  analyzed  are  specified  at  the  top  of  the  file  validation_tool_Q15.c  (or  _Q31.c)  or

parametric_filter_validation_tool.c: 

#include "math/audio_equalizer/filters/myFilters6x2_Q15.h"
//#include "../Filters/myBadFilters6x2_Q15.h"
#define NUM_BANDS 6
#define NFILTERS_PER_BAND 2

(The filters  in  the  commented out  file  myBadfilters6x2.h  have incorrect  gain  settings  and can be used to  demonstrate  that  the

exception handler works correctly.) The file myFilters6x2_Q15.h contains filter coefficients for a 6-band graphic equalizer, where

each band has two IIR biquads for filtering using 16-bit coefficients.

The input signal used to validate the filters is specified by the sampling frequency and FFT size: 

    // Variables for measuring filter response: Sampling Frequency and FFT size
    double   Fs     = 44100; // sampling frequency, in Hz
    uint16_t nFFT   = 1024; // FFT size

A linear FM chirp is used as input to the filter bank with frequencies sweeping from DC (1st FFT bin) up to the folding frequency

(Fs/2). At each frequency nFFT samples are computed and filtered. The amplitude of this signal is specified by: 

    // Parameters for input tone generation
  //double   ampXin = 0.891240938; // Input waveform amplitude -1 dBFS
    double   ampXin = 1.0;

1.8 Equalization Filters Audio Equalizer Filtering Library Help Filter Validation Tools

 1-37

1



Gain adjustments for each of the Graphic Equalizer frequency bands can be specified by: 

    // Gain adjustments
    EQUALIZER_FILTER_GAIN bandGain,adjBandGain;
    int16_t myGainAdjustments[] = {  0,  0,  0,  0,  0,  0,  0,  0 };
  //int16_t myGainAdjustments[] = { -1, -1, -1, -1, -1, -1, -1, -1 };
  //int16_t myGainAdjustments[] = {  0,  0,  0,  0, -2,  0,  0,  0 };

with  the  gains  specified  in  integer  dB's.  (Parametric  Equalizer  gains  are  not  adjustable,  since  to  adjust  a  parametric  equalizer

gain would change the gain out of band from unity to some other value.) The output of each band's filters and the overall  filter

output is calculated and the filter response is calculated using a Discrete Fourier Transform (DFT) for each band and the overall

filter. This data is pumped out the UART transmit pin for each FFT bin: 

        // Dump filter response results out UART to Matlab or Octave
        for (iBand = 0; iBand < nBands+1; iBand++)
        {
            BandEnergy = AUDIO_EQUALIZER_BandEnergyGetQ15(iBand,true)/65536.0;
            sprintf(ioString,"%d,%g,%g,%g,%g\r\n",
                             iBand,Fc,YoutAmpSqrd[iBand],YoutPhase[iBand],(iFreq==0 ? 1.0 : 
2.0)*BandEnergy);
            // BandEnergy = A^2/2, where A = signal amplitude
            SendDataBuffer(ioString, strlen(ioString) );
        }

The  DFT result  is  output  as  an  amplitude  squared  and  as  phase  (in  degrees)  for  use  by  Matlab(tm)/Octave  in  comparing  the

measured  results  with  filter  responses  calculated  when  the  filters  were  designed.  This  comparison  is  accomplished  using  the

script ValidateFilterResponseScript.m .

Validating the Data

Launch Matlab(tm) or Octave. Change the default directory to the location of the ValidateFilterResponseScript (Graphic

Equalizer  filters)  and  ValidateParametricFilterResponse  (Parametric  Equalizer  filters)  and  execute  the  script

corresponding to your filters: 

Welcome to Xoctave 3.3.
 Please visit http://www.xoctave.com to get informed about updates and announcements.
>>
>> cd( 'C:\Harmony\apps\filters\audio\filter_design' )

 
>> ValidateFilterResponseScript % for Graphic Equalizer filters
>> % Or ValidateParametricFilterResponse for Parametric Equalizer filters

A dialog window will appear. Input the filter bit width (16 or 32), the number of frequency bands in the filter bank, the number of

IIR biquad filters per band, and the input amplitude, in dB. For Parametric Equalization filters there is an additional input, which

determines whether the frequency axis is linear (plot) or logarithmic (semilogx). 

 

After  editing the default  values,  press "OK" to continue. Next load the captured file,  first  loading the .MAT file belonging to the

filter: 

1.8 Equalization Filters Audio Equalizer Filtering Library Help Filter Validation Tools

 1-38

1



Then load the captured text file: 

The script will then plot actual versus desired filter responses for each filter band and the overall filter response.

As described in the validation script, the captured data has the following format: 

%Format of CapturedDataArray, for a 6 band filter setup
%
% Band| Freq   | Filt Amp^2 | Filt Phase | Yout Mean Squared
%    0, 43.0664, 0.877196   ,  1.56604,     0.87616
%    1, 43.0664, 1.43779e-05,  104.977,     0
%    2, 43.0664, 7.5499e-08 , -90.0112,     0
%    3, 43.0664, 0.000512932, -179.669,     0.000427246
%    4, 43.0664, 1.12161e-08, -108.557,     0
%    5, 43.0664, 8.56599e-06, -179.652,     0
%    6, 43.0664, 0.828278   ,  1.81478,     0.827271
%
% Band outputs are indexed from 0 to nBands, index = nBands is total response
%

Sometimes a null (\0) character is captured at the start of the text file. This produces an error in Matlab(tm)/Octave when the file

is read: 

1.8 Equalization Filters Audio Equalizer Filtering Library Help Filter Validation Tools

 1-39

1



    Error using load
    Unknown text on line number 1 of ASCII file
    C:\Harmony\apps\examples\math\audio_equalizer\filter
    validation\Matlab-Octave\capture.txt
    "".
    Error in ValidateParametricFilterResponse (line 88)
    load(PathCapturedFile);

It occurs because a null character has been captured in the first line of the file: 

     0,0,0.707332,0,0
    0,43.0664,0.708033,-3.51642,0
    0,86.1328,0.650234,-6.80699,0
    0,129.199,0.56688,-7.64474,0

With any available text editor simply delete the first character in the file. This will  allow Matlab(tm)/Octave to read and process

the edited file.

It  is  best  to  capture  data  (using  Hyperterminal  or  RealTerm)  to  a  local  instead  of  network  file.  Network  latency  accessing  a

remotely located file can cause dropped characters in the data capture, which causes Matlab(tm)/Octave to error out when trying

to read the captured data text file.

A Warning About Truncation and Overflows

The  validation  testbench  software  provided  will  light  up  the  LEDs  on  the  Bluetooth  Audio  Development  board  whenever  the

filtering  software  throws  an  exception.  (See  Core  Exception  Handling.)  But  there  are  cases  where  filtering  artifacts  will  occur

without exceptions. A case in point occurs when filters normalized with peak of 0 dB (unity) gain are drive with signals at 0 dBFS.

If the signal is at or near the frequency of the peak filter response "interesting" things can happen without the software throwing

an overflow exception. Here is an example: 

Note there are filtering artifacts not  only at  the peak of  the filter's  gain,  but  at  other frequencies as well.  The takeaway:  Never

overdrive the filters!

1.8.6 A Warning About Stereo Filters 

WARNING*WARNING*WARNING:

While it is clearly recommended to use the same filter design for both left and right stereo channels, you cannot use the same

EQUALIZER_FILTER (or EQUALIZER_FILTER_32) structure for both channels. This is because filter memory is part of the

structure and you cannot share filter memory between channels. Thus there must be a dedicated filter structure for both left and

right channels.

(Note also that having a filter structure for the left channel and one for the right channel allows different band filter gains between

the channels.)

1.8 Equalization Filters Audio Equalizer Filtering Library Help A Warning About Stereo Filters

 1-40

1



Correct:

#include <stdint.h>
#include <stdbool.h>
#include <math.h>

 
#include "math/audio_equalizer/audio_equalizer.h"

 
#include "myFilters8x2Stereo_Q15.h"

 
void  FilterInput(libq_q15_t XinLeft, libq_q15_t XinRight, libq_q15_t *YoutLeft, libq_q15_t 
*YoutRight)
{
    libq_q15_t YoutLeft0,YoutLeft1,YoutLeft2,YoutLeft3,YoutLeft4,YoutLeft5,YoutLeft6,YoutLeft7;
    libq_q15_t 
YoutRight0,YoutRight1,YoutRight2,YoutRight3,YoutRight4,YoutRight5,YoutRight6,YoutRight7;

 
    YoutLeft0  = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[0],  XinLeft  );
    YoutRight0 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[0], XinRight );

 
    YoutLeft1  = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[2],  XinLeft  );
    YoutRight1 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[2], XinRight );
    .
    .
    .
    YoutLeft5  = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[10],  XinLeft  );
    YoutRight5 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[10], XinRight );

 
    *YoutLeft  = YoutLeft0  + YoutLeft1  + YoutLeft2  + YoutLeft3  + YoutLeft4  + YoutLeft5;
    *YoutRight = YoutRight0 + YoutRight1 + YoutRight2 + YoutRight3 + YoutRight4 + YoutRight5;

 
}

Incorrect:

#include <stdint.h>
#include <stdbool.h>
#include <math.h>

 
#include "math/audio_equalizer/audio_equalizer.h"

 
#include "myFilters8x2_Q15.h"

 
void  FilterInput(libq_q15_t XinLeft, libq_q15_t XinRight, libq_q15_t *YoutLeft, libq_q15_t 
*YoutRight)
{
    libq_q15_t YoutLeft0,YoutLeft1,YoutLeft2,YoutLeft3,YoutLeft4,YoutLeft5,YoutLeft6,YoutLeft7;
    libq_q15_t 
YoutRight0,YoutRight1,YoutRight2,YoutRight3,YoutRight4,YoutRight5,YoutRight6,YoutRight7;

 
    YoutLeft0  = AUDIO_EQUALIZER_Cascade2inQ15( &myFilters[0], XinLeft  );
    YoutRight0 = AUDIO_EQUALIZER_Cascade2inQ15( &myFilters[0], XinRight );

 
    YoutLeft1  = AUDIO_EQUALIZER_Cascade2inQ15( &myFilters[2], XinLeft  );
    YoutRight1 = AUDIO_EQUALIZER_Cascade2inQ15( &myFilters[2], XinRight );
    .
    .
    .
    YoutLeft5  = AUDIO_EQUALIZER_Cascade2inQ15( &myFilters[10], XinLeft  );
    YoutRight5 = AUDIO_EQUALIZER_Cascade2inQ15( &myFilters[10], XinRight );

 
    *YoutLeft  = YoutLeft0  + YoutLeft1  + YoutLeft2  + YoutLeft3  + YoutLeft4  + YoutLeft5;

1.8 Equalization Filters Audio Equalizer Filtering Library Help A Warning About Stereo Filters

 1-41

1



    *YoutRight = YoutRight0 + YoutRight1 + YoutRight2 + YoutRight3 + YoutRight4 + YoutRight5;

 
}

1.8 Equalization Filters Audio Equalizer Filtering Library Help A Warning About Stereo Filters

 1-42

1



1.9 Library Interface 

1) Filter Routines In C

Name Description

AUDIO_EQUALIZER_IIRinQ15andC Applies equalization filter defined by *pFilter to Xin and provides single 
output.

AUDIO_EQUALIZER_IIRinQ15FastC Applies equalization filter defined by *pFilter to Xin and provides single 
output.

AUDIO_EQUALIZER_IIRinQ31andC Applies equalization filter defined by *pFilter to Xin and provides single 
output.

2) Filter Routines In Assembly

Name Description

AUDIO_EQUALIZER_IIRinQ15 Applies equalization filter defined by *pFilter to Xin and provides single output.

AUDIO_EQUALIZER_IIRinQ31 Applies equalization filter defined by *pFilter to Xin and provides single output.

3) Single Band, Cascade of IIRs, in Assembly

Name Description

AUDIO_EQUALIZER_Cascade2inQ15 Performs a single output of a cascade of 2 biquad IIR filters.

AUDIO_EQUALIZER_Cascade2inQ31 Performs a single output of a cascade of 2 biquad IIR filters.

AUDIO_EQUALIZER_Cascade8inQ15 Performs a single output of a cascade of 8 biquad IIR filters.

AUDIO_EQUALIZER_Cascade8inQ31 Performs a single output of a cascade of 8 biquad IIR filters.

4) Multiple Bands, Multiple Filters per Band, in Assembly

Name Description

AUDIO_EQUALIZER_Parallel4x2inQ15 Performs 4 parallel IIR filters, with 2 series biquad filters each, and sums 
the result.

AUDIO_EQUALIZER_Parallel4x2inQ31 Performs 4 parallel IIR filters, 2 series biquad filters each, and sums the 
result.

AUDIO_EQUALIZER_Parallel8x2inQ15 Performs 8 parallel IIR filters, with 2 series biquad filters each, and sums 
the result.

AUDIO_EQUALIZER_Parallel8x2inQ31 Performs 8 parallel IIR filters, with 2 series biquad filters each, and sums 
the result.

AUDIO_EQUALIZER_ParallelNx2inQ15 Performs N parallel IIR filters, 2 series biquad filters each, and sums the 
result.

AUDIO_EQUALIZER_ParallelNx2inQ31 Performs N parallel IIR filters, 2 series biquad filters each, and sums the 
result.

AUDIO_EQUALIZER_ParallelNxMinQ15 Performs N parallel IIR filters, M series biquad filters each, and sums the 
result.

AUDIO_EQUALIZER_ParallelNxMinQ31 Performs N parallel IIR filters, M series biquad filters each, and sums the 
result.

5) Filter Gain Routines

Name Description

AUDIO_EQUALIZER_FilterGainAdjustQ15 Adjusts a filter gain structure by the integer gain adjustment provided

AUDIO_EQUALIZER_FilterGainAdjustQ31 Adjusts a filter gain structure by the integer gain adjustment provided

1.9 Library Interface Audio Equalizer Filtering Library Help

 1-43

1



AUDIO_EQUALIZER_FilterGainGetQ15 Gets the filter gain for a given band and filter.

AUDIO_EQUALIZER_FilterGainSetQ15 Gets the filter gain for a given band and filter.

AUDIO_EQUALIZER_FilterGainGetQ31 Gets the filter gain for a given band and filter.

AUDIO_EQUALIZER_FilterGainSetQ31 Gets the filter gain for a given band and filter.

AUDIO_EQUALIZER_GainNormalizeQ15 Normalize all the EQUALIZER_FILTER_GAIN's in a filter array so that 
the gains can be applied correctly by each filtering function.

AUDIO_EQUALIZER_GainNormalizeQ31 Normalize all the EQUALIZER_FILTER_GAIN's in a filter array so that 
the gains can be applied correctly by each filtering function.

6) Band Energy Estimation

Name Description

AUDIO_EQUALIZER_BandEnergySumsInit Initialize band energy measurements, clearing band energy sum 
array and number of energy samples for each band.

AUDIO_EQUALIZER_BandEnergyNSamplesSet Resets number of samples used to update band energy 
measurements.

AUDIO_EQUALIZER_BandEnergyUpdateQ15 Update band energy estimate for a given filter band with new 
filter output. "Q15" suffix designates this routine is for signals with 
Q15 fixed point format.

AUDIO_EQUALIZER_BandEnergyUpdateQ31 Update band energy estimate for a given filter band with new 
filter output. "Q31" suffix designates this routine is for signals with 
Q31 fixed point format.

AUDIO_EQUALIZER_BandEnergyGetQ15 Get band energy estimate for a given filter band. "Q15" suffix 
designates this routine is for signals with Q15 fixed point format.

AUDIO_EQUALIZER_BandEnergyGetQ31 Get band energy estimate for a given filter band. "Q31" suffix 
designates this routine is for signals with Q31 fixed point format.

7) Fixed Point Typedefs

Name Description

libq_q0d15_t Typedef for the Q0.15 fixed point data type.

libq_q15_t Typedef for the Q0.15 fixed point data type.

libq_q0d16_t Typedef for the Q0.16 fixed point data type.

libq_q0d31_t Typedef for the Q0.31 fixed point data type.

libq_q31_t Typedef for the Q0.31 fixed point data type.

libq_q0d63_t Typedef for the Q0.63 fixed point data type

libq_q63_t Typedef for the Q0.63 fixed point data type

libq_q15d16_t Typedef for the Q15.16 fixed point data type

libq_q16d15_t Typedef for the Q16d15 fixed point data type

8) Data Types and Constants

Name Description

AUDIO_EQUALIZER_MAX_NBANDS Maximum number of filter bands supported.

BAND_ENERGY_UNITS Determines what units are used in reporting band energy.

EQUALIZER_FILTER Typedef for equalizer IIR filter definition structure.

EQUALIZER_FILTER_32 Typedef for equalizer IIR filter definition structure.

EQUALIZER_FILTER_GAIN Typedef for equalizer filter gain structure.

EQUALIZER_FILTER_GAIN_32 Typedef for equalizer filter gain structure.

HALF_L1_TO_L2_FACTOR Converts L1 norm (average absolute value) to L2 norm (RMS).

1.9 Library Interface Audio Equalizer Filtering Library Help

 1-44

1



Description

This section describes the Application Programming Interface (API) functions of the Audio Equalizer Filtering library

1.9.1 1) Filter Routines In C 

1.9.1.1 AUDIO_EQUALIZER_IIRinQ15andC Function 

C

libq_q15_t AUDIO_EQUALIZER_IIRinQ15andC(
    EQUALIZER_FILTER * pFilter, 
    bool bApplyGain, 
    libq_q15_t Xin
);

Description

Applies equalization filter defined by *pFilter to Xin and provides single output. Optionally applies total filter gain (bApplyGain ==

true)  or  returns filter  output  for  unity  gain (bApplyGain == false).  Routine is  coded in  C and is  intended to  be a testbed for  an

assembly versions of the algorithm.

Preconditions

The delay register values in the structure specified by pFilter should be initialized to zero prior to the first call to the function, they

are updated during each filter pass.

Parameters

Parameters Description

pFilter pointer to filter definition structure

bApplyGain if true applies total filter gain to output, if false applies only unity gain.

Xin Q15 input to filter

Returns

Yout - Filter output, as Q15 fixed point.

Remarks

None.

Example

int16_t Xin,Yout;
EQUALIZER_FILTER myFilter = { FilterGoesHere };
 
Yout = AUDIO_EQUALIZER_IIRinQ15andC( &myFilter, true, Xin );

Or you may apply gain after getting Yout: 

libq_q15_t Xin,Yout;
libq_q31_t Y32;
EQUALIZER_FILTER myFilter = { FilterGoesHere };
 
Yout = AUDIO_EQUALIZER_IIRinQ15andC( &myFilter, false, Xin );
Y32 = (myFilter.G.fracGain*Yout)<<(myFilter.G.expGain+1);
Yout = Y32>>16;

1.9 Library Interface Audio Equalizer Filtering Library Help 1) Filter Routines In C

 1-45

1



1.9.1.2 AUDIO_EQUALIZER_IIRinQ15FastC Function 

C

libq_q15_t AUDIO_EQUALIZER_IIRinQ15FastC(
    EQUALIZER_FILTER * pFilter, 
    libq_q15_t Xin
);

Description

Applies  equalization  filter  defined  by  *pFilter  to  Xin  and  provides  single  output.  This  routine  is  designed  to  be  faster  than

AUDIO_EQUALIZER_IIRinQ15andC. It does not support applying the filter's gain internally.

Preconditions

The delay register values in the structure specified by pFilter should be initialized to zero prior to the first call to the function, they

are updated during each filter pass.

Parameters

Parameters Description

pFilter pointer to filter definition structure

Xin Q15 input to filter

Returns

Yout - Filter output, as Q15 fixed point.

Remarks

None.

Example

libq_q15_t Xin,Yout;
libq_q31_t Y32;
EQUALIZER_FILTER myFilter = { FilterGoesHere };
 
Yout = AUDIO_EQUALIZER_IIRinQ15FastC( &myFilter, Xin );
Y32 = (myFilter.G.fracGain*Yout)<<(myFilter.G.expGain+1);
Yout = Y32>>16;

1.9.1.3 AUDIO_EQUALIZER_IIRinQ31andC Function 

C

libq_q31_t AUDIO_EQUALIZER_IIRinQ31andC(
    EQUALIZER_FILTER_32 * pFilter, 
    bool bApplyGain, 
    libq_q31_t Xint
);

Description

Applies equalization filter defined by *pFilter to Xin and provides single output. Optionally applies total filter gain (bApplyGain ==

true)  or  returns filter  output  for  unity  gain (bApplyGain == false).  Routine is  coded in  C and is  intended to  be a testbed for  an

assembly versions of the algorithm.

Preconditions

The delay register values in the structure specified by pFilter should be initialized to zero prior to the first call to the function, they

are updated during each filter pass.

1.9 Library Interface Audio Equalizer Filtering Library Help 1) Filter Routines In C

 1-46

1



Parameters

Parameters Description

pFilter pointer to filter definition structure

bApplyGain if true applies total filter gain to output, if false applies only unity gain.

Xin Q31 input to filter

Returns

Yout - Filter output, as Q31 fixed point.

Remarks

TO BE DONE.

Example

  libq_q31_t Xin,Yout;
  EQUALIZER_FILTER_32 myFilter = { FilterGoesHere };
 
  Yout = AUDIO_EQUALIZER_IIRinQ31andC( &myFilter, true, Xin );

Or you may apply gain after getting Yout: 

  libq_q31_t Xin,Yout,Ytemp;
  libq_q63_t Y64;
  EQUALIZER_FILTER_32 myFilter = { FilterGoesHere };
 
  Ytemp = AUDIO_EQUALIZER_IIRinQ31andC( &myFilter, false, Xin );
  Y64 = ( myFilter.G.fracGain*((libq_q63_t)Ytemp) )<<(myFilter.G.expGain+1);
  // fracGain*Ytemp is 32 bits * 32 bits = 64 bits, so must cast into 64 bits
  Yout = Y64>>32; // 32 bits (inside of 64) shifted to fit into 32 bits

1.9.2 2) Filter Routines In Assembly 

1.9.2.1 AUDIO_EQUALIZER_IIRinQ15 Function 

C

libq_q15_t AUDIO_EQUALIZER_IIRinQ15(
    EQUALIZER_FILTER * pFilter, 
    libq_q15_t Xin
);

Description

Applies  equalization  filter  defined  by  *pFilter  to  Xin  and  provides  single  output.  This  routine  is  coded  in  MIPS  assembly  for

maximum efficiency. It is the signal processing equivalent of AUDIO_EQUALIZER_IIRinQ15andC with bApplyGain set to false.

Calculates  a  single  pass IIR biquad filter  on Xin,  and delivers  the result  as  a  16-bit  output.  All  math  is  performed using 32 bit

instructions, which results truncated to 16-bits for the output. The delay register is stored as a 32-bit value for subsequent calls.

The biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

All values are fractional Q15 and Q31, see data structure for specifics.

Preconditions

The delay register values in the structure specified by pFilter should be initialized to zero prior to the first call to the function, they

are updated during each filter pass.

1.9 Library Interface Audio Equalizer Filtering Library Help 2) Filter Routines In Assembly

 1-47

1



Parameters

Parameters Description

pFilter pointer to filter definition structure

Xin Q15 input to filter

Returns

Yout - Filter output, as Q15 fixed point.

Remarks

This is the assembly-coded version of AUDIO_EQUALIZER_IIRinQ15andC except that it does not apply filter gain (bApplyGain

== false)

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

If  you  are  implementing  more  than  one  biquad  IIR  see  AUDIO_EQUALIZER_CascadeinQ15  and

AUDIO_EQUALIZER_ParallelinQ15

Example

libq_q15_t Xin,Yout;
libq_q31_t Y32;
EQUALIZER_FILTER myFilter = { FilterGoesHere };
 
Yout = AUDIO_EQUALIZER_IIRinQ15( &myFilter, Xin );
Y32 = (myFilter.G.fracGain*Yout)<<(myFilter.G.expGain+1);
Yout = Y32>>16;

File Name

audio_eq_iir_q15.s

1.9.2.2 AUDIO_EQUALIZER_IIRinQ31 Function 

C

libq_q31_t AUDIO_EQUALIZER_IIRinQ31(
    EQUALIZER_FILTER_32 * pFilter, 
    libq_q31_t Xin
);

Description

Applies  equalization  filter  defined  by  *pFilter  to  Xin  and  provides  single  output.  This  routine  is  coded  in  MIPS  assembly  for

maximum efficiency. It is the signal processing equivalent of AUDIO_EQUALIZER_IIRinQ31andC with bApplyGain set to false.

Calculates  a  single  pass IIR biquad filter  on Xin,  and delivers  the result  as  a  32-bit  output.  All  math  is  performed using 32 bit

instructions, which results truncated to 32-bits for the output. The delay register is stored as a 32-bit value for subsequent calls.

All values are fractional Q31.

The biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

Preconditions

The delay register values in the structure specified by pFilter should be initialized to zero prior to the first call to the function, they

are updated during each filter pass.

1.9 Library Interface Audio Equalizer Filtering Library Help 2) Filter Routines In Assembly

 1-48

1



Parameters

Parameters Description

pFilter pointer to filter definition structure

Xin Q31 input to filter

Returns

Yout - Filter output, as Q31 fixed point.

Remarks

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

Example

libq_q31_t Xin,Yout;
libq_q63_t Y64;
EQUALIZER_FILTER_32 myFilter = { FilterGoesHere };
 
Yout = AUDIO_EQUALIZER_IIRinQ31( &myFilter, false, Xin );
Y64 = ( myFilter.G.fracGain*((libq_q63_t)Yout) )<<(myFilter.G.expGain+1);
// fracGain*Yout is 32 bits * 32 bits = 64 bits, so must cast Yout into 64 bits
Yout = Y64>>32; // 32 bits (inside of 64) shifted to fit into 32 bits

File Name

audio_eq_iir_q31.s

1.9.3 3) Single Band, Cascade of IIRs, in Assembly 

1.9.3.1 AUDIO_EQUALIZER_Cascade2inQ15 Function 

C

libq_q15_t AUDIO_EQUALIZER_Cascade2inQ15(
    EQUALIZER_FILTER * pFilter_Array, 
    libq_q15_t Xin
);

Description

Function5: libq_q15_t AUDIO_EQUALIZER_Cascade2inQ15( EQUALIZER_FILTER *pFilter_Array, libq_q15_t Xin );

Calculates a single output of a cascade of 8 biquad IIR filters based on a single 16-bit input, and delivers the result as a 16-bit

output. The cascade of filters consists of 2 separate biquad filters arranged in series such that the output of one is provided as

the input to the next.

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

Separate filter coefficients and delay lines are provided for each of the 2 biquads in the cascade. Filter coefficients are stored as

Q15 and the delay lines are 32 bits wide. Filter memory between calls is maintained in the delay lines.

Gain values (fracGain and expGain) for the first filter in the cascade is ignored. (AUDIO_EQUALIZER_GainNormalizeQ15 sets

these gains to unity.) Only the gain of the last filter is applied the cascade's output. 

Xin -->Filter[0]-->Filter[1]-->(x)-->(<<)---> Yout
                    fracGain[1]-^     ^-expGain[1]

1.9 Library Interface Audio Equalizer Filtering Library Help 3) Single Band, Cascade of IIRs, in

 1-49

1



Preconditions

The pFilter_Array must contain 2 EQUALIZER_FILTER elements.

The  delay  register  values  in  the  structure  specified  by  pFilter_Array  should  be  initialized  to  zero  prior  to  the  first  call  to  the

function, they are updated during each filter pass.

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q15_t)

Returns

Sample output Y (libq_q15_t)

Remarks

All delay registers values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

Values for fracGain and expGain are stored in the last filter of the structure. All other fracGain and expGain values are ignored.

The  only  functional  difference  between  AUDIO_EQUALIZER_Cascade2inQ15  and  AUDIO_EQUALIZER_Cascade8inQ15,

besides the obvious difference in names, is found in a single line of assembly: 

<     addu    $s6, $a0, 48       # end address is 2*24 (len of filt stucture)
---
>     addu    $s6, $a0, 192      # end address is 8*24 (len of filt stucture)

So  support  for  any  number  of  cascaded  filters  is  possible  by  simply  cloning  AUDIO_EQUALIZER_Cascade2inQ15  into

AUDIO_EQUALIZER_CascadeinQ15 and changing the constant from 48 to N*24.

Example

  libq_q15_t Xin,,Yout;
  EQUALIZER_FILTER myFilterArray[ ] = { FILTER1, FILTER2 };
 
  // Normalize filter gains
  AUDIO_EQUALIZER_GainNormalizeQ15( 1, 2, myFilterArray );
  // Gains for for the first filter is set to {0.5,1}, but is ignored.
  // Gain for 8th filter is applied after call to calculate filter cascade.
 
  while ( bGotData )
  {
      // Get Xin;
      // Filter
      Yout = AUDIO_EQUALIZER_Cascade2inQ15( myFilterArray, Xin );
      // Play Yout;
  }

File Name

audio_eq_cascade2_q15.s

1.9.3.2 AUDIO_EQUALIZER_Cascade2inQ31 Function 

C

libq_q31_t AUDIO_EQUALIZER_Cascade2inQ31(
    EQUALIZER_FILTER_32 * pFilter_Array, 

1.9 Library Interface Audio Equalizer Filtering Library Help 3) Single Band, Cascade of IIRs, in

 1-50

1



    libq_q31_t Xin
);

Description

Calculates a single output of a cascade of 2 biquad IIR filters based on a single 16-bit input, and delivers the result as a 16-bit

output. The cascade of filters consists of 2 separate biquad filters arranged in series such that the output of one is provided as

the input to the next.

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

Separate filter coefficients and delay lines are provided for each of the 2 biquads in the cascade. Filter coefficients are stored as

Q15 and the delay lines are 32 bits wide. Filter memory between calls is maintained in the delay lines.

Gain values (fracGain and expGain) for the first  7 filters in the cascade are ignored. (AUDIO_EQUALIZER_GainNormalizeQ15

sets these gains to unity.) Only the gain of the last filter is applied the cascade's output. 

Xin -->Filter[0]-->Filter[1]]-->(x)-->(<<)---> Yout
                     fracGain[1]-^     ^-expGain[1]

Preconditions

pFilter_Array must contain 2 EQUALIZER_FILTER_32 elements.

The  delay  register  values  in  the  structure  specified  by  pFilter_Array  should  be  initialized  to  zero  prior  to  the  first  call  to  the

function, they are updated during each filter pass.

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q15_t)

Returns

Sample output Y (libq_q15_t)

Remarks

All delay registers values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

Values for fracGain and expGain are stored in the last filter of the structure. All other fracGain and expGain values are ignored.

The  only  functional  difference  between  AUDIO_EQUALIZER_Cascade2inQ31  and  AUDIO_EQUALIZER_Cascade8inQ31,

besides the obvious difference in names, is found in a single line of assembly: 

<     addu    $s6, $a0, 80        # end address is 2*40 (len of filt stucture)
---
>     addu    $s6, $a0, 320       # end address is 8*40 (len of filt stucture)

So  support  for  any  number  of  cascaded  filters  is  possible  by  simply  cloning  AUDIO_EQUALIZER_Cascade2inQ31  into

AUDIO_EQUALIZER_CascadeinQ31 and changing the constant from 80 to N*40.

Example

  libq_q31_t Xin,,Yout;
  libq_q31_t Y32;
  EQUALIZER_FILTER_32 myFilterArray[ ] = { FILTER1, FILTER2 };
 
  // Normalize filter gains
  AUDIO_EQUALIZER_GainNormalizeQ31( 1, 2, myFilterArray );
  // Gains for for the first filters is set to {0.5,1}, but are ignored.
  // Gain for 8th filter is applied after call to calculate filter cascade.

1.9 Library Interface Audio Equalizer Filtering Library Help 3) Single Band, Cascade of IIRs, in

 1-51

1



 
  while ( bGotData )
  {
      // Get Xin
      // Filter
      Yout = AUDIO_EQUALIZER_Cascade2inQ31( myFilterArray, Xin );
      // Play Yout;
  }

File Name

audio_eq_cascade2_q31.s

1.9.3.3 AUDIO_EQUALIZER_Cascade8inQ15 Function 

C

libq_q15_t AUDIO_EQUALIZER_Cascade8inQ15(
    EQUALIZER_FILTER * pFilter_Array, 
    libq_q15_t Xin
);

Description

Function5: libq_q15_t AUDIO_EQUALIZER_Cascade8inQ15( EQUALIZER_FILTER *pFilter_Array, libq_q15_t Xin );

Calculates a single output of a cascade of 8 biquad IIR filters based on a single 16-bit input, and delivers the result as a 16-bit

output. The cascade of filters consists of 8 separate biquad filters arranged in series such that the output of one is provided as

the input to the next.

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

Separate filter coefficients and delay lines are provided for each of the 8 biquads in the cascade. Filter coefficients are stored as

Q15 and the delay lines are 32 bits wide. Filter memory between calls is maintained in the delay lines.

Gain values (fracGain and expGain) for the first  7 filters in the cascade are ignored. (AUDIO_EQUALIZER_GainNormalizeQ15

sets these gains to unity.) Only the gain of the last filter is applied the cascade's output. 

Xin -->Filter[0]-->Filter[1]-->Filter[2]-->Filter[3]--+
                                                      |
 +----------------------------------------------------+
 |
 +-->Filter[4]-->Filter[5]-->Filter[6]-->Filter[7]-->(x)-->(<<)---> Yout
                                          fracGain[7]-^     ^-expGain[7]

Preconditions

pFilter_Array must contain 8 EQUALIZER_FILTER elements.

The  delay  register  values  in  the  structure  specified  by  pFilter_Array  should  be  initialized  to  zero  prior  to  the  first  call  to  the

function, they are updated during each filter pass.

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q15_t)

Returns

Sample output Y (libq_q15_t)

1.9 Library Interface Audio Equalizer Filtering Library Help 3) Single Band, Cascade of IIRs, in

 1-52

1



Remarks

All delay registers values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

Values for fracGain and expGain are stored in the last filter of the structure. All other fracGain and expGain values are ignored.

The  only  functional  difference  between  AUDIO_EQUALIZER_Cascade8inQ15  and  AUDIO_EQUALIZER_Cascade2inQ15,

besides the obvious difference in names, is found in a single line of assembly: 

<     addu    $s6, $a0, 192      # end address is 8*24 (len of filt stucture)
---
>     addu    $s6, $a0, 48       # end address is 2*24 (len of filt stucture)

So  support  for  any  number  of  cascaded  filters  is  possible  by  simply  cloning  AUDIO_EQUALIZER_Cascade8inQ15  into

AUDIO_EQUALIZER_CascadeinQ15 and changing the constant from 192 to N*24.

Example

  libq_q15_t Xin,,Yout;
  EQUALIZER_FILTER myFilterArray[ ] = { FILTER1, FILTER2, FILTER3, FILTER4,
                                        FILTER5, FILTER6, FILTER7, FILTER8 };
 
  // Normalize filter gains
  AUDIO_EQUALIZER_GainNormalizeQ15( 1, 8, myFilterArray );
  // Gains for for first 7 filters set to {0.5,1}, but are ignored.
  // Gain for 8th filter is applied after call to calculate filter cascade.
 
  while ( bGotData )
  {
      // Get Xin;
      // Filter
      Yout = AUDIO_EQUALIZER_Cascade8inQ15( myFilterArray, Xin );
      // Play Yout;
  }

File Name

audio_eq_cascade8_q15.s

1.9.3.4 AUDIO_EQUALIZER_Cascade8inQ31 Function 

C

libq_q31_t AUDIO_EQUALIZER_Cascade8inQ31(
    EQUALIZER_FILTER_32 * pFilter_Array, 
    libq_q31_t Xin
);

Description

Calculates a single output of a cascade of 8 biquad IIR filters based on a single 16-bit input, and delivers the result as a 16-bit

output. The cascade of filters consists of 8 separate biquad filters arranged in series such that the output of one is provided as

the input to the next.

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

Separate filter coefficients and delay lines are provided for each of the 8 biquads in the cascade. Filter coefficients are stored as

Q15 and the delay lines are 32 bits wide. Filter memory between calls is maintained in the delay lines.

Gain values (fracGain and expGain) for the first  7 filters in the cascade are ignored. (AUDIO_EQUALIZER_GainNormalizeQ15

1.9 Library Interface Audio Equalizer Filtering Library Help 3) Single Band, Cascade of IIRs, in

 1-53

1



sets these gains to unity.) Only the gain of the last filter is applied the cascade's output. 

Xin -->Filter[0]-->Filter[1]-->Filter[2]-->Filter[3]--+
                                                      |
 +----------------------------------------------------+
 |
 +-->Filter[4]-->Filter[5]-->Filter[6]-->Filter[7]-->(x)-->(<<)---> Yout
                                          fracGain[7]-^     ^-expGain[7]

Preconditions

pFilter_Array must contain 8 EQUALIZER_FILTER_32 elements.

The  delay  register  values  in  the  structure  specified  by  pFilter_Array  should  be  initialized  to  zero  prior  to  the  first  call  to  the

function, they are updated during each filter pass.

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q15_t)

Returns

Sample output Y (libq_q15_t)

Remarks

All delay registers values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

Values for fracGain and expGain are stored in the last filter of the structure. All other fracGain and expGain values are ignored.

The  only  functional  difference  between  AUDIO_EQUALIZER_Cascade8inQ31  and  AUDIO_EQUALIZER_Cascade2inQ31,

besides the obvious difference in names, is found in a single line of assembly: 

<     addu    $s6, $a0, 320       # end address is 8*40 (len of filt stucture)
---
>     addu    $s6, $a0, 80        # end address is 2*40 (len of filt stucture)

So  support  for  any  number  of  cascaded  filters  is  possible  by  simply  cloning  AUDIO_EQUALIZER_Cascade8inQ31  into

AUDIO_EQUALIZER_CascadeinQ31 and changing the constant from 320 to N*40.

Example

  libq_q31_t Xin,,Yout;
  libq_q31_t Y32;
  EQUALIZER_FILTER_32 myFilterArray[ ] = { FILTER1, FILTER2, FILTER3, FILTER4,
                                           FILTER5, FILTER6, FILTER7, FILTER8 };
 
  // Normalize filter gains
  AUDIO_EQUALIZER_GainNormalizeQ31( 1, 8, myFilterArray );
  // Gains for for first 7 filters set to {0.5,1}, but are ignored.
  // Gain for 8th filter is applied after call to calculate filter cascade.
 
  while ( bGotData )
  {
      // Get Xin
      // Filter
      Yout = AUDIO_EQUALIZER_Cascade8inQ31( myFilterArray, Xin );
      // Play Yout;
  }

File Name

audio_eq_cascade8_q31.s

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-54

1



1.9.4 4) Multiple Bands, Multiple Filters per Band, in 
Assembly 

1.9.4.1 AUDIO_EQUALIZER_Parallel4x2inQ15 Function 

C

libq_q15_t AUDIO_EQUALIZER_Parallel4x2inQ15(
    EQUALIZER_FILTER * pFilter_Array, 
    libq_q15_t Xin
);

Description

Calculates 4 parallel IIR filters on Xin, sums the result and delivers the result as a 16-bit output. Each parallel filter is a cascade

of 2 biquad IIR filters in series each, for a total of 8 filters calculated. 

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

All  math is  performed using 32 bit  instructions,  with  results  truncated to  16-bits  for  the output.  Delay registers  are  stored as a

32-bit value for subsequent calls. All values are fractional Q15 and Q31, see data structure for specifics.

The filter structure has 4 parallel bands, each band with 2 filters: 

Xin ---+-->Filter[0]-->Filter[1]-->(x)----+
       |                fracGain[1]-^     V
       +-->Filter[2]-->Filter[3]-->(x)-->(+)--+
       |                fracGain[3]-^         V
       +-->Filter[4]-->Filter[5]-->(x)------>(+)--+
       |                fracGain[5]-^             V
       +-->Filter[6]-->Filter[7]-->(x)---------->(+)--->(<<)---> Yout
                        fracGain[7]-^         expGain[7]-^

Output is tuned by 2 multipier factors. First each parallel section has a fractional gain (attenuation) that enables individual scaling

of that section. A global binary (log2N) gain is applied to the final result. The combination of these gain factors enable both gain

and attentuation.

See AUDIO_EQUALIZER_GainNormalizeQ15 for information on gain normalization.

Preconditions

Delay register values should be initialized to zero. pFilter_Array must contain 4x2 = 8 EQUALIZER_FILTER elements.

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q15_t)

Returns

Sample output Y (libq_q15_t)

Remarks

Requires 4*2 filter structures initialized with coefficients pointed to in an array, pFilterArray[0] and pFilterArray[1] apply to the first

parallel filter segment. [2] and [3] apply to the second segment and so forth.

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-55

1



The delay register values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

A div 4 has been applied in the function for each block, to normalize the 4 blocks are summed to form the end output. Each block

has a functional hard-coded gain of 0.25.

Digital  attentuation  on  a  per  parallel  channel  basis  has  been  been  applied  by  fracgain.  This  is  a  Q15  fractional  value,  and  is

passed in from the second series filter of that parallel structure.

Binary gain globally has been applied to the output sum of the function, this is received in the last filter coef block of the function.

A number of similar filters exist that enable the user to trade-off processing resources (cycles) and filter design format. There are

variations of each type for 16-bit and 32-bit data. Generally the 16-bit functions are mathematically less complex, and take about

25% fewer processor cycles than the 32-bit versions.

Parallel filters may have a fixed or variable number of parallel elements - 4, 8 or N. As the number is higher the processor cycles

increase, and the general N form requires about 8% more processing cycles than its fixed value counterpart.

Similarly, the number of cascade (in series) biquad filter blocks per parallel filter section (M) can be fixed at 2, or a variable. The

variable version requires about 2% more processing power than the fixed equivalent.

When possible on a processing-limited embedded system, it is advised to use the fixed versions where possible, although more

general versions are available to present the widest variety of design choices.

Example

libq_q15_t Xin,Yout;
EQUALIZER_FILTER_32 myFilterArray[ ] = { FILTER1, FILTER2, FILTER3, FILTER4,
                                         FILTER5, FILTER6, FILTER7, FILTER8 };
 
// Normalize filter gains
AUDIO_EQUALIZER_GainNormalizeQ15( 4, 2, myFilterArray );
 
while ( bGotData )
{
    // Get Xin, filter it
    Yout = AUDIO_EQUALIZER_Parallel4x2inQ15( myFilterArray, Xin );
    // Play Yout
}

File Name

audio_eq_parallel4x2_q15.s

1.9.4.2 AUDIO_EQUALIZER_Parallel4x2inQ31 Function 

C

libq_q31_t AUDIO_EQUALIZER_Parallel4x2inQ31(
    EQUALIZER_FILTER_32 * pFilter_Array, 
    libq_q31_t Xin
);

Description

Calculates 4 parallel IIR filters on Xin, sums the result and delivers the result as a 32-bit output. Each parallel filter is a cascade

of 2 biquad IIR filters in series each, for a total of 8 filters calculated. 

 Each biquad has the form:
      Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

All math is performed using 32 bit instructions, with results truncated to 32-bits for the output. The delay register is stored as a

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-56

1



32-bit value for subsequent calls. All values are fractional Q31.

The filter structure has 4 parallel bands, each band with 2 filters: 

Xin ---+-->Filter[0]-->Filter[1]-->(x)----+
       |                fracGain[1]-^     V
       +-->Filter[2]-->Filter[3]-->(x)-->(+)--+
       |                fracGain[3]-^         V
       +-->Filter[4]-->Filter[5]-->(x)------>(+)--+
       |                fracGain[5]-^             V
       +-->Filter[6]-->Filter[7]-->(x)---------->(+)--->(<<)---> Yout
                        fracGain[7]-^         expGain[7]-^

Output is tuned by 2 multipier factors. First each parallel section has a fractional gain (attenuation) that enables individual scaling

of that section. A global binary (log2N) gain is applied to the final result. The combination of these gain factors enable both gain

and attentuation.

See AUDIO_EQUALIZER_GainNormalizeQ31 for information on gain normalization.

Preconditions

Delay register values should be initialized to zero. pFilter_Array must contain 4x2 = 8 EQUALIZER_FILTER_32 elements

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q31_t)

Returns

Sample output Y (libq_q31_t)

Remarks

Requires 4*2 filter structures initialized with coefficients pointed to in an array, pFilterArray[0] and pFilterArray[1] apply to the first

parallel filter segment. [2] and [3] apply to the second segment and so forth.

The delay register values should be initialized to zero prior to the first call to the function, they are updated each pass.

A coeficient  gain of  2  has been hard coded into  the biquad functional  block.  This  implies that  all  coefs  should be input  at  half

value. This is purposeful, since many filter designs need a div2 to have each coef between the required -1

Example

libq_q31_t Xin,Yout;
EQUALIZER_FILTER_32 myFilterArray[ ] = { FILTER1, FILTER2, FILTER3, FILTER4,
                                         FILTER5, FILTER6, FILTER7, FILTER8 };
 
// Normalize filter gains
AUDIO_EQUALIZER_GainNormalizeQ31( 4, 2, myFilterArray );
 
while ( bGotData )
{
    // Get Xin, filter it
    Yout = AUDIO_EQUALIZER_Parallel4x2inQ31( myFilterArray, Xin );
    // Play Yout
}

File Name

audio_eq_parallel4x2_q31.s

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-57

1



1.9.4.3 AUDIO_EQUALIZER_Parallel8x2inQ15 Function 

C

libq_q15_t AUDIO_EQUALIZER_Parallel8x2inQ15(
    EQUALIZER_FILTER * pFilter_Array, 
    libq_q15_t Xin
);

Description

Calculates 8 parallel IIR filters on Xin, sums the result and delivers the result as a 16-bit output. Each parallel filter is a cascade

of 2 biquad IIR filters in series each, for a total of 8 filters calculated. 

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

All  math is  performed using 32 bit  instructions,  with  results  truncated to  16-bits  for  the output.  Delay registers  are  stored as a

32-bit value for subsequent calls. All values are fractional Q15 and Q31, see data structure for specifics.

The filter structure has 8 parallel bands, each band with 2 filters: 

Xin ---+-->Filter[0]-->Filter[1]-->(x)----+
       |                fracGain[1]-^     V
       +-->Filter[2]-->Filter[3]-->(x)-->(+)--+
       |                fracGain[3]-^         V
       +-->Filter[4]-->Filter[5]-->(x)------>(+)--+
       |                fracGain[5]-^             V
       +-->Filter[6]-->Filter[7]-->(x)---------->(+)--+
       |                fracGain[7]-^                 V
       +-->Filter[8]-->Filter[9]-->(x)-------------->(+)--+
       |                fracGain[9]-^                     V
       +-->Filter[10]->Filter[11]->(x)------------------>(+)--+
       |               fracGain[11]-^                         V
       +-->Filter[12]->Filter[13]->(x)---------------------->(+)--+
       |               fracGain[13]-^                             V
       +-->Filter[14]->Filter[15]->(x)-------------------------->(+)-->(<<)--> Yout
                       fracGain[15]-^                        expGain[7]-^

Output is tuned by 2 multipier factors. First each parallel section has a fractional gain (attenuation) that enables individual scaling

of that section. A global binary (log2N) gain is applied to the final result. The combination of these gain factors enable both gain

and attentuation.

See AUDIO_EQUALIZER_GainNormalizeQ15 for information on gain normalization.

Preconditions

Delay register values should be initialized to zero. pFilter_Array must contain 8x2 = 16 EQUALIZER_FILTER elements.

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q15_t)

Returns

Sample output Y (libq_q15_t)

Remarks

Requires 8*2 filter structures initialized with coefficients pointed to in an array, pFilterArray[0] and pFilterArray[1] apply to the first

parallel filter segment. [2] and [3] apply to the second segment and so forth.

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-58

1



The delay register values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

A div 8 has been applied in the function for each block, to normalize the 4 blocks are summed to form the end output. Each block

has a functional hard-coded gain of 0.125.

Digital  attentuation  on  a  per  parallel  channel  basis  has  been  been  applied  by  fracgain.  This  is  a  Q15  fractional  value,  and  is

passed in from the second series filter of that parallel structure.

Binary gain globally has been applied to the output sum of the function, this is received in the last filter coef block of the function.

A number of similar filters exist that enable the user to trade-off processing resources (cycles) and filter design format. There are

variations of each type for 16-bit and 32-bit data. Generally the 16-bit functions are mathematically less complex, and take about

25% fewer processor cycles than the 32-bit versions.

Parallel filters may have a fixed or variable number of parallel elements - 4, 8 or N. As the number is higher the processor cycles

increase, and the general N form requires about 8% more processing cycles than its fixed value counterpart.

Similarly, the number of cascade (in series) biquad filter blocks per parallel filter section (M) can be fixed at 2, or a variable. The

variable version requires about 2% more processing power than the fixed equivalent.

When possible on a processing-limited embedded system, it is advised to use the fixed versions where possible, although more

general versions are available to present the widest variety of design choices.

Example

libq_q15_t Xin,Yout;
EQUALIZER_FILTER  myFilterArray[ ] = { BAND1_FILTER1, BAND1_FILTER2,
                                       BAND2_FILTER1, BAND2_FILTER2,
                                       BAND3_FILTER1, BAND3_FILTER2,
                                       BAND4_FILTER1, BAND4_FILTER2,
                                       BAND5_FILTER1, BAND5_FILTER2,
                                       BAND6_FILTER1, BAND6_FILTER2,
                                       BAND7_FILTER1, BAND7_FILTER2,
                                       BAND8_FILTER1, BAND8_FILTER2 };
// Normalize filter gains
AUDIO_EQUALIZER_GainNormalizeQ15( 8, 2, myFilterArray );
 
while ( bGotData )
{
    // Get Xin, filter it
    Yout = AUDIO_EQUALIZER_Parallel8x2inQ15( myFilterArray, Xin );
    // Play Yout
}

File Name

audio_eq_parallel8x2_q15.s

1.9.4.4 AUDIO_EQUALIZER_Parallel8x2inQ31 Function 

C

libq_q31_t AUDIO_EQUALIZER_Parallel8x2inQ31(
    EQUALIZER_FILTER * pFilter_Array, 
    libq_q31_t Xin
);

Description

Calculates 8 parallel IIR filters on Xin, sums the result and delivers the result as a 32-bit output. Each parallel filter is a cascade

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-59

1



of 2 biquad IIR filters in series each, for a total of 8 filters calculated. 

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

All  math is  performed using 32 bit  instructions,  with  results  truncated to  16-bits  for  the output.  Delay registers  are  stored as a

32-bit value for subsequent calls. All values are fractional Q31, see data structure for specifics.

The filter structure has 8 parallel bands, each band with 2 filters: 

Xin ---+-->Filter[0]-->Filter[1]-->(x)----+
       |                fracGain[1]-^     V
       +-->Filter[2]-->Filter[3]-->(x)-->(+)--+
       |                fracGain[3]-^         V
       +-->Filter[4]-->Filter[5]-->(x)------>(+)--+
       |                fracGain[5]-^             V
       +-->Filter[6]-->Filter[7]-->(x)---------->(+)--+
       |                fracGain[7]-^                 V
       +-->Filter[8]-->Filter[9]-->(x)-------------->(+)--+
       |                fracGain[9]-^                     V
       +-->Filter[10]->Filter[11]->(x)------------------>(+)--+
       |               fracGain[11]-^                         V
       +-->Filter[12]->Filter[13]->(x)---------------------->(+)--+
       |               fracGain[13]-^                             V
       +-->Filter[14]->Filter[15]->(x)-------------------------->(+)-->(<<)--> Yout
                       fracGain[15]-^                        expGain[7]-^

Output is tuned by 2 multipier factors. First each parallel section has a fractional gain (attenuation) that enables individual scaling

of that section. A global binary (log2N) gain is applied to the final result. The combination of these gain factors enable both gain

and attentuation.

See AUDIO_EQUALIZER_GainNormalizeQ31 for information on gain normalization.

Preconditions

Delay register values should be initialized to zero. pFilter_Array must contain 8x2 = 16 EQUALIZER_FILTER_32 elements.

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q15_t)

Returns

Sample output Y (libq_q15_t)

Remarks

Requires 8*2 filter structures initialized with coefficients pointed to in an array, pFilterArray[0] and pFilterArray[1] apply to the first

parallel filter segment. [2] and [3] apply to the second segment and so forth.

The delay register values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point.

A div 8 has been applied in the function for each block, to normalize the 4 blocks are summed to form the end output. Each block

has a functional hard-coded gain of 0.125.

Digital  attentuation  on  a  per  parallel  channel  basis  has  been  been  applied  by  fracgain.  This  is  a  Q15  fractional  value,  and  is

passed in from the second series filter of that parallel structure.

Binary gain globally has been applied to the output sum of the function, this is received in the last filter coef block of the function.

A number of similar filters exist that enable the user to trade-off processing resources (cycles) and filter design format. There are

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-60

1



variations of each type for 16-bit and 32-bit data. Generally the 16-bit functions are mathematically less complex, and take about

25% fewer processor cycles than the 32-bit versions.

Parallel filters may have a fixed or variable number of parallel elements - 4, 8 or N. As the number is higher the processor cycles

increase, and the general N form requires about 8% more processing cycles than its fixed value counterpart.

Similarly, the number of cascade (in series) biquad filter blocks per parallel filter section (M) can be fixed at 2, or a variable. The

variable version requires about 2% more processing power than the fixed equivalent.

When possible on a processing-limited embedded system, it is advised to use the fixed versions where possible, although more

general versions are available to present the widest variety of design choices.

Example

libq_q31_t Xin,Yout;
EQUALIZER_FILTER_32 myFilterArray[ ] = { BAND1_FILTER1, BAND1_FILTER2,
                                         BAND2_FILTER1, BAND2_FILTER2,
                                         BAND3_FILTER1, BAND3_FILTER2,
                                         BAND4_FILTER1, BAND4_FILTER2,
                                         BAND5_FILTER1, BAND5_FILTER2,
                                         BAND6_FILTER1, BAND6_FILTER2,
                                         BAND7_FILTER1, BAND7_FILTER2,
                                         BAND8_FILTER1, BAND8_FILTER2 };
// Normalize filter gains
AUDIO_EQUALIZER_GainNormalizeQ31( 8, 2, myFilterArray );
 
while ( bGotData )
{
    // Get Xin, filter it
    Yout = AUDIO_EQUALIZER_Parallel8x2inQ31( myFilterArray, Xin );
    // Play Yout
}

File Name

audio_eq_parallel8x2_q31.s

1.9.4.5 AUDIO_EQUALIZER_ParallelNx2inQ15 Function 

C

libq_q15_t AUDIO_EQUALIZER_ParallelNx2inQ15(
    EQUALIZER_FILTER * pFilter_Array, 
    libq_q15_t Xin, 
    int N, 
    libq_q31_t Scale
);

Description

Calculates N parallel IIR filters on Xin, sums the result and delivers the result as a 16-bit output. Each parallel filter is a cascade

of 2 biquad IIR filters in series each, for a total of 2N filters calculated. 

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

All  math is  performed using 32 bit  instructions,  with  results  truncated to  16-bits  for  the output.  Delay registers  are  stored as a

32-bit value for subsequent calls. All values are fractional Q15 and Q31, see data structure for specifics.

The filter structure has N parallel bands, each band with 2 filters: 

Xin ---+-->Filter[0]-->Filter[1]-->(x)----+
       |                fracGain[1]-^     V
       +-->Filter[2]-->Filter[3]-->(x)-->(+)--+
       |                fracGain[3]-^         V

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-61

1



       +-->Filter[4]-->Filter[5]-->(x)------>(+)--+
       |                fracGain[5]-^             V
       +-->Filter[6]-->Filter[7]-->(x)---------->(+)--+
       |                fracGain[7]-^                 V
       +-->Filter[8]-->Filter[9]-->(x)-------------->(+)--+
       |                fracGain[9]-^                     V
       +-->Filter[10]->Filter[11]->(x)------------------>(+)--+
       |               fracGain[11]-^                         V
       +-->Filter[12]->Filter[13]->(x)---------------------->(+)--+
       |               fracGain[13]-^                             .
       .                                                          .
       .                                                          .
       +-->Filter[2N-2]->Filter[2N-1]->(x)-------------------------->(+)-->(<<)--> Yout
                         fracGain[2N-1]-^                     expGain[2N-1]-^

Output is tuned by 2 multipier factors. First each parallel section has a fractional gain (attenuation) that enables individual scaling

of that section. A global binary (log2N) gain is applied to the final result. The combination of these gain factors enable both gain

and attentuation.

See AUDIO_EQUALIZER_GainNormalizeQ15 for information on gain normalization.

Preconditions

Delay register values should be initialized to zero. pFilter_Array must contain Nx2 = 2N EQUALIZER_FILTER elements.

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q15_t)

N Number of parallel IIR filter elements (int)

Scale Scaling factor on each filter element (libq_q31_t) Should be the Q0.31 equivalent 
of 1/N.

Returns

Sample output Y (libq_q15_t)

Remarks

Requires N*2 filter structures initialized with coefficients pointed to in an array, pFilterArray[0] and pFilterArray[1] apply to the first

parallel filter segment. [2] and [3] apply to the second segment and so forth.

The delay register values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q15 fixed point. -1

Example

#define NBANDS  9     // number of parallel elements
libq_q31_t scaleValue = (1.0/NBANDS)*(1<<31); // Q0.31 scale value = 1/#bands
 
libq_q15_t Xin,Yout;
EQUALIZER_FILTER  myFilterArray[ ] = { BAND1_FILTER1, BAND1_FILTER2,
                                       BAND2_FILTER1, BAND2_FILTER2,
                                       BAND3_FILTER1, BAND3_FILTER2,
                                       BAND4_FILTER1, BAND4_FILTER2,
                                       BAND5_FILTER1, BAND5_FILTER2,
                                       BAND6_FILTER1, BAND6_FILTER2,
                                       BAND7_FILTER1, BAND7_FILTER2,
                                       BAND8_FILTER1, BAND8_FILTER2,
                                       BAND9_FILTER1, BAND9_FILTER2 };
// Normalize filter gains
AUDIO_EQUALIZER_GainNormalizeQ15( NBANDS, 2, myFilterArray );

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-62

1



 
while ( bGotData )
{
    // Get Xin, filter it
    Yout = AUDIO_EQUALIZER_ParallelNx2inQ15( myFilterArray, Xin, NBANDS, scaleValue );
    // Play Yout
}

File Name

audio_eq_parallelnx2_q15.s

1.9.4.6 AUDIO_EQUALIZER_ParallelNx2inQ31 Function 

C

libq_q31_t AUDIO_EQUALIZER_ParallelNx2inQ31(
    EQUALIZER_FILTER_32 * pFilter_Array, 
    libq_q31_t Xin, 
    int N, 
    libq_q31_t Scale
);

Description

Calculates N parallel IIR filters on Xin, sums the result and delivers the result as a 16-bit output. Each parallel filter is a cascade

of 2 biquad IIR filters in series each, for a total of 2N filters calculated. 

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

All math is performed using 32 bit instructions. Delay registers are stored as a 32-bit value for subsequent calls. All values are

fractional Q31, see data structure for specifics.

The filter structure has N parallel bands, each band with 2 filters: 

Xin ---+-->Filter[0]-->Filter[1]-->(x)----+
       |                fracGain[1]-^     V
       +-->Filter[2]-->Filter[3]-->(x)-->(+)--+
       |                fracGain[3]-^         V
       +-->Filter[4]-->Filter[5]-->(x)------>(+)--+
       |                fracGain[5]-^             V
       +-->Filter[6]-->Filter[7]-->(x)---------->(+)--+
       |                fracGain[7]-^                 V
       +-->Filter[8]-->Filter[9]-->(x)-------------->(+)--+
       |                fracGain[9]-^                     V
       +-->Filter[10]->Filter[11]->(x)------------------>(+)--+
       |               fracGain[11]-^                         V
       +-->Filter[12]->Filter[13]->(x)---------------------->(+)--+
       |               fracGain[13]-^                             .
       .                                                          .
       .                                                          .
       +-->Filter[2N-2]->Filter[2N-1]->(x)-------------------------->(+)-->(<<)--> Yout
                         fracGain[2N-1]-^                     expGain[2N-1]-^

Output is tuned by 2 multipier factors. First each parallel section has a fractional gain (attenuation) that enables individual scaling

of that section. A global binary (log2N) gain is applied to the final result. The combination of these gain factors enable both gain

and attentuation.

See AUDIO_EQUALIZER_GainNormalizeQ31 for information on gain normalization.

Preconditions

Delay register values should be initialized to zero. pFilter_Array must contain Nx2 = 2N EQUALIZER_FILTER_32 elements.

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-63

1



Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (libq_q31_t)

N Number of parallel IIR filter elements (int)

Scale Scaling factor on each filter element (libq_q31_t) Should be the Q0.31 equivalent 
of 1/N.

Returns

Sample output Y (libq_q31_t)

Remarks

Requires N*2 filter structures initialized with coefficients pointed to in an array, pFilterArray[0] and pFilterArray[1] apply to the first

parallel filter segment. [2] and [3] apply to the second segment and so forth.

The delay register values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q31 fixed point. -1

Example

#define NBANDS  9     // number of parallel elements
libq_q31_t scaleValue = (1.0/NBANDS)*(1<<31); // Q0.31 scale value = 1/#bands
 
libq_q31_t Xin,Yout;
EQUALIZER_FILTER  myFilterArray[ ] = { BAND1_FILTER1, BAND1_FILTER2,
                                       BAND2_FILTER1, BAND2_FILTER2,
                                       BAND3_FILTER1, BAND3_FILTER2,
                                       BAND4_FILTER1, BAND4_FILTER2,
                                       BAND5_FILTER1, BAND5_FILTER2,
                                       BAND6_FILTER1, BAND6_FILTER2,
                                       BAND7_FILTER1, BAND7_FILTER2,
                                       BAND8_FILTER1, BAND8_FILTER2,
                                       BAND9_FILTER1, BAND9_FILTER2 };
// Normalize filter gains
AUDIO_EQUALIZER_GainNormalizeQ31( NBANDS, 2, myFilterArray );
 
while ( bGotData )
{
    // Get Xin, filter it
    Yout = AUDIO_EQUALIZER_ParallelNx2inQ31( myFilterArray, Xin, NBANDS, scaleValue );
    // Play Yout
}

File Name

audio_eq_parallelnx2_q31.s

1.9.4.7 AUDIO_EQUALIZER_ParallelNxMinQ15 Function 

C

libq_q15_t AUDIO_EQUALIZER_ParallelNxMinQ15(
    EQUALIZER_FILTER * pFilter_Array, 
    libq_q15_t Xin, 
    int N, 
    libq_q31_t Scale, 
    int M
);

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-64

1



Description

Calculates N parallel IIR filters on Xin, sums the result and delivers the result as a 16-bit output. Each parallel filter is a cascade

of  M biquad IIR  filters  in  series  each,  for  a  total  of  N*M filters  calculated.  All  math  is  performed using  32  bit  instructions,  with

results truncated to 16-bits for the output. The delay register is stored as a 32-bit value for subsequent functions. Output is tuned

by 2 multipier factors. First each parallel section has a fractional gain (attenuation) that enables individual scaling of that section.

Second, a global binary (log2N) gain is applied to the result. The combination of gain factors enable both gain and attentuation.

To normalize the output scale is used as a constant multiply for each parallel block. This value is normally input as 1/N. This is a

Q31 numerical value to maintain internal resolution.

All values are fractional Q15 and Q31, see data structure for specifics.

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

Preconditions

Delay register values should be initialized to zero. pFilter_Array must contain N*M pFilter elements

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (int16_t)

N Number of parallel IIR filter elements (int)

Scale Scaling factor on each filter element (int32_t)

M Number of cascaded series BQ filters per parallel element (int)

Returns

Sample output Y (libq_q15_t)

Remarks

Requires N*M filter structures initialized with coefficients pointed to in an array, pFilterArray[0], pFilterArray[1] ... pFilterArray[M]

apply to the first parallel filter segment. [M+1], [M+2] ... [M*2] apply to the second segment and so forth.

The delay register values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q31 fixed point. -1

Example

#define NBANDS  9     // number of parallel elements
#define MFILTERS 4
libq_q31_t scaleValue = (1.0/NBANDS)*(1<<31); // Q0.31 scale value = 1/#bands
 
libq_q15_t Xin,Yout;
EQUALIZER_FILTER  myFilterArray[ ] = { BAND1_FILTER1, BAND1_FILTER2, BAND1_FILTER3, 
BAND1_FILTER4,
                                       BAND2_FILTER1, BAND2_FILTER2, BAND2_FILTER3, 
BAND2_FILTER4,
                                       BAND3_FILTER1, BAND3_FILTER2, BAND3_FILTER3, 
BAND3_FILTER4,
                                       BAND4_FILTER1, BAND4_FILTER2, BAND4_FILTER3, 
BAND4_FILTER4,
                                       BAND5_FILTER1, BAND5_FILTER2, BAND5_FILTER3, 
BAND5_FILTER4,
                                       BAND6_FILTER1, BAND6_FILTER2, BAND6_FILTER3, 
BAND6_FILTER4,
                                       BAND7_FILTER1, BAND7_FILTER2, BAND7_FILTER3, 
BAND7_FILTER4,

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-65

1



                                       BAND8_FILTER1, BAND8_FILTER2, BAND8_FILTER3, 
BAND8_FILTER4,
                                       BAND9_FILTER1, BAND9_FILTER2, BAND9_FILTER3, 
BAND9_FILTER4 };
// Normalize filter gains
AUDIO_EQUALIZER_GainNormalizeQ15( NBANDS, MFILTERSterArray );
 
while ( bGotData )
{
    // Get Xin, filter it
    Yout = AUDIO_EQUALIZER_ParallelNxMinQ15( myFilterArray, Xin, NBANDS, scaleValue, MFILTERS 
);
    // Play Yout
}

File Name

audio_eq_parallelnxm_q15.s

1.9.4.8 AUDIO_EQUALIZER_ParallelNxMinQ31 Function 

C

libq_q31_t AUDIO_EQUALIZER_ParallelNxMinQ31(
    EQUALIZER_FILTER_32 * pFilter_Array, 
    libq_q31_t Xin, 
    int N, 
    libq_q31_t Scale, 
    int M
);

Description

Calculates N parallel IIR filters on Xin, sums the result and delivers the result as a 16-bit output. Each parallel filter is a cascade

of  M biquad IIR  filters  in  series  each,  for  a  total  of  N*M filters  calculated.  All  math  is  performed using  32  bit  instructions,  with

results truncated to 16-bits for the output. The delay register is stored as a 32-bit value for subsequent functions. Output is tuned

by 2 multipier factors. First each parallel section has a fractional gain (attenuation) that enables individual scaling of that section.

Second, a global binary (log2N) gain is applied to the result. The combination of gain factors enable both gain and attentuation.

To normalize the output scale is used as a constant multiply for each parallel block. This value is normally input as 1/N. This is a

Q31 numerical value to maintain internal resolution.

All values are fractional Q31, see data structure for specifics.

Each biquad has the form:
     Y = X(0)*b0 + (b1 * X(-1)) + (b2 * X(-2)) - (a1 * Y(-1)) - (a2 * Y(-2))

Preconditions

Delay register values should be initialized to zero. pFilter_Array must contain N*M EQUALIZER_FILTER_32 elements

Parameters

Parameters Description

pFilter_Array pointer to filter coef and delay array structure

Xin input data element X (int16_t)

N Number of parallel IIR filter elements (int)

Scale Scaling factor on each filter element (int32_t)

M Number of cascaded series BQ filters per parallel element (int)

Returns

Sample output Y (libq_q31_t)

1.9 Library Interface Audio Equalizer Filtering Library Help 4) Multiple Bands, Multiple Filters per

 1-66

1



Remarks

Requires N*M filter structures initialized with coefficients pointed to in an array, pFilterArray[0], pFilterArray[1] ... pFilterArray[M]

apply to the first parallel filter segment. [M+1], [M+2] ... [M*2] apply to the second segment and so forth.

The delay register values should be initialized to zero prior to the first call to the function, they are updated each pass.

An Alpha value of 2 (log2Alpha=1) has been hard coded into the function. This implies that all coefficients should be input at half

value. This guarantees that all coefficients can be represented as Q31 fixed point. -1

Example

#define NBANDS  9     // number of parallel elements
#define MFILTERS 4
libq_q31_t scaleValue = (1.0/NBANDS)*(1<<31); // Q0.31 scale value = 1/#bands
 
libq_q31_t Xin,Yout;
EQUALIZER_FILTER_32 myFilterArray[ ]={ BAND1_FILTER1, BAND1_FILTER2, BAND1_FILTER3, 
BAND1_FILTER4,
                                       BAND2_FILTER1, BAND2_FILTER2, BAND2_FILTER3, 
BAND2_FILTER4,
                                       BAND3_FILTER1, BAND3_FILTER2, BAND3_FILTER3, 
BAND3_FILTER4,
                                       BAND4_FILTER1, BAND4_FILTER2, BAND4_FILTER3, 
BAND4_FILTER4,
                                       BAND5_FILTER1, BAND5_FILTER2, BAND5_FILTER3, 
BAND5_FILTER4,
                                       BAND6_FILTER1, BAND6_FILTER2, BAND6_FILTER3, 
BAND6_FILTER4,
                                       BAND7_FILTER1, BAND7_FILTER2, BAND7_FILTER3, 
BAND7_FILTER4,
                                       BAND8_FILTER1, BAND8_FILTER2, BAND8_FILTER3, 
BAND8_FILTER4,
                                       BAND9_FILTER1, BAND9_FILTER2, BAND9_FILTER3, 
BAND9_FILTER4 };
// Normalize filter gains
AUDIO_EQUALIZER_GainNormalizeQ31( NBANDS, MFILTERSterArray );
 
while ( bGotData )
{
    // Get Xin, filter it
    Yout = AUDIO_EQUALIZER_ParallelNxMinQ31( myFilterArray, Xin, NBANDS, scaleValue, MFILTERS 
);
    // Play Yout
}

File Name

audio_eq_parallelnxm_q31.s

1.9.5 5) Filter Gain Routines 

1.9.5.1 AUDIO_EQUALIZER_FilterGainAdjustQ15 Function 

C

EQUALIZER_FILTER_GAIN AUDIO_EQUALIZER_FilterGainAdjustQ15(
    EQUALIZER_FILTER_GAIN filterGain, 
    int16_t gainAdjustment
);

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-67

1



Description

Adjusts a filter gain structure by the integer gain adjustment provided

Preconditions

None.

Parameters

Parameters Description

filterGain filter gain structure to be adjusted

gainAdjustment Integer dB adjustment to be applied to the input filter gain

Returns

EQUALIZER_FILTER_GAIN gain structure after the adjustment is applied

Remarks

For  most  filtering primitives only  the last  filter,  iFilter  =  nFitlersPerBand,  has a gain  that  is  actually  applied.  All  other  gains are

ignored.

Example

  #define NUM_BANDS 6
  #define NFILTERS_PER_BAND 2
  EQUALIZER_FILTER_GAIN bandGain,adjBandGain;
 
  // Get from user: Band of Interest: iBand, 1<= iBand <= NUM_BANDS
  // Get from user: Band Gain Adjustment in dB: iGainAdj, -50 <= iGainAdj <= +50
 
  // Apply gain adjustment to last filter in band cascade
  bandGain = AUDIO_EQUALIZER_FilterGainGetQ15(&myFilters[0],
                                              NUM_BANDS, NFILTERS_PER_BAND,
                                              iBand, NFILTERS_PER_BAND );
  adjBandGain = AUDIO_EQUALIZER_FilterGainAdjustQ15(bandGain,iGainAdj);
  AUDIO_EQUALIZER_FilterGainSetQ15(&myFilters[0],
                                   NUM_BANDS, NFILTERS_PER_BAND,
                                   iBand, NFILTERS_PER_BAND, adjBandGain );

1.9.5.2 AUDIO_EQUALIZER_FilterGainAdjustQ31 Function 

C

EQUALIZER_FILTER_GAIN_32 AUDIO_EQUALIZER_FilterGainAdjustQ31(
    EQUALIZER_FILTER_GAIN_32 filterGain, 
    int16_t gainAdjustment
);

Description

Adjusts a filter gain structure by the integer gain adjustment provided

Preconditions

None.

Parameters

Parameters Description

filterGain filter gain structure to be adjusted

gainAdjustment Integer dB adjustment to be applied to the input filter gain

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-68

1



Returns

EQUALIZER_FILTER_GAIN_32 gain structure after the adjustment is applied

Remarks

For  most  filtering primitives only  the last  filter,  iFilter  =  nFitlersPerBand,  has a gain  that  is  actually  applied.  All  other  gains are

ignored.

Example

  #define NUM_BANDS 6
  #define NFILTERS_PER_BAND 2
  EQUALIZER_FILTER_GAIN_32 bandGain,adjBandGain;
 
  // Get from user: Band of Interest: iBand, 1<= iBand <= NUM_BANDS
  // Get from user: Band Gain Adjustment in dB: iGainAdj, -50 <= iGainAdj <= +50
 
  // Apply gain adjustment to last filter in band cascade
  bandGain = AUDIO_EQUALIZER_FilterGainGetQ31(&myFilters[0],
                                              NUM_BANDS, NFILTERS_PER_BAND,
                                              iBand, NFILTERS_PER_BAND );
  adjBandGain = AUDIO_EQUALIZER_FilterGainAdjustQ31(bandGain,iGainAdj);
  AUDIO_EQUALIZER_FilterGainSetQ31(&myFilters[0],
                                   NUM_BANDS, NFILTERS_PER_BAND,
                                   iBand, NFILTERS_PER_BAND, adjBandGain );

1.9.5.3 AUDIO_EQUALIZER_FilterGainGetQ15 Function 

C

EQUALIZER_FILTER_GAIN AUDIO_EQUALIZER_FilterGainGetQ15(
    EQUALIZER_FILTER * pFilterArray, 
    uint16_t nBands, 
    uint16_t nFiltersPerBand, 
    uint16_t iBand, 
    uint16_t iFilter
);

Description

Gets the filter gain for a given band and filter.

Preconditions

None.

Parameters

Parameters Description

pFilterArray Pointer to first filter in filter array

nBands number of frequency bands

nFiltersPerBand number of filters in filter array per each band

iBand Band of interest, 1,1, ... nBands

iFilter Filter of interest, 1, ... nFiltersPerBand

Returns

EQUALIZER_FILTER_GAIN gain structure for band/filter of interest

Remarks

For  most  filtering primitives only  the last  filter,  iFilter  =  nFitlersPerBand,  has a gain  that  is  actually  applied.  All  other  gains are

ignored.

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-69

1



Example

  #define NUM_BANDS 6
  #define NFILTERS_PER_BAND 2
  EQUALIZER_FILTER_GAIN bandGain,adjBandGain;
 
  // Get from user: Band of Interest: iBand, 1<= iBand <= NUM_BANDS
  // Get from user: Band Gain Adjustment in dB: iGainAdj, -50 <= iGainAdj <= +50
 
  // Apply gain adjustment to last filter in band cascade
  bandGain = AUDIO_EQUALIZER_FilterGainGetQ15(&myFilters[0],
                                              NUM_BANDS, NFILTERS_PER_BAND,
                                              iBand, NFILTERS_PER_BAND );
  adjBandGain = AUDIO_EQUALIZER_FilterGainAdjustQ15(bandGain,iGainAdj);
  AUDIO_EQUALIZER_FilterGainSetQ15(&myFilters[0],
                                   NUM_BANDS, NFILTERS_PER_BAND,
                                   iBand, NFILTERS_PER_BAND, adjBandGain );

1.9.5.4 AUDIO_EQUALIZER_FilterGainSetQ15 Function 

C

void AUDIO_EQUALIZER_FilterGainSetQ15(
    EQUALIZER_FILTER * pFilterArray, 
    uint16_t nBands, 
    uint16_t nFiltersPerBand, 
    uint16_t iBand, 
    uint16_t iFilter, 
    EQUALIZER_FILTER_GAIN myNewGain
);

Description

Gets the filter gain for a given band and filter.

Preconditions

None.

Parameters

Parameters Description

pFilterArray Pointer to first filter in filter array

nBands number of frequency bands

nFiltersPerBand number of filters in filter array per each band

iBand Band of interest, 1,1, ... nBands

iFilter Filter of interest, 1, ... nFiltersPerBand myNewGain EQUALIZER_FILTER_GAIN 
structure defining new gain values

Returns

None

Remarks

For  most  filtering primitives only  the last  filter,  iFilter  =  nFitlersPerBand,  has a gain  that  is  actually  applied.  All  other  gains are

ignored.

Example

  #define NUM_BANDS 6
  #define NFILTERS_PER_BAND 2
  EQUALIZER_FILTER_GAIN bandGain,adjBandGain;
 

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-70

1



  // Get from user: Band of Interest: iBand, 1<= iBand <= NUM_BANDS
  // Get from user: Band Gain Adjustment in dB: iGainAdj, -50 <= iGainAdj <= +50
 
  // Apply gain adjustment to last filter in band cascade
  bandGain = AUDIO_EQUALIZER_FilterGainGetQ15(&myFilters[0],
                                              NUM_BANDS, NFILTERS_PER_BAND,
                                              iBand, NFILTERS_PER_BAND );
  adjBandGain = AUDIO_EQUALIZER_FilterGainAdjustQ15(bandGain,iGainAdj);
  AUDIO_EQUALIZER_FilterGainSetQ15(&myFilters[0],
                                   NUM_BANDS, NFILTERS_PER_BAND,
                                   iBand, NFILTERS_PER_BAND, adjBandGain );

1.9.5.5 AUDIO_EQUALIZER_FilterGainGetQ31 Function 

C

EQUALIZER_FILTER_GAIN_32 AUDIO_EQUALIZER_FilterGainGetQ31(
    EQUALIZER_FILTER_32 * pFilterArray, 
    uint16_t nBands, 
    uint16_t nFiltersPerBand, 
    uint16_t iBand, 
    uint16_t iFilter
);

Description

Gets the filter gain for a given band and filter.

Preconditions

None.

Parameters

Parameters Description

pFilterArray Pointer to first filter in filter array

nBands number of frequency bands

nFiltersPerBand number of filters in filter array per each band

iBand Band of interest, 1,1, ... nBands

iFilter Filter of interest, 1, ... nFiltersPerBand

Returns

EQUALIZER_FILTER_GAIN_32 gain structure from band/filter of interest

Remarks

For  most  filtering primitives only  the last  filter,  iFilter  =  nFitlersPerBand,  has a gain  that  is  actually  applied.  All  other  gains are

ignored.

Example

  #define NUM_BANDS 6
  #define NFILTERS_PER_BAND 2
  EQUALIZER_FILTER_GAIN_32 bandGain,adjBandGain;
 
  // Get from user: Band of Interest: iBand, 1<= iBand <= NUM_BANDS
  // Get from user: Band Gain Adjustment in dB: iGainAdj, -50 <= iGainAdj <= +50
 
  // Apply gain adjustment to last filter in band cascade
  bandGain = AUDIO_EQUALIZER_FilterGainGetQ31(&myFilters[0],
                                              NUM_BANDS, NFILTERS_PER_BAND,
                                              iBand, NFILTERS_PER_BAND );
  adjBandGain = AUDIO_EQUALIZER_FilterGainAdjustQ31(bandGain,iGainAdj);
  AUDIO_EQUALIZER_FilterGainSetQ31(&myFilters[0],

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-71

1



                                   NUM_BANDS, NFILTERS_PER_BAND,
                                   iBand, NFILTERS_PER_BAND, adjBandGain );

1.9.5.6 AUDIO_EQUALIZER_FilterGainSetQ31 Function 

C

void AUDIO_EQUALIZER_FilterGainSetQ31(
    EQUALIZER_FILTER_32 * pFilterArray, 
    uint16_t nBands, 
    uint16_t nFiltersPerBand, 
    uint16_t iBand, 
    uint16_t iFilter, 
    EQUALIZER_FILTER_GAIN_32 myNewGain
);

Description

Gets the filter gain for a given band and filter.

Preconditions

None.

Parameters

Parameters Description

pFilterArray Pointer to first filter in filter array

nBands number of frequency bands

nFiltersPerBand number of filters in filter array per each band

iBand Band of interest, 1,1, ... nBands

iFilter Filter of interest, 1, ... nFiltersPerBand myNewGain 
EQUALIZER_FILTER_GAIN_32 structure defining new gain values

Returns

None

Remarks

For  most  filtering primitives only  the last  filter,  iFilter  =  nFitlersPerBand,  has a gain  that  is  actually  applied.  All  other  gains are

ignored.

Example

  #define NUM_BANDS 6
  #define NFILTERS_PER_BAND 2
  EQUALIZER_FILTER_GAIN_32 bandGain,adjBandGain;
 
  // Get from user: Band of Interest: iBand, 1<= iBand <= NUM_BANDS
  // Get from user: Band Gain Adjustment in dB: iGainAdj, -50 <= iGainAdj <= +50
 
  // Apply gain adjustment to last filter in band cascade
  bandGain = AUDIO_EQUALIZER_FilterGainGetQ31(&myFilters[0],
                                              NUM_BANDS, NFILTERS_PER_BAND,
                                              iBand, NFILTERS_PER_BAND );
  adjBandGain = AUDIO_EQUALIZER_FilterGainAdjustQ31(bandGain,iGainAdj);
  AUDIO_EQUALIZER_FilterGainSetQ31(&myFilters[0],
                                   NUM_BANDS, NFILTERS_PER_BAND,
                                   iBand, NFILTERS_PER_BAND, adjBandGain );

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-72

1



1.9.5.7 AUDIO_EQUALIZER_GainNormalizeQ15 Function 

C

uint16_t AUDIO_EQUALIZER_GainNormalizeQ15(
    uint16_t nBands, 
    uint16_t nFilters, 
    EQUALIZER_FILTER * pFilterArray
);

Description

Normalize  all  the  EQUALIZER_FILTER_GAIN's  in  a  filter  array  so  that  the  gains  can  be  applied  correctly  by  each  filtering

function.

For the filters in a frequency band only the gain of the last filter in the band's cascade is applied. Thus the product of all the filters

in the cascade is used as the gain of the last filter and all the other filters have a gain set to unity. (Unity gain is gainFrac = 0.5

and gainExp = 1.)

The  gains  across  frequency  bands  must  be  adjusted  so  that  there  is  a  common  exponent.  So  the  gainFrac's  are  adjusted  to

make the gainExp's all the same value. Thus the expGain shift can be postponed to after the calculation of the function's output.

Preconditions

None.

Parameters

Parameters Description

nBands number of frequency bands

nFiltersPerBand number of filters in filter array per each band.

pFilterArray Pointer to first filter in filter array

Returns

expGain - Normalized gain exponent for all  filters in the filter array that has more than one band. For filters that have only one

band (nBands = 1) the value returned is zero and can be ignored.

Remarks

The  order  of  the  filters  when  there  are  multiple  filters  per  band  is  {  Band1_Filter1,  Band1_Filter2,  ...,  Band2_Filter1,

Band2_Filter2, ... BandM_Filter1, ..., BandM_FilterN }

Example

A single band with multiple filters: 

#define FILTER1 { 
                   {fracGain,expGain}, log2Alpha, 
                   {b0, b1, b2}, {a1, a2},
                   { 0L, 0L } // Z1, Z2 initial values 
                }
    .
    .
    .
#define FILTER8 { 
                  {fracGain,expGain}, log2Alpha, 
                  {b0, b1, b2}, {a1, a2},
                  { 0L, 0L } // Z1, Z2 initial values 
                }
 
libq_q15_t Xin,Yout;
EQUALIZER_FILTER myFilterArray[ ] = { FILTER1, FILTER2, FILTER3, FILTER4,

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-73

1



                                      FILTER5, FILTER6, FILTER7, FILTER8 };
 
// Normalize filter gains, rolling up all gains into last filter.
AUDIO_EQUALIZER_GainNormalizeQ15( 1, 8, myFilterArray );
 
while ( 1 )
{
    // get new Xin;
 
    // Filter to get Yout
    Yout = AUDIO_EQUALIZER_Cascade8inQ15( myFilterArray, Xin );
    // Play Yout;
}

Multiple bands with 2 IIRs per band: 

// mBands = 4, nFiltersPerBand = 2
#define BAND1_FILTER1 { 
                        {fracGain,expGain}, log2Alpha, 
                        {b0, b1, b2}, {a1, a2},
                        { 0L, 0L } // Z1, Z2 initial values 
                      }
    .
    .
    .
#define BAND4_FILTER2 { 
                        {fracGain,expGain}, log2Alpha, 
                        {b0, b1, b2}, {a1, a2},
                        { 0L, 0L } // Z1, Z2 initial values 
                      }
libq_q15_t Xin,Yout;
EQUALIZER_FILTER myFilterArray[ ] = {  BAND1_FILTER1, BAND1_FILTER2,
                                       BAND2_FILTER1, BAND2_FILTER2,
                                       BAND3_FILTER1, BAND3_FILTER2,
                                       BAND4_FILTER1, BAND4_FILTER2 };
 
// Normalize filter gain exponent.
AUDIO_EQUALIZER_GainNormalizeQ15( 4, 2, myFilterArray );
 
while ( 1 )
{
    // get new Xin;
 
    // Filter to get Yout
    Yout = AUDIO_EQUALIZER_Parallel4x2inQ15(myFilterArray, Xin );
    // Play Yout;
}

1.9.5.8 AUDIO_EQUALIZER_GainNormalizeQ31 Function 

C

uint16_t AUDIO_EQUALIZER_GainNormalizeQ31(
    uint16_t nBands, 
    uint16_t nFiltersPerBand, 
    EQUALIZER_FILTER_32 * pFilterArray
);

Description

Normalize  all  the  EQUALIZER_FILTER_GAIN's  in  a  filter  array  so  that  the  gains  can  be  applied  correctly  by  each  filtering

function.

For the filters in a frequency band only the gain of the last filter in the band's cascade is applied. Thus the product of all the filters

in the cascade is used as the gain of the last filter and all the other filters have a gain set to unity. (Unity gain is gainFrac = 0.5

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-74

1



and gainExp = 1.)

The  gains  across  frequency  bands  must  be  adjusted  so  that  there  is  a  common  exponent.  So  the  gainFrac's  are  adjusted  to

make the gainExp's all the same value. Thus the expGain shift can be postponed to after the calculation of the function's output.

Preconditions

None.

Parameters

Parameters Description

nBands number of frequency bands

nFiltersPerBand number of filters in filter array per each band.

pFilterArray Pointer to first filter in filter array

Returns

expGain - Normalized gain exponent for all  filters in the filter array that has more than one band. For filters that have only one

band (nBands = 1) the value returned is zero.

Remarks

The  order  of  the  filters  when  there  are  multiple  filters  per  band  is  {  Band1_Filter1,  Band1_Filter2,  ...,  Band2_Filter1,

Band2_Filter2, ... BandM_Filter1, ..., BandM_FilterN }

Example

A single band with multiple filters: 

#define FILTER1 { 
                   {fracGain,expGain}, log2Alpha, 
                   {b0, b1, b2}, {a1, a2},
                   { 0L, 0L } // Z1, Z2 initial values 
                }
    .
    .
    .
#define FILTER8 { 
                  {fracGain,expGain}, log2Alpha, 
                  {b0, b1, b2}, {a1, a2},
                  { 0L, 0L } // Z1, Z2 initial values 
                }
 
libq_q31_t Xin,Yout;
EQUALIZER_FILTER myFilterArray[ ] = { FILTER1, FILTER2, FILTER3, FILTER4,
                                      FILTER5, FILTER6, FILTER7, FILTER8 };
 
// Normalize filter gains, rolling up all gains into last filter.
AUDIO_EQUALIZER_GainNormalizeQ31( 1, 8, myFilterArray );
 
while ( 1 )
{
    // get new Xin;
 
    // Filter to get Yout
    Yout = AUDIO_EQUALIZER_Cascade8inQ31( myFilterArray, Xin );
    // Play Yout;
}

Multiple bands with 2 IIRs per band: 

// mBands = 4, nFiltersPerBand = 2
#define BAND1_FILTER1 { 
                        {fracGain,expGain}, log2Alpha, 
                        {b0, b1, b2}, {a1, a2},

1.9 Library Interface Audio Equalizer Filtering Library Help 5) Filter Gain Routines

 1-75

1



                        { 0L, 0L } // Z1, Z2 initial values 
                      }
    .
    .
    .
#define BAND4_FILTER2 { 
                        {fracGain,expGain}, log2Alpha, 
                        {b0, b1, b2}, {a1, a2},
                        { 0L, 0L } // Z1, Z2 initial values 
                      }
libq_q31_t Xin,Yout;
EQUALIZER_FILTER myFilterArray[ ] = {  BAND1_FILTER1, BAND1_FILTER2,
                                       BAND2_FILTER1, BAND2_FILTER2,
                                       BAND3_FILTER1, BAND3_FILTER2,
                                       BAND4_FILTER1, BAND4_FILTER2 };
 
// Normalize filter gain exponent.
AUDIO_EQUALIZER_GainNormalizeQ31( 4, 2, myFilterArray );
 
while ( 1 )
{
    // get new Xin;
 
    // Filter to get Yout
    Yout = AUDIO_EQUALIZER_Parallel4x2inQ31(myFilterArray, Xin );
    // Play Yout;
}

1.9.6 6) Band Energy Estimation 

1.9.6.1 AUDIO_EQUALIZER_BandEnergySumsInit Function 

C

void AUDIO_EQUALIZER_BandEnergySumsInit(
    uint16_t nBands, 
    BAND_ENERGY_UNITS units
);

Description

Initialize  band energy measurements,  clearing band energy sum array and number  of  energy samples for  each band.  Second

argument determines whether signal energy is measured using RMS or pseudo RMS.

Preconditions

None.

Parameters

Parameters Description

nBands number of filter bands in use, must be <= AUDIO_EQUALIZER_MAX_NBANDS

units BAND_ENERGY_RMS_VOLTS, BAND_ENERGY_RMS_DBFS, 
BAND_ENERGY_PSEUDORMS_VOLTS, or 
BAND_ENERGY_PSEUDORMS_DBFS

Returns

None.

1.9 Library Interface Audio Equalizer Filtering Library Help 6) Band Energy Estimation

 1-76

1



Remarks

None.

Example

  AUDIO_EQUALIZER_BandEnergySumsInit( 6, BAND_ENERGY_RMS_DBFS );

1.9.6.2 AUDIO_EQUALIZER_BandEnergyNSamplesSet Function 

C

void AUDIO_EQUALIZER_BandEnergyNSamplesSet(
    uint16_t nSamples
);

Description

Resets  number  of  samples  used  to  update  band  energy  measurements.  This  routine  is  not  needed  if

AUDIO_EQUALIZER_BandEnergyUpdateQ15/Q31 is used to update band energy estimates with new samples. It is used when

band energy sums are updated directly via access to the extern AUDIO_EQUALIZER_BandEnergySumQ15 array.

Preconditions

AUDIO_EQUALIZER_BandEnergySumsInit has been called to setup the number of bands and the units of band energy.

Parameters

Parameters Description

nSamples value of number of samples. Use zero to reinitialize the number of samples.

Returns

None.

Remarks

None.

Example

Band energy measurements are initialized by: 

  #define NUM_BANDS 6
  AUDIO_EQUALIZER_BandEnergySumsInit(2*NUM_BANDS,BAND_ENERGY_PSEUDORMS_DBFS);

Here  is  an  example  filtering  primitive  that  directly  updates  band  energy  sums  to  reduce  its  cycle  count.  The

AUDIO_EQUALIZER_nBandSamples array is not updated to save cycles. Instead AUDIO_EQUALIZER_nSamples is called. 

    #include <stdint.h>
    #include "math/audio_equalizer/audio_equalizer.h"
 
    extern uint16_t AUDIO_EQUALIZER_nSamples;
    extern libq_q16d15_t AUDIO_EQUALIZER_BandEnergySumQ15[AUDIO_EQUALIZER_MAX_NBANDS];
 
    #include "myFilters6x2_Q15_Stereo.h"
 
    void  FilterInput(libq_q15_t XinLeft, libq_q15_t XinRight, libq_q15_t *YoutLeft, 
libq_q15_t *YoutRight)
    {
        libq_q15_t Yout0,Yout1,Yout2,Yout3,Yout4,Yout5;
 
        Yout0 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[0], XinLeft );
        AUDIO_EQUALIZER_BandEnergySumQ15[0] += abs(Yout0);
 
        Yout1 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[2], XinLeft );

1.9 Library Interface Audio Equalizer Filtering Library Help 6) Band Energy Estimation

 1-77

1



        AUDIO_EQUALIZER_BandEnergySumQ15[1] += abs(Yout1);
 
        Yout2 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[4], XinLeft );
        AUDIO_EQUALIZER_BandEnergySumQ15[2] += abs(Yout2);
 
        Yout3 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[6], XinLeft );
        AUDIO_EQUALIZER_BandEnergySumQ15[3] += abs(Yout3);
 
        Yout4 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[8], XinLeft );
        AUDIO_EQUALIZER_BandEnergySumQ15[4] += abs(Yout4);
 
        Yout5 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersLeft[10], XinLeft );
        AUDIO_EQUALIZER_BandEnergySumQ15[5] += abs(Yout5);
 
        *YoutLeft = Yout0 + Yout1 + Yout2 + Yout3 + Yout4 + Yout5;
 
        Yout0 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[0], XinRight );
        AUDIO_EQUALIZER_BandEnergySumQ15[6] += abs(Yout0);
 
        Yout1 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[2], XinRight );
        AUDIO_EQUALIZER_BandEnergySumQ15[7] += abs(Yout1);
 
        Yout2 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[4], XinRight );
        AUDIO_EQUALIZER_BandEnergySumQ15[8] += abs(Yout2);
 
        Yout3 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[6], XinRight );
        AUDIO_EQUALIZER_BandEnergySumQ15[9] += abs(Yout3);
 
        Yout4 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[8], XinRight );
        AUDIO_EQUALIZER_BandEnergySumQ15[10] += abs(Yout4);
 
        Yout5 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersRight[10], XinRight );
        AUDIO_EQUALIZER_BandEnergySumQ15[11] += abs(Yout5);
 
        *YoutRight = Yout0 + Yout1 + Yout2 + Yout3 + Yout4 + Yout5;
 
        AUDIO_EQUALIZER_nSamples += 1;
  }

Band  energy  measurements  are  retrieved  using  AUDIO_EQUALIZER_BandEnergyGetQ15  or

AUDIO_EQUALIZER_BandEnergyGetQ31.  After  retrieving  all  the  measurements,

AUDIO_EQUALIZER_BandEnergyNSamplesSet(0) is called to reinitialize the sample count. 

libq_q15d16_t bandEnergyInDB[NUM_BANDS];
uint16_t iBand;
for ( iBand = 0; iBand < NUM_BANDS; iBand++ )
{// Get band energy measurement, clear band energy sum
    bandEnergyInDB[iBand] = AUDIO_EQUALIZER_BandEnergyGetQ15(iBand,true);
}
AUDIO_EQUALIZER_BandEnergyNSamplesSet(0); // Clear sample counter

1.9.6.3 AUDIO_EQUALIZER_BandEnergyUpdateQ15 Function 

C

void AUDIO_EQUALIZER_BandEnergyUpdateQ15(
    uint16_t iBand, 
    libq_q15_t YoutQ15
);

Description

Update band energy estimate for a given filter band with new filter output. Energy sum array element corresponding to iBand is

updated  with  Yout^2  or  abs(Yout)  depending  on  value  of  units  used  when  energy  sum  buffer  was  initialized  to  zero  using

AUDIO_EQUALIZER_BandEnergySumsInit.

1.9 Library Interface Audio Equalizer Filtering Library Help 6) Band Energy Estimation

 1-78

1



"Q15" suffix designates this routine is for signals with Q15 fixed point format.

Preconditions

AUDIO_EQUALIZER_BandEnergySumsInit has been called.

Parameters

Parameters Description

iBand band index, from 0 to nBands - 1, where nBands was the value used in call to 
AUDIO_EQUALIZER_BandEnergySumsInit

YoutQ15 Q15 filter output for band iBand

Returns

none

Remarks

None.

Example

  #include <stdint.h>
  #include "math/audio_equalizer/audio_equalizer.h"
 
  #include "myFilters6x2_Q15_Stereo.h"
 
  void  FilterInput(libq_q15_t XinLeft, libq_q15_t XinRight, libq_q15_t *YoutLeft, libq_q15_t 
*YoutRight)
  {
      libq_q15_t Yout0,Yout1,Yout2,Yout3,Yout4,Yout5;
 
      Yout0 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[0], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(0,Yout0);
 
      Yout1 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[2], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(1,Yout1);
 
      Yout2 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[4], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(2,Yout2);
 
      Yout3 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[6], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(3,Yout3);
 
      Yout4 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersLeft[8], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(4,Yout4);
 
      Yout5 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersLeft[10], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(5,Yout5);
 
      *YoutLeft = Yout0 + Yout1 + Yout2 + Yout3 + Yout4 + Yout5;
 
      Yout0 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[0], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(6,Yout0);
 
      Yout1 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[2], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(7,Yout1);
 
      Yout2 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[4], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(8,Yout2);
 
      Yout3 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[6], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(9,Yout3);
 
      Yout4 = AUDIO_EQUALIZER_Cascade2inQ15( &myFiltersRight[8], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(10,Yout4);

1.9 Library Interface Audio Equalizer Filtering Library Help 6) Band Energy Estimation

 1-79

1



 
      Yout5 = AUDIO_EQUALIZER_Cascade2inQ15(&myFiltersRight[10], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ15(11,Yout5);
 
      *YoutRight = Yout0 + Yout1 + Yout2 + Yout3 + Yout4 + Yout5;
  }

1.9.6.4 AUDIO_EQUALIZER_BandEnergyUpdateQ31 Function 

C

void AUDIO_EQUALIZER_BandEnergyUpdateQ31(
    uint16_t iBand, 
    libq_q31_t YoutQ31
);

Description

Update band energy estimate for a given filter band with new filter output. Energy sum array element corresponding to iBand is

updated  with  Yout^2  or  abs(Yout)  depending  on  value  of  units  used  when  energy  sum  buffer  was  initialized  to  zero  using

AUDIO_EQUALIZER_BandEnergySumsInit.

"Q31" suffix designates this routine is for signals with Q31 fixed point format.

Preconditions

AUDIO_EQUALIZER_BandEnergySumsInit has been called.

Parameters

Parameters Description

iBand band index, from 0 to nBands - 1, where nBands was the value used in call to 
AUDIO_EQUALIZER_BandEnergySumsInit

YoutQ31 Q31 filter output for band iBand

Returns

none

Remarks

None.

Example

  void  FilterInput(libq_q31_t XinLeft, libq_q31_t XinRight, libq_q31_t *YoutLeft, libq_q31_t 
*YoutRight)
  {
      libq_q31_t Yout0,Yout1,Yout2,Yout3,Yout4,Yout5;
 
      Yout0 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersLeft[0], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(0,Yout0);
 
      Yout1 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersLeft[2], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(1,Yout1);
 
      Yout2 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersLeft[4], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(2,Yout2);
 
      Yout3 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersLeft[6], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(3,Yout3);
 
      Yout4 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersLeft[8], XinLeft );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(4,Yout4);
 
      Yout5 = AUDIO_EQUALIZER_Cascade2inQ31(&myFiltersLeft[10], XinLeft );

1.9 Library Interface Audio Equalizer Filtering Library Help 6) Band Energy Estimation

 1-80

1



      AUDIO_EQUALIZER_BandEnergyUpdateQ31(5,Yout5);
 
      *YoutLeft = Yout0 + Yout1 + Yout2 + Yout3 + Yout4 + Yout5;
 
      Yout0 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersRight[0], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(6,Yout0);
 
      Yout1 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersRight[2], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(7,Yout1);
 
      Yout2 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersRight[4], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(8,Yout2);
 
      Yout3 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersRight[6], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(9,Yout3);
 
      Yout4 = AUDIO_EQUALIZER_Cascade2inQ31( &myFiltersRight[8], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(10,Yout4);
 
      Yout5 = AUDIO_EQUALIZER_Cascade2inQ31(&myFiltersRight[10], XinRight );
      AUDIO_EQUALIZER_BandEnergyUpdateQ31(11,Yout5);
 
      *YoutRight = Yout0 + Yout1 + Yout2 + Yout3 + Yout4 + Yout5;
  }

1.9.6.5 AUDIO_EQUALIZER_BandEnergyGetQ15 Function 

C

libq_q15d16_t AUDIO_EQUALIZER_BandEnergyGetQ15(
    uint16_t iBand, 
    bool bEnergySumClear
);

Description

Get  band energy estimate  for  a  given filter  band.  Estimate  is  either  RMS or  pseudo RMS,  depending on the units  value used

when AUDIO_EQUALIZER_BandEnergySumsInit was called to initialize/reinitialize the energy sum array.

"Q15" suffix designates this routine is for signals with Q15 fixed point format.

Preconditions

AUDIO_EQUALIZER_BandEnergySumsInit has been called.

Parameters

Parameters Description

iBand band index, from 0 to nBands - 1, where nBands was the value used in call to 
AUDIO_EQUALIZER_BandEnergySumsInit

bEnergySumClear true -> clear corresponding energy sum array element to zero

Returns

Signal energy estimate for a given filter band as Q15.16. The meaning of the 32 bit integer depends on the units chosen when

AUDIO_EQUALIZER_BandEnergySumsInit was first called. See the Remarks section for more information.

Remarks

Q15.16 format is a 32-bit word, consisting of 16 fractional bits (least significant word) with the sign bit (MSB) and 15 bits in the

most significant word to store the integer portion.

If X is Q15.16 format then -2^15 <= X <= 2^15 - 2^-16, or simply -32678 <= X <= 32768 - 1/65536

The  meaning  of  the  returned  value  depends  on  the  units  chosen  when  AUDIO_EQUALIZER_BandEnergySumsInit  was  first

1.9 Library Interface Audio Equalizer Filtering Library Help 6) Band Energy Estimation

 1-81

1



called. See the code example above for the details.

Example

If units==BAND_ENERGY_RMS_DBFS or units==BAND_ENERGY_PSEUDORMS_DBFS then 

  libq_q15d16_t bandEnergyInDB = AUDIO_EQUALIZER_BandEnergyGetQ15(1,true);
  libq_q15d16_t absBandEnergyInDB;
  int16_t       intBandEnergyInDB;
  libq_q0d16_t  fracBandEnergyInDB;
  float         floatBandEnergyInDB;
 
  if ( bandEnergyInDB > 0 )
  {
      // Error, band energy in dBFS is always negative or zero!
  }
  else
  {
      floatBandEnergyInDB = bandEnergyInDB/65536.0;
      intBandEnergyInDB = bandEnergyInDB>>16;
      absBandEnergyInDB = labs(bandEnergyInDB);
      fracBandEnergyInDB = (libq_q0d16_t)absBandEnergyInDB; // get lower 16 bits
 
      // alternative calculation for band energy as floating point number
      floatBandEnergyInDB = intBandEnergyInDB - fracBandEnergyInDB/65536.0;
  }

If units == BAND_ENERGY_RMS_VOLTS or units == BAND_ENERGY_PSEUDORMS_VOLTS then only the fractional part of a

band energy  value  is  significant,  the  integer  part  is  always zero.  Band energy  in  RMS volts  is  represented by  a  16 bit  Q0d16

fixed point number, where 1 represents a signal with all samples at the maximum possible ADC count. 

  libq_q15d16_t bandEnergyInVolts = AUDIO_EQUALIZER_BandEnergyGetQ15(1,true);
  libq_q0d16_t  bandEnergyQ16
  libq_q0d15_t  bandEnergyQ15;
  float         floatBandEnergyInVolts;
 
  if ( bandEnergyInVolts < 0 )
  {
      // Error band energy in volts is never negative!
  }
  else
  {
      // Strip off fractional part of Q15.16, convert to floating point
      bandEnergyQ16 = (libq_q0d16_t)( bandEnergyInVolts & 0x0000FFFF );
      floatBandEnergyInVolts = bandEnergyQ16 / 65536.0;
 
      //OR - Calculate Q15 band energy and convert to floating point
      bandEnergyQ15 = bandEnergyQ16>>1;
      floatBandEnergyInVolts = bandEnergyQ15 / 32768.0;
  }

1.9.6.6 AUDIO_EQUALIZER_BandEnergyGetQ31 Function 

C

libq_q15d16_t AUDIO_EQUALIZER_BandEnergyGetQ31(
    uint16_t iBand, 
    bool bEnergySumClear
);

Description

Get  band energy estimate  for  a  given filter  band.  Estimate  is  either  RMS or  pseudo RMS,  depending on the units  value used

when AUDIO_EQUALIZER_BandEnergySumsInit was called to initialize/reinitialize the energy sum array.

"Q31" suffix designates this routine is for signals with Q31 fixed point format.

1.9 Library Interface Audio Equalizer Filtering Library Help 6) Band Energy Estimation

 1-82

1



Preconditions

AUDIO_EQUALIZER_BandEnergySumsInit has been called.

Parameters

Parameters Description

iBand band index, from 0 to nBands - 1, where nBands was the value used in call to 
AUDIO_EQUALIZER_BandEnergySumsInit

bEnergySumClear true -> clear corresponding energy sum array element to zero

Returns

Signal energy estimate for a given filter band as Q15.16. The meaning of the 32 bit integer depends on the units chosen when

AUDIO_EQUALIZER_BandEnergySumsInit was first called.

See the Remarks section for more information.

Remarks

Q15.16 format is a 32-bit word, consisting of 16 fractional bits (least significant word) with the sign bit (MSB) and 15 bits in the

most significant word to store the integer portion.

If X is Q15.16 format then -2^15 <= X <= 2^15 - 2^-16, or simply -32678 <= X <= 32768 - 1/65536

The  meaning  of  the  returned  value  depends  on  the  units  chosen  when  AUDIO_EQUALIZER_BandEnergySumsInit  was  first

called. See the code example above for the details.

Example

If units==BAND_ENERGY_RMS_DBFS or units==BAND_ENERGY_PSEUDORMS_DBFS then 

libq_q15d16_t bandEnergyInDB = AUDIO_EQUALIZER_BandEnergyGetQ31(1,true);
libq_q15d16_t absBandEnergyInDB;
int16_t       intBandEnergyInDB;
libq_q0d16_t  fracBandEnergyInDB;
float         floatBandEnergyInDB;
 
if ( bandEnergyInDB > 0 )
{
    // Error, band energy in dBFS is always negative or zero!
}
else
{
    floatBandEnergyInDB = bandEnergyInDB/65536.0;
    intBandEnergyInDB = bandEnergyInDB>>16;
    absBandEnergyInDB = labs(bandEnergyInDB);
    fracBandEnergyInDB = (libq_q0d16_t)absBandEnergyInDB; // get lower 16 bits
 
    // alternative calculation for band energy as floating point number
    floatBandEnergyInDB = intBandEnergyInDB - fracBandEnergyInDB/65536.0;
}
 
If units == BAND_ENERGY_RMS_VOLTS or units == BAND_ENERGY_PSEUDORMS_VOLTS
then only the fractional part of a band energy value is significant, the
integer part is always zero.  Band energy in RMS volts is represented by a
16 bit Q15 fixed point number, where 1 represents a signal with all samples
at the maximum possible ADC count.
libq_q15d16_t bandEnergyInVolts = AUDIO_EQUALIZER_BandEnergyGetQ31(1,true);
libq_q0d16_t  bandEnergyQ16
libq_q0d15_t  bandEnergyQ15;
float         floatBandEnergyInVolts;
 
if ( bandEnergyInVolts < 0 )
{
    // Error band energy in volts is never negative!

1.9 Library Interface Audio Equalizer Filtering Library Help 6) Band Energy Estimation

 1-83

1



}
else
{
    // Strip off fractional part of Q15.16, convert to floating point
    bandEnergyQ16 = (libq_q0d16_t)( bandEnergyInVolts & 0x0000FFFF );
    floatBandEnergyInVolts = bandEnergyQ16 / 65536;
 
    //OR - Calculate Q15 band energy and convert to floating point
    bandEnergyQ15 = bandEnergyQ16>>1;
    floatBandEnergyInVolts = bandEnergyQ15 / 32768;
}

1.9.7 7) Fixed Point Typedefs 

1.9.7.1 libq_q0d15_t Type 

C

typedef int16_t libq_q0d15_t;

Description

Fixed Point Integer Typedef

Typedef for the Q0.15 fixed point data type into a 16 bit signed integer. Values for this data type are in the range [-1,+1), i.e. -1

<= x < +1.

Remarks

This data type has one sign bit and 15 fractional bits in a 16 bit word. 

    -----1----------
    5432109876543210
    ----____----____
    Sfffffffffffffff
 

Example

  float Xfloat;
  libq_q0d15_t Xq0d15;
 
  Xfloat = Xq0d15/32768.0;

1.9.7.2 libq_q15_t Type 

C

typedef libq_q0d15_t libq_q15_t;

Description

Fixed Point Integer Typedef

Typedef for the Q0.15 fixed point data type into a 16 bit signed integer. Values for this data type are in the range [-1,+1), i.e. -1

<= x < +1.

Remarks

This data type has one sign bit and 15 fractional bits in a 16 bit word. 

1.9 Library Interface Audio Equalizer Filtering Library Help 7) Fixed Point Typedefs

 1-84

1



    -----1----------
    5432109876543210
    ----____----____
    Sfffffffffffffff
 

Example

  float Xfloat;
  libq_q15_t Xq15;
 
  Xfloat = Xq15/32768.0;

1.9.7.3 libq_q0d16_t Type 

C

typedef uint16_t libq_q0d16_t;

Description

Fixed Point Integer Typedef

Typedef for the Q0.16 fixed point data type into a 16 bit unsigned integer. Values for this data type are in the range [0,+1], i.e. -1

<= x <= +1.

Remarks

This data type has no sign bit and 16 fractional bits in a 16 bit word. 

    -----1----------
    5432109876543210
    ----____----____
    ffffffffffffffff
 

Example

  float Xfloat;
  libq_q0d16_t Xq0d16;
 
  Xfloat = Xq0d16/65536.0;

1.9.7.4 libq_q0d31_t Type 

C

typedef int32_t libq_q0d31_t;

Description

Fixed Point Integer Typedef

Typedef for the Q0.15 fixed point data type into a 32 bit signed integer. Values for this data type are in the range [-1,+1), i.e. -1

<= x < +1.

Remarks

This data type has one sign bit and 31 fractional bits in a 32 bit word. 

    -3---------2---------1----------
    10987654321098765432109876543210
    ----____----____----____----____
    Sfffffffffffffffffffffffffffffff

1.9 Library Interface Audio Equalizer Filtering Library Help 7) Fixed Point Typedefs

 1-85

1



Example

  float Xfloat;
  libq_q0d31_t Xq0d31;
 
  Xfloat = Xq0d31/((float)2<<31);

1.9.7.5 libq_q31_t Type 

C

typedef libq_q0d31_t libq_q31_t;

Description

Fixed Point Integer Typedef

Typedef for the Q0.15 fixed point data type into a 32 bit signed integer. Values for this data type are in the range [-1,+1), i.e. -1

<= x < +1.

Remarks

This data type has one sign bit and 31 fractional bits in a 32 bit word. 

    -3---------2---------1----------
    10987654321098765432109876543210
    ----____----____----____----____
    Sfffffffffffffffffffffffffffffff

Example

  float Xfloat;
  libq_q31_t Xq31;
 
  Xfloat = Xq31/((float)2<<31);

1.9.7.6 libq_q0d63_t Type 

C

typedef int64_t libq_q0d63_t;

Description

Fixed Point Integer Typedef

Typedef for the Q0.63 fixed point data type into a 64 bit signed integer. Values for this data type are in the range [-1,+1), i.e. -1

<= x < +1.

Remarks

This data type has one sign bit and 63 fractional bits. 

    ---6---------5---------4---------3---------2---------1----------
    3210987654321098765432109876543210987654321098765432109876543210
    Sfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

1.9.7.7 libq_q63_t Type 

C

typedef libq_q0d63_t libq_q63_t;

1.9 Library Interface Audio Equalizer Filtering Library Help 7) Fixed Point Typedefs

 1-86

1



Description

Fixed Point Integer Typedef

Typedef for the Q0.63 fixed point data type into a 64 bit signed integer. Values for this data type are in the range [-1,+1), i.e. -1

<= x < +1.

Remarks

This data type has one sign bit and 63 fractional bits. 

    ---6---------5---------4---------3---------2---------1----------
    3210987654321098765432109876543210987654321098765432109876543210
    Sfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

1.9.7.8 libq_q15d16_t Type 

C

typedef int32_t libq_q15d16_t;

Description

Fixed Point Integer Typedef

Typedef for the Q15.16 fixed point data type into 32 bit signed integer Values for this data type are in the range [-32768,+32768),

i.e. -32768 <= x < +32768.

Remarks

This data type has one sign bit, 15 integer bits, and 16 fractional bits. 

    -3---------2---------1----------
    10987654321098765432109876543210
    ----____----____----____----____
    Siiiiiiiiiiiiiiiffffffffffffffff

Example

  float Xfloat;
  libq_q15d16_t Xq15d31;
 
  Xfloat = Xq15d31/65536.0;

1.9.7.9 libq_q16d15_t Type 

C

typedef int32_t libq_q16d15_t;

Description

Fixed Point Integer Typedef

Typedef  for  the  Q16d15  fixed  point  data  type  into  a  32  bit  signed  integer  Values  for  this  data  type  are  in  the  range

[-65536,+65536), i.e. -65536 <= x < +65536.

Remarks

This data type has one sign bit, 16 integer bits, and 15 fractional bits. 

    -3---------2---------1----------
    10987654321098765432109876543210
    ----____----____----____----____
    Siiiiiiiiiiiiiiiifffffffffffffff

1.9 Library Interface Audio Equalizer Filtering Library Help 7) Fixed Point Typedefs

 1-87

1



Example

  float Xfloat;
  libq_q15d16_t Xq15d31;
 
  Xfloat = Xq15d31/32768.0;

1.9.8 8) Data Types and Constants 

1.9.8.1 AUDIO_EQUALIZER_MAX_NBANDS Macro 

C

#define AUDIO_EQUALIZER_MAX_NBANDS 16

Description

Maximum number of filter bands supported

Maximum  number  of  filter  bands  supported,  used  in  calculating  band  signal  RMS  or  Pseudo  RMS  values.  Since  this  filtering

library  does  not  explicitly  support  left/right  stereo,  filter  bands  must  be  explicitly  allocated.  A  value  of  16  will  support  up  to  8

frequency bands for stereo processing.

Remarks

None.

1.9.8.2 BAND_ENERGY_UNITS Enumeration 

C

typedef enum {
  BAND_ENERGY_VOLTS_SQUARED,
  BAND_ENERGY_RMS_VOLTS,
  BAND_ENERGY_RMS_DBFS,
  BAND_ENERGY_PSEUDORMS_VOLTS,
  BAND_ENERGY_PSEUDORMS_DBFS
} BAND_ENERGY_UNITS;

Description

Band Energy Units Enumeration

Determines what units are used in reporting band energy.

Members

Members Description

BAND_ENERGY_VOLTS_SQUARED Band energy reported in RMS Voltage, with Q15 format

BAND_ENERGY_RMS_VOLTS Band energy reported in RMS Voltage, with Q15 format

BAND_ENERGY_RMS_DBFS Band energy reported in dB re Full Scale using RMS energy estimate

BAND_ENERGY_PSEUDORMS_VOLTS Band energy reported in Pseudo RMS Voltage, with Q15 format

BAND_ENERGY_PSEUDORMS_DBFS Band energy reported in dB re Full Scale using Pseudo RMS energy estimate

Remarks

None.

1.9 Library Interface Audio Equalizer Filtering Library Help 8) Data Types and Constants

 1-88

1



1.9.8.3 EQUALIZER_FILTER Structure 

C

typedef struct {
  EQUALIZER_FILTER_GAIN G;
  uint16_t log2Alpha;
  libq_q15_t b[3];
  libq_q15_t a[2];
  int32_t Z[2];
} EQUALIZER_FILTER;

Description

Equalizer IIR Filter Definition for Q15 Filtering

Typedef for equalizer IIR filter definition structure. Defines filter taps and gain multiplier.

Members

Members Description

EQUALIZER_FILTER_GAIN G; Filter max gain multiplier

uint16_t log2Alpha; Coefficient scaling bit shift value, for most filters should be at least one.

libq_q15_t b[3]; Feedforward Coefficients, Q15 format

libq_q15_t a[2]; Feedback Coefficients, Q15 format, Always: a0 = 1

int32_t Z[2]; Filter memory, should be intialized to zero.

Remarks

Only C prototypes use log2Alpha. Routines optimized in assembly ignore log2Alpha, assuming it is always one.

Filter coefficients are normalized by dividing by Alpha or equivalently, by a right shift by log2Alpha bits: 

    #define ALPHA     2
    #define LOG2ALPHA 1
    libq_q15_t a[] = { a1/ALPHA, a2/ALPHA }; // a0 assumed to be 1
    libq_q15_t b[] = { b0>>LOG2ALPHA, b1>>LOG2ALPHA, b2>>LOG2ALPHA };

1.9.8.4 EQUALIZER_FILTER_32 Structure 

C

typedef struct {
  EQUALIZER_FILTER_GAIN_32 G;
  uint32_t log2Alpha;
  libq_q31_t b[3];
  libq_q31_t a[2];
  int32_t Z[2];
} EQUALIZER_FILTER_32;

Description

Equalizer IIR Filter Definition for Q31 Filtering

Typedef for equalizer IIR filter definition structure. Defines filter taps and gain multiplier.

Members

Members Description

EQUALIZER_FILTER_GAIN_32 G; Filter max gain multiplier

1.9 Library Interface Audio Equalizer Filtering Library Help 8) Data Types and Constants

 1-89

1



uint32_t log2Alpha; Coefficient scaling bit shift value, (32 bits for sake of alignment in assembly) for 
most filters should be at least one.

libq_q31_t b[3]; Feedforward Coefficients, Q31 format

libq_q31_t a[2]; Feedback Coefficients, Q31 format, Always: a0 = 1

int32_t Z[2]; Filter memory, should be intialized to zero.

Remarks

Only C prototypes use log2Alpha. Routines optimized in assembly ignore log2Alpha, assuming it is always one.

Filter coefficients are normalized by dividing by Alpha or equivalently, by a right shift by log2Alpha bits: 

    #define ALPHA     2
    #define LOG2ALPHA 1
    libq_q31_t a[] = { a1/ALPHA, a2/ALPHA }; // a0 assumed to be 1
    libq_q31_t b[] = { b0>>LOG2ALPHA, b1>>LOG2ALPHA, b2>>LOG2ALPHA };

1.9.8.5 EQUALIZER_FILTER_GAIN Structure 

C

typedef struct {
  libq_q15_t fracGain;
  uint16_t expGain;
} EQUALIZER_FILTER_GAIN;

Description

Equalizer IIR Filter Gain Structure, Q15

Typedef for filter gain structure. Defines filter gain multiplier as block floating point number (mantissa and exponent). Mantissa is

Q0.15 (Q15) as an int16_t and the exponent is an unsigned integer (uint16_t).

Remarks

Typical use: 

    EQUALIZER_FILTER_GAIN G = {0x8503,1}; // Filter gain
    libq_q15_t Yin,Yout;
    libq_q31_t Y32;
    Y32  = ((G.fracGain*Yin)<<1)<<G.expGain;
    Yout = Y32>>16;

In the code above:
G.fracGain*Y16 as fixed point = (G.fracGain*Y16)<<1 as integers.
   So <<1 is necessary since all multiplies in C are integer not fixed point.

1.9.8.6 EQUALIZER_FILTER_GAIN_32 Structure 

C

typedef struct {
  libq_q31_t fracGain;
  uint32_t expGain;
} EQUALIZER_FILTER_GAIN_32;

Description

Equalizer IIR Filter Gain Structure, Q32

Typedef for filter gain structure. Defines filter gain multiplier as block floating point number (mantissa and exponent). Mantissa is

Q0.15 (Q15) as an int16_t and the exponent is an unsigned integer (uint16_t).

1.9 Library Interface Audio Equalizer Filtering Library Help 8) Data Types and Constants

 1-90

1



Remarks

Typical use: 

    EQUALIZER_FILTER_GAIN_32 G = {0x85030000,1}; // Filter gain
    libq_q31_t Yin,Yout;
    libq_q63_t Y64;
    Y64  = ( (pFilter->G.fracGain)*((libq_q63_t)Yin) )<<(pFilter->G.expGain+1);
    Yout = Y64>>32;

1.9.8.7 HALF_L1_TO_L2_FACTOR Macro 

C

#define HALF_L1_TO_L2_FACTOR 0x4716

Description

Conversion Factor from L1 to L2 Norms

Converts L1 norm (average absolute value) to L2 norm (RMS).

Remarks

For a sine wave the mean squared value is 1/2. So RMS = 1/sqrt(2). The average absolute value of a sine wave is 0.63661778.

So the  conversion  factor  from L1  to  L2  norm is  0.70710678/0.63661778,  which  is  1.1107242.  But  since  this  number  is  bigger

than one, it cannot be represented by a Q15 or Q31 constant, but 1.1.1107242/2 does fit into Q15 or Q31. 

  libq_q15_t    Ysample[MAX_NUM_SAMPLES];
  libq_q15_t    avgAbsY;
  libq_q15_t    pseudoYRMS;
  libq_q16d15_t sumAbsY = 0;
  libq_q31_t    temp32;
  for (iSamp = 0; iSamp < nSamp; iSamp++)
  {
      sumAbsY += abs(Ysample[iSamp]);
  }
  avgAbsY = sumAbsY/nSamp;
  temp32 = (HALF_L1_TO_L2_FACTOR*avgAbsY)<<(1+1);
  // <<1 because conversion factor is only half needed value
  // other <<1 because integer multiply instead of fixed point multiply
  pseudoYRMS = temp32>>16; // Q0.31 -> Q0.15

1.9 Library Interface Audio Equalizer Filtering Library Help 8) Data Types and Constants

 1-91

1



1.10 Files 

Files

Name Description

audio_equalizer.h Audio Equalizer (DSP) functions for the PIC32MX and PIC32MZ device families

audio_equalizer_fixedpoint.h Audio Equalizer (DSP) fixed point typedefs.

GraphicEqualizer6x2_Q15.h 16 Bit Filter definition for 6 Bands, with 2 Filters/Band.

GraphicEqualizer6x2_Q31.h 32 Bit Filter definition for 6 Bands, with 2 Filters/Band.

myFilters4x2_Q15.h 16 Bit Filter definition for 4 Bands, with 2 Filters/Band.

myFilters4x2_Q31.h 32 Bit Filter definition for 4 Bands, with 2 Filters/Band.

myFilters4x3_Q15.h 16 Bit Filter definition for 4 Bands, with 3 Filters/Band.

myFilters4x3_Q31.h 32 Bit Filter definition for 4 Bands, with 3 Filters/Band.

myFilters5x2_Q15.h 16 Bit Filter definition for 5 Bands, with 2 Filters/Band.

myFilters5x2_Q31.h 32 Bit Filter definition for 5 Bands, with 2 Filters/Band.

myFilters6x2_Q15.h 16 Bit Filter definition for 6 Bands, with 2 Filters/Band.

myFilters6x2_Q31.h 32 Bit Filter definition for 6 Bands, with 2 Filters/Band.

myFilters7x2_Q15.h 16 Bit Filter definition for 7 Bands, with 2 Filters/Band.

myFilters7x2_Q31.h 32 Bit Filter definition for 7 Bands, with 2 Filters/Band.

myFilters8x2_Q15.h 16 Bit Filter definition for 8 Bands, with 2 Filters/Band.

myFilters8x2_Q31.h 32 Bit Filter definition for 8 Bands, with 2 Filters/Band.

ParametricFilters1x8_Q15.h 16 Bit Filter definition for an 8 filter chain

ParametricFilters1x8_Q31.h 32 Bit Filter definition for an 8 filter chain

ParametricFilters1x8_Q31_Hacked.h 32 Bit Filter definition for an 8 filter chain, with edits to show 16 bit effects

1.10.1 audio_equalizer.h 

Audio Equalizer Library

This  library  provides  support  for  Audio  band  equalization  filtering.  Both  band-specific  and  parameteric  equalization  filtering  is

supported.

Except where noted functions are implemented in efficient assembly with C-callable prototypes. In some cases both 16-bit and

32-bit functions are supplied, providing the user with a choice of resolution and performance.

For most functions, input and output data is represented by 16-bit fractional numbers in Q15 format, which is the most commonly

used data format for signal processing. Some functions use other data formats internally for increased precision of intermediate

results.

The Q15 data type used by these functions is specified as int16_t in the C header file that is supplied with the library. Note that

within C code, care must be taken to avoid confusing fixed-point values with integers. To the C compiler, objects declared with

int16_t type are integers, not fixed-point, and all arithmetic operations performed on those objects in C will be done as integers.

Fixed-point  values have been declared as int16_t only because the standard C language does not include intrinsic support  for

fixed-point data types.

Some functions also have versions operating on 32-bit  fractional  data in Q31 format.  These functions operate similarly to their

1.10 Files Audio Equalizer Filtering Library Help audio_equalizer.h

 1-92

1



16-bit counterparts.

Signed fixed point types are defined as follows:

Qn.m where:

• n is the number of data bits to the left of the radix point

• m is the number of data bits to the right of the radix point

• a signed bit is implied

Unique variable types for fractional representation are also defined:

Exact Name # Bits Required Type Q0.15 (Q15) 16 libq_q0d15_t Q0.31 (Q31) 32 libq_q0d31_t

Enumerations

Name Description

BAND_ENERGY_UNITS Determines what units are used in reporting band energy.

Functions

Name Description

AUDIO_EQUALIZER_BandEnergyGetQ15 Get band energy estimate for a given filter band. "Q15" suffix 
designates this routine is for signals with Q15 fixed point format.

AUDIO_EQUALIZER_BandEnergyGetQ31 Get band energy estimate for a given filter band. "Q31" suffix 
designates this routine is for signals with Q31 fixed point format.

AUDIO_EQUALIZER_BandEnergyNSamplesSet Resets number of samples used to update band energy 
measurements.

AUDIO_EQUALIZER_BandEnergySumsInit Initialize band energy measurements, clearing band energy sum 
array and number of energy samples for each band.

AUDIO_EQUALIZER_BandEnergyUpdateQ15 Update band energy estimate for a given filter band with new 
filter output. "Q15" suffix designates this routine is for signals with 
Q15 fixed point format.

AUDIO_EQUALIZER_BandEnergyUpdateQ31 Update band energy estimate for a given filter band with new 
filter output. "Q31" suffix designates this routine is for signals with 
Q31 fixed point format.

AUDIO_EQUALIZER_Cascade2inQ15 Performs a single output of a cascade of 2 biquad IIR filters.

AUDIO_EQUALIZER_Cascade2inQ31 Performs a single output of a cascade of 2 biquad IIR filters.

AUDIO_EQUALIZER_Cascade8inQ15 Performs a single output of a cascade of 8 biquad IIR filters.

AUDIO_EQUALIZER_Cascade8inQ31 Performs a single output of a cascade of 8 biquad IIR filters.

AUDIO_EQUALIZER_FilterGainAdjustQ15 Adjusts a filter gain structure by the integer gain adjustment 
provided

AUDIO_EQUALIZER_FilterGainAdjustQ31 Adjusts a filter gain structure by the integer gain adjustment 
provided

AUDIO_EQUALIZER_FilterGainGetQ15 Gets the filter gain for a given band and filter.

AUDIO_EQUALIZER_FilterGainGetQ31 Gets the filter gain for a given band and filter.

AUDIO_EQUALIZER_FilterGainSetQ15 Gets the filter gain for a given band and filter.

AUDIO_EQUALIZER_FilterGainSetQ31 Gets the filter gain for a given band and filter.

AUDIO_EQUALIZER_GainNormalizeQ15 Normalize all the EQUALIZER_FILTER_GAIN's in a filter array 
so that the gains can be applied correctly by each filtering 
function.

AUDIO_EQUALIZER_GainNormalizeQ31 Normalize all the EQUALIZER_FILTER_GAIN's in a filter array 
so that the gains can be applied correctly by each filtering 
function.

1.10 Files Audio Equalizer Filtering Library Help audio_equalizer.h

 1-93

1



AUDIO_EQUALIZER_IIRinQ15 Applies equalization filter defined by *pFilter to Xin and provides 
single output.

AUDIO_EQUALIZER_IIRinQ15andC Applies equalization filter defined by *pFilter to Xin and provides 
single output.

AUDIO_EQUALIZER_IIRinQ15FastC Applies equalization filter defined by *pFilter to Xin and provides 
single output.

AUDIO_EQUALIZER_IIRinQ31 Applies equalization filter defined by *pFilter to Xin and provides 
single output.

AUDIO_EQUALIZER_IIRinQ31andC Applies equalization filter defined by *pFilter to Xin and provides 
single output.

AUDIO_EQUALIZER_Parallel4x2inQ15 Performs 4 parallel IIR filters, with 2 series biquad filters each, 
and sums the result.

AUDIO_EQUALIZER_Parallel4x2inQ31 Performs 4 parallel IIR filters, 2 series biquad filters each, and 
sums the result.

AUDIO_EQUALIZER_Parallel8x2inQ15 Performs 8 parallel IIR filters, with 2 series biquad filters each, 
and sums the result.

AUDIO_EQUALIZER_Parallel8x2inQ31 Performs 8 parallel IIR filters, with 2 series biquad filters each, 
and sums the result.

AUDIO_EQUALIZER_ParallelNx2inQ15 Performs N parallel IIR filters, 2 series biquad filters each, and 
sums the result.

AUDIO_EQUALIZER_ParallelNx2inQ31 Performs N parallel IIR filters, 2 series biquad filters each, and 
sums the result.

AUDIO_EQUALIZER_ParallelNxMinQ15 Performs N parallel IIR filters, M series biquad filters each, and 
sums the result.

AUDIO_EQUALIZER_ParallelNxMinQ31 Performs N parallel IIR filters, M series biquad filters each, and 
sums the result.

Macros

Name Description

AUDIO_EQUALIZER_MAX_NBANDS Maximum number of filter bands supported.

HALF_L1_TO_L2_FACTOR Converts L1 norm (average absolute value) to L2 norm (RMS).

Structures

Name Description

EQUALIZER_FILTER Typedef for equalizer IIR filter definition structure.

EQUALIZER_FILTER_32 Typedef for equalizer IIR filter definition structure.

EQUALIZER_FILTER_GAIN Typedef for equalizer filter gain structure.

EQUALIZER_FILTER_GAIN_32 Typedef for equalizer filter gain structure.

File Name

audio_equalizer.h

Company

Microchip Technology Inc.

1.10.2 audio_equalizer_fixedpoint.h 

Audio Equalizer Library Fixedpoint Typedefs

1.10 Files Audio Equalizer Filtering Library Help audio_equalizer_fixedpoint.h

 1-94

1



Signed fixed point types are defined as follows:

Qn.m where:

• n is the number of data bits to the left of the radix point

• m is the number of data bits to the right of the radix point

• a signed bit is implied

Unique variable types for fractional representation are also defined:

Exact Name # Bits Required Type Q0.15 (Q15) 16 libq_q0d15_t Q0.31 (Q31) 32 libq_q0d31_t

Types

Name Description

libq_q0d15_t Typedef for the Q0.15 fixed point data type.

libq_q0d16_t Typedef for the Q0.16 fixed point data type.

libq_q0d31_t Typedef for the Q0.31 fixed point data type.

libq_q0d63_t Typedef for the Q0.63 fixed point data type

libq_q15_t Typedef for the Q0.15 fixed point data type.

libq_q15d16_t Typedef for the Q15.16 fixed point data type

libq_q16d15_t Typedef for the Q16d15 fixed point data type

libq_q31_t Typedef for the Q0.31 fixed point data type.

libq_q63_t Typedef for the Q0.63 fixed point data type

File Name

audio_equalizer_fixedpoint.h

Company

Microchip Technology Inc.

1.10.3 GraphicEqualizer6x2_Q15.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerDesign.m)

16 Bit Filter definitions for 6 Bands, with 2 Filters/Band. See the file GraphicEqualizer6x2_Q15.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.22603 (1.77003 dB)
    Unscaled Filter Response Average = 1.13514 (1.10099 dB)
    Scaled Filter Response Peak = 1 (3.85731e-15 dB)
    Scaled Filter Response Average = 0.925866 (-0.669039 dB)

File Name

GraphicEqualizer6x2_Q15.h

1.10.4 GraphicEqualizer6x2_Q31.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerDesign.m)

1.10 Files Audio Equalizer Filtering Library Help GraphicEqualizer6x2_Q31.h

 1-95

1



32 Bit Filter definitions for 6 Bands, with 2 Filters/Band. See the file GraphicEqualizer6x2_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.22607 (1.77027 dB)
    Unscaled Filter Response Average = 1.13523 (1.1017 dB)
    Scaled Filter Response Peak = 1 (0 dB)
    Scaled Filter Response Average = 0.925916 (-0.668572 dB)

File Name

GraphicEqualizer6x2_Q31.h

1.10.5 myFilters4x2_Q15.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

16 Bit Filter definitions for 4 Bands, with 2 Filters/Band. See the file myFilters4x2_Q15.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.59502 (4.05533 dB)
    Unscaled Filter Response Average = 1.4646 (3.31439 dB)
    Scaled Filter Response Peak = 1 (-9.64327e-16 dB)
    Scaled Filter Response Average = 0.918233 (-0.740944 dB)

File Name

myFilters4x2_Q15.h

1.10.6 myFilters4x2_Q31.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

32 Bit Filter definitions for 4 Bands, with 2 Filters/Band. See the file myFilters4x2_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.59493 (4.05481 dB)
    Unscaled Filter Response Average = 1.46456 (3.31414 dB)
    Scaled Filter Response Peak = 1 (1.92865e-15 dB)
    Scaled Filter Response Average = 0.918261 (-0.740674 dB)

File Name

myFilters4x2_Q31.h

1.10.7 myFilters4x3_Q15.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

16 Bit Filter definitions for 4 Bands, with 3 Filters/Band. See the file myFilters4x3_Q15.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.19305 (1.53317 dB)

1.10 Files Audio Equalizer Filtering Library Help myFilters4x3_Q15.h

 1-96

1



    Unscaled Filter Response Average = 1.11311 (0.93074 dB)
    Scaled Filter Response Peak = 1 (-9.64327e-16 dB)
    Scaled Filter Response Average = 0.932993 (-0.602429 dB)

File Name

myFilters4x3_Q15.h

1.10.8 myFilters4x3_Q31.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

32 Bit Filter definitions for 4 Bands, with 3 Filters/Band. See the file myFilters4x3_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.19305 (1.53315 dB)
    Unscaled Filter Response Average = 1.1131 (0.930694 dB)
    Scaled Filter Response Peak = 1 (-1.92865e-15 dB)
    Scaled Filter Response Average = 0.93299 (-0.602457 dB)

File Name

myFilters4x3_Q31.h

1.10.9 myFilters5x2_Q15.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

16 Bit Filter definitions for 5 Bands, with 2 Filters/Band. See the file myFilters5x2_Q15.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.58718 (4.01254 dB)
    Unscaled Filter Response Average = 1.51086 (3.58446 dB)
    Scaled Filter Response Peak = 1 (-1.92865e-15 dB)
    Scaled Filter Response Average = 0.95191 (-0.42808 dB)

File Name

myFilters5x2_Q15.h

1.10.10 myFilters5x2_Q31.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

32 Bit Filter definitions for 5 Bands, with 2 Filters/Band. See the file myFilters5x2_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.58728 (4.01309 dB)
    Unscaled Filter Response Average = 1.51085 (3.58445 dB)
    Scaled Filter Response Peak = 1 (1.92865e-15 dB)
    Scaled Filter Response Average = 0.951849 (-0.428638 dB)

1.10 Files Audio Equalizer Filtering Library Help myFilters5x2_Q31.h

 1-97

1



File Name

myFilters5x2_Q31.h

1.10.11 myFilters6x2_Q15.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

16 Bit Filter definitions for 6 Bands, with 2 Filters/Band. See the file myFilters6x2_Q15.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.60219 (4.09428 dB)
    Unscaled Filter Response Average = 1.53328 (3.71241 dB)
    Scaled Filter Response Peak = 1 (-1.92865e-15 dB)
    Scaled Filter Response Average = 0.956988 (-0.38187 dB)

File Name

myFilters6x2_Q15.h

1.10.12 myFilters6x2_Q31.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

32 Bit Filter definitions for 6 Bands, with 2 Filters/Band. See the file myFilters6x2_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.6021 (4.09378 dB)
    Unscaled Filter Response Average = 1.53332 (3.71267 dB)
    Scaled Filter Response Peak = 1 (0 dB)
    Scaled Filter Response Average = 0.957073 (-0.381102 dB)

File Name

myFilters6x2_Q31.h

1.10.13 myFilters7x2_Q15.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

16 Bit Filter definitions for 7 Bands, with 2 Filters/Band. See the file myFilters7x2_Q15.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.58661 (4.00941 dB)
    Unscaled Filter Response Average = 1.5339 (3.71595 dB)
    Scaled Filter Response Peak = 1 (-2.89298e-15 dB)
    Scaled Filter Response Average = 0.966778 (-0.293464 dB)

File Name

myFilters7x2_Q15.h

1.10 Files Audio Equalizer Filtering Library Help myFilters7x2_Q31.h

 1-98

1



1.10.14 myFilters7x2_Q31.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

32 Bit Filter definitions for 7 Bands, with 2 Filters/Band. See the file myFilters7x2_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.58659 (4.00928 dB)
    Unscaled Filter Response Average = 1.53388 (3.71583 dB)
    Scaled Filter Response Peak = 1 (1.92865e-15 dB)
    Scaled Filter Response Average = 0.96678 (-0.293448 dB)

File Name

myFilters7x2_Q31.h

1.10.15 myFilters8x2_Q15.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

16 Bit Filter definitions for 8 Bands, with 2 Filters/Band. See the file myFilters8x2_Q15.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.62333 (4.20811 dB)
    Unscaled Filter Response Average = 1.49845 (3.51285 dB)
    Scaled Filter Response Peak = 1 (-9.64327e-16 dB)
    Scaled Filter Response Average = 0.923075 (-0.695262 dB)

File Name

myFilters8x2_Q15.h

1.10.16 myFilters8x2_Q31.h 

Audio Equalizer Library Filter Definition (Created by GraphicEqualizerFilterDesignScript.m)

32 Bit Filter definitions for 8 Bands, with 2 Filters/Band. See the file myFilters8x2_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.62342 (4.2086 dB)
    Unscaled Filter Response Average = 1.49842 (3.51269 dB)
    Scaled Filter Response Peak = 1 (1.92865e-15 dB)
    Scaled Filter Response Average = 0.923006 (-0.695909 dB)

File Name

myFilters8x2_Q31.h

1.10 Files Audio Equalizer Filtering Library Help ParametricFilters1x8_Q15.h

 1-99

1



1.10.17 ParametricFilters1x8_Q15.h 

Audio Equalizer Library Filter Definition (Created by ParametricEqualizerDesign.m)

16 Bit Filter definitions for 1 Bands, with 8 Filters/Band. See the file ParametricFilters1x8_Q15.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.25582 (1.97854 dB)
    Unscaled Filter Response Average = 0.768183 (-2.29071 dB)

File Name

ParametricFilters1x8_Q15.h

1.10.18 ParametricFilters1x8_Q31.h 

Audio Equalizer Library Filter Definition (Created by ParametricEqualizerDesign.m)

32 Bit Filter definitions for 1 Bands, with 8 Filters/Band. See the file ParametricFilters1x8_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.27398 (2.10325 dB)
    Unscaled Filter Response Average = 0.768016 (-2.29259 dB)

File Name

ParametricFilters1x8_Q31.h

1.10.19 ParametricFilters1x8_Q31_Hacked.h 

Audio Equalizer Library Filter Definition (Created by ParametricEqualizerDesign.m, with additional edits)

32 Bit Filter definitions for 1 Bands, with 8 Filters/Band. See the file ParametricFilters1x8_Q31.mat for details of the filter design.

Remarks

    Unscaled Filter Response Peak = 1.27398 (2.10325 dB)
    Unscaled Filter Response Average = 0.768016 (-2.29259 dB)

Filter  1  and  Fitler  2  coefficients  are  16  bits  wide,  scaled  from  Q15  to  Q31.  These  filters  should  behave  identically  to  the

ParametricFilters1x8_Q15.h,  proving  that  the  problem  is  with  filter  coefficient  rounding  rather  than  calculating  filters  in  16  bit

fractional math instead of 32 bit.

File Name

ParametricFilters1x8_Q31.h

1.10 Files Audio Equalizer Filtering Library Help ParametricFilters1x8_Q31_Hacked.h

 1-100

1



Index

A
A Warning About Stereo Filters 1-40

Application Examples 1-21

Audio Equalization Filtering Library 1-1

audio_equalizer.h 1-92

AUDIO_EQUALIZER_BandEnergyGetQ15 function 1-81

AUDIO_EQUALIZER_BandEnergyGetQ31 function 1-82

AUDIO_EQUALIZER_BandEnergyNSamplesSet function 1-77

AUDIO_EQUALIZER_BandEnergySumsInit function 1-76

AUDIO_EQUALIZER_BandEnergyUpdateQ15 function 1-78

AUDIO_EQUALIZER_BandEnergyUpdateQ31 function 1-80

AUDIO_EQUALIZER_Cascade2inQ15 function 1-49

AUDIO_EQUALIZER_Cascade2inQ31 function 1-50

AUDIO_EQUALIZER_Cascade8inQ15 function 1-52

AUDIO_EQUALIZER_Cascade8inQ31 function 1-53

AUDIO_EQUALIZER_FilterGainAdjustQ15 function 1-67

AUDIO_EQUALIZER_FilterGainAdjustQ31 function 1-68

AUDIO_EQUALIZER_FilterGainGetQ15 function 1-69

AUDIO_EQUALIZER_FilterGainGetQ31 function 1-71

AUDIO_EQUALIZER_FilterGainSetQ15 function 1-70

AUDIO_EQUALIZER_FilterGainSetQ31 function 1-72

audio_equalizer_fixedpoint.h 1-94

AUDIO_EQUALIZER_GainNormalizeQ15 function 1-73

AUDIO_EQUALIZER_GainNormalizeQ31 function 1-74

AUDIO_EQUALIZER_IIRinQ15 function 1-47

AUDIO_EQUALIZER_IIRinQ15andC function 1-45

AUDIO_EQUALIZER_IIRinQ15FastC function 1-46

AUDIO_EQUALIZER_IIRinQ31 function 1-48

AUDIO_EQUALIZER_IIRinQ31andC function 1-46

AUDIO_EQUALIZER_MAX_NBANDS macro 1-88

AUDIO_EQUALIZER_Parallel4x2inQ15 function 1-55

AUDIO_EQUALIZER_Parallel4x2inQ31 function 1-56

AUDIO_EQUALIZER_Parallel8x2inQ15 function 1-58

AUDIO_EQUALIZER_Parallel8x2inQ31 function 1-59

AUDIO_EQUALIZER_ParallelNx2inQ15 function 1-61

AUDIO_EQUALIZER_ParallelNx2inQ31 function 1-63

AUDIO_EQUALIZER_ParallelNxMinQ15 function 1-64

AUDIO_EQUALIZER_ParallelNxMinQ31 function 1-66

B
BAND_ENERGY_UNITS enumeration 1-88

C
Configuring the Library 1-16

Core Exception Handling 1-18

E
Equalization Filters 1-28

EQUALIZER_FILTER structure 1-89

EQUALIZER_FILTER_32 structure 1-89

EQUALIZER_FILTER_GAIN structure 1-90

EQUALIZER_FILTER_GAIN_32 structure 1-90

Example Filter Definition Files 1-28

F
Files 1-92

Filter Validation Tools 1-36

Filtering Performance 1-19

Fixed Point Data and Mathematics 1-16

G
Glossary of Terms 1-13

Graphic Equalization Filter Design Tools 1-29

GraphicEqualizer6x2_Q15.h 1-95

GraphicEqualizer6x2_Q31.h 1-95

H
HALF_L1_TO_L2_FACTOR macro 1-91

I
Introduction 1-2

2 Audio Equalizer Filtering Library Help

 a



L
libq_q0d15_t type 1-84

libq_q0d16_t type 1-85

libq_q0d31_t type 1-85

libq_q0d63_t type 1-86

libq_q15_t type 1-84

libq_q15d16_t type 1-87

libq_q16d15_t type 1-87

libq_q31_t type 1-86

libq_q63_t type 1-86

Library Interface 1-43

Library Overview 1-6

M
Matlab/Octave 1-28

myFilters4x2_Q15.h 1-96

myFilters4x2_Q31.h 1-96

myFilters4x3_Q15.h 1-96

myFilters4x3_Q31.h 1-97

myFilters5x2_Q15.h 1-97

myFilters5x2_Q31.h 1-97

myFilters6x2_Q15.h 1-98

myFilters6x2_Q31.h 1-98

myFilters7x2_Q15.h 1-98

myFilters7x2_Q31.h 1-99

myFilters8x2_Q15.h 1-99

myFilters8x2_Q31.h 1-99

P
Parametric Equalization Filter Design 1-33

ParametricFilters1x8_Q15.h 1-100

ParametricFilters1x8_Q31.h 1-100

ParametricFilters1x8_Q31_Hacked.h 1-100

R
Release Notes 1-14

Resource Requirements 1-11

S
SW License Agreement 1-15

U
Using the Library 1-16

2 Audio Equalizer Filtering Library Help

 b


