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1 Introduction

In [9] and [10] Mart́ınez, Cariñena and Sarlet presented a comprehensive theory of derivations of forms
along the tangent bundle projection τ : TM → M . One of the main motivations for this theory was
to develop a calculus in which important concepts for the study of second-order differential equation
fields (sode) make their appearance in a most economical way, giving rise to formulas which stay close
to analytical computations and yet give such computations a coordinate free backing. In the more
traditional geometric approach to the study of a sode, where tangent bundle geometry is the key issue,
these concepts tend to be interpreted by tensorial objects of which half of the components are to some
extent redundant. This is particularly evident in Sarlet’s study of special forms and tensors associated
to a sode [14], which was the direct inducement for the work of Mart́ınez et al. Another incentive for
this work is the fact that important tensorial objects on TM are often scalar or vertical-vector-valued
semi-basic forms (see e.g. [2, 8]) and these can be put in direct correspondence with tensor fields along τ .

Two major applications of the calculus along τ have been developed so far. The first concerns a
constructive characterization , mostly in terms of algebraic conditions, of systems of autonomous second-
order equations which can be completely decoupled [11]. This application in itself calls for a generalization
which can cover the situation of time-dependent systems. Obviously, one then wants to allow coordinate
transformations, which realize the full separation, to depend on time as well. A second area where
elements of the new calculus have proved to be highly efficient is the inverse problem of Lagrangian
mechanics. It was already shown in [1] and [10] that the so-called Helmholtz conditions which characterize
this inverse problem can be formulated in a very succinct way by means of properties of a metric tensor
field along τ . More importantly, it has recently been shown [4] that the new approach also paves the
way for solving the inverse problem, giving a geometrical content to the rather tricky analytical solution,
presented by Douglas [6] for the case of two degrees of freedom. This recent development is in fact
presented in a time-dependent setup and thus anticipates part of the results of the present paper.

The aim of this paper is to cover most of the results of [9] and [10] for a time-dependent framework.
The type of space which is usually taken to carry a description of time-dependent second-order equations
is the manifold IR× TM (see e.g. [3]) and it is then natural to let the projection π : IR× TM → IR×M
take over the role of τ : TM → M for the autonomous situation. That is what we will do indeed, but
not without some precautions. The manifold IR × TM can be identified in a natural way with the jet
space J1(IR, M) (see e.g. [16]). Such an identification, however, is not entirely harmless. Once the space
J1(IR,M) has been endowed with the product structure coming from IR × TM , objects are tensorially
well defined when they behave the way they should under coordinate transformations which respect the
product structure (i.e. do not mix time and position variables). Thinking of the jet bundle structure,
however, one is tempted to allow for time-dependent coordinate transformations as well and, as already
indicated above, this is a necessity for certain applications. Not all tensor fields, well defined on IR×TM ,
transform covariantly under time-dependent coordinate transformations! Typical examples of dangerous
objects in this respect are the vector field ∂/∂t and the dilation or Liouville vector field.

In view of what precedes, one of our principal guidelines will be to develop the calculus along π in
such a way that time-dependent coordinate transformations cause no surprises. In other words, relying
on the product structure of IR × TM and IR × M has to be avoided and as an interesting byproduct of
this attitude all formulas will in fact remain perfectly valid in a more general setup, where IR × M is
replaced by an arbitrary fibre bundle E → IR and π is the projection π : J1E → E. This guideline in
itself does not preclude that there is no unique, natural way of extending the theory for the autonomous
situation. At several stages of conceiving the basic ingredients for the classification of derivations, one
has to make a choice and this may of course be a matter of personal preference. Generally speaking, the
choices we make will be dictated by the wish to keep the structure of all formulas as closely as possible
related to the autonomous case. We will briefly comment on alternative approaches along the way.

The scheme of the paper is as follows. Section 2 contains generalities about the structure of tensor
fields along π : IR×TM → IR×M and the selection of a canonically defined ‘vertical exterior derivative’.
The classification of derivations of scalar forms along π is discussed in Section 3 and requires introducing
a connection. The extension to vector-valued forms in Section 4 will lead us to the important vertical
and horizontal covariant derivatives. Torsion and curvature of the connection are among the various
concepts and properties that will come out of the study of commutators in Section 5. A digression on
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horizontal and vertical lifts in Section 6 will provide the necessary link with the traditional calculus on
IR × TM . Section 7 focusses on the case where the connection is coming from a given sode. With
regard to applications, this is the most important part of the paper. It highlights, in particular, the
concepts of dynamical covariant derivative ∇ and Jacobi endomorphism Φ. The final section contains
some immediate applications and comments on future developments.

2 Tensor fields along π : IR × TM → IR × M and the vertical

exterior derivative

For general aspects of sections along a map and derivations we refer to [9]. Vector fields along π are
sections of the pull back bundle π∗(T (IR × M)) over IR × TM . The set of vector fields along π, which
is a module over C∞(IR × TM), is denoted by X (π). Similarly,

∧

(π) will denote the graded algebra of
scalar forms along π and V (π) stands for the

∧

(π)-module of vector-valued forms along π. Obviously, we

have
∧0

(π) ≡ C∞(IR × TM) and V 0(π) ≡ X (π). Elements of X (IR × M) or
∧

(IR × M), which through
composition with π can be regarded as belonging to X (π) (respectively

∧

(π)), will be called basic vector
fields (respectively basic forms). In coordinates, a tensor field along π is made up of tensor products of
basic 1-forms and vector fields, with coefficients in C∞(IR × TM).

As is well known, J1(IR,M) can be identified with the submanifold of T (IR×M) consisting of tangent
vectors with time-component 1. The corresponding natural injection defines the canonical vector field
along π, denoted by T. Its coordinate expression is given by

T =
∂

∂t
+ vi ∂

∂qi
. (1)

One of the important features of T is that it preserves its form under time-dependent coordinate trans-
formations, by which we mean transformations of the form t′ = t, q′ = q′(q, t), with the induced affine
transformation v′i = (∂q′i/∂qj)vj + (∂q′i/∂t) for the fibre coordinates of the fibration π. For this reason,
for a local representation of elements of X (π), preference is given to the local basis {T, ∂/∂qi} over the
coordinate basis {∂/∂t, ∂/∂qi}. Correspondingly, forms along π are best expressed in terms of the dual

basis of
∧1

(π), consisting of dt and the contact forms θi = dqi − vi dt.

We write X (π) for the set of equivalence classes of vector fields along π, modulo T or, equivalently,
the subset of X (π) consisting of elements X with the property i

X
dt = 0. Similarly, we set V (π) = {L ∈

V (π) | i
L
dt = 0}, where iL, a derivation of

∧

(π), is defined as in the standard calculus (see e.g. [7] or
[9]). Every L ∈ V (π) has a natural decomposition of the form

L = L◦ ⊗ T + L, (2)

where L◦ = iL dt and consequently L ∈ V (π). In particular, the identity tensor field I ∈ V 1(π) can be
written as

I = dt ⊗ T + I , I = θi ⊗
∂

∂qi
. (3)

We now come to the construction of a canonically defined vertical exterior derivative dV on
∧

(π). Recall
that IR×TM carries a canonically defined type (1,1) tensor field S (cf. [3]), which in coordinates has the
form

S = θi ⊗
∂

∂vi
. (4)

As discussed e.g. by Vondra [17], there are in fact 4 natural endomorphisms of vector fields on IR× TM .
Other constructions, however, make use of ∂/∂t or the dilation field vi ∂/∂vi and as such rely on the
product structure of the manifold and its base. We here encounter a first element of choice for the
development of our theory and the selection of S, of course, is in agreement with the motivations expressed
in Section 1. There is a one-to-one correspondence between

∧

(π) and the set of semi-basic forms on
IR × TM . The derivation dS = [iS , d] of

∧

(IR × TM) maps semi-basic forms into semi-basic forms and
thus carries over to a derivation of

∧

(π), denoted by dV . To see the meaning of dV in a more direct way,
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observe first that there is a vertical lift construction on X (π), which provides a bijection between X (π)
and the set of vertical vector fields on IR × TM . One way of defining this vertical lift goes as follows.
First, for basic vector fields X, we set XV = S(X(1)), where X(1) denotes the prolongation of X. We
then extend the definition to the whole of X (π) by linearity. If, for once, a general X ∈ X (π) is written
in the coordinate basis as X = X0 ∂/∂t + Xi∂/∂qi, then

XV = (Xi − viX0)
∂

∂vi
. (5)

It is clear that TV = 0 and that conversely, therefore, every vertical vector field on IR× TM corresponds
to a unique element of X (π). As in [9], it is easy to argue that every derivation of

∧

(π) is completely
determined by its action on functions and basic 1-forms. This way, dV can be defined directly by the
rule: ∀F ∈ C∞(IR × TM), X ∈ X (π),

dV F (X) = XV (F ), (6)

plus the requirement that dV vanishes on basic 1-forms. For practical purposes, the result is that:

dV F = (∂F/∂vi)θi , dV (dt) = 0 , dV θi = dt ∧ θi. (7)

It is easy to verify, using (7), that
dV ◦ dV = dt ∧ dV . (8)

That dV ◦ dV 6= 0 should not come as a surprise: it is a reflection of the fact that the Nijenhuis tensor
of S is not zero. If, for L ∈ V (π), dV

L denotes the commutator [iL, dV ], we have that dV = dV

I and learn
more about the structure of dV through the decomposition (3) of I. It is clear that dV

dt⊗T
vanishes on

functions, i.e. is a derivation of type i∗ and accordingly (cf. [9]) must be representable in the form iL for
some V ∈ V 2(π). From the action on dt and θi, it is easily seen that the L in question is dt ∧ I. Hence,
we have

dV = idt∧I + dV

I
. (9)

Comparison with (7) shows that

dV

I
F = dV F , dV

I
(dt) = 0 , dV

I
θi = 0, (10)

from which it follows that dV

I
◦ dV

I
= 0. Again, a few comments are in order concerning alternative

ways of selecting a type of exterior derivative which will afterall have an effect on the classification of
all derivations. It is clear that dV

I
has nicer properties than dV ; it behaves very much like the vertical

exterior derivative of the autonomous theory, with parametric dependence on the variable t, and as such
also has trivial cohomology. We have nevertheless not chosen for dV

I
as fundamental derivative, because

we preferred the dV to be modeled (as in [9]) on some dS on IR × TM ; the feeling is that somehow
dV comes first and dV

I
is derived from it subsequently. A result of our choice is that we will encounter

some more inconveniences like (8), but it will also turn out that most of the interesting commutator
relations in the end follow the same pattern as in the autonomous case. Needless to say, the selection
of dV as fundamental vertical exterior derivative does not preclude that dV

I
will play a prominent role in

applications. The zero cohomology of dV

I
can be translated to an interesting property of dV as well. To

see this, one has to take into account the following decomposition of a general form ω ∈
∧

(π): setting
ω̂ = iTω, we have

ω = ω̃ + dt ∧ ω̂, (11)

which defines ω̃ in such a way that iTω̃ = 0.

Proposition 2.1 For ω ∈
∧p

(π), dV ω = 0 is equivalent to the existence of a β ∈
∧p−1

(π), such that
ω = dV β + dt ∧ β.

Proof: If ω = dV β + dt ∧ β, the property dV ω = 0 trivially follows from (8). For the converse, using
the decompositions (9) and (11), we first observe that

idt∧Iω = dt ∧ iIω = p dt ∧ ω̃, (12)

dV

I
ω = dV

I
ω̃ − dt ∧ dV

I
ω̂. (13)
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It follows that dV ω = 0 is equivalent to dV

I
ω̃ = 0 and dV

I
ω̂ = pω̃. The first of these implies that ω̃ = dV

I
β̃,

for some β̃ ∈
∧p−1

(π) with iTβ̃ = 0, and the second condition subsequently implies: ω̂ = pβ̃ + dV

I
α̃, for

some α̃ ∈
∧p−2

(π) with iTα̃ = 0. Putting ω back together, we find that

ω = dV

I
β̃ + dt ∧ (pβ̃ + dV

I
α̃).

Setting finally β = β̃ − dt ∧ α̃ and using the general rules (12) and (13), we obtain

dV β = dV

I
β̃ + (p − 1)dt ∧ β̃ + dt ∧ dV

I
α̃

= ω − dt ∧ β̃ = ω − dt ∧ β,

which is the desired result. ✷

Going back to the decomposition (9) of dV , we will now introduce the terminology of dV

∗ -derivations
in such a way that it applies to the main part dV

I
rather than to the full dV .

Definition 2.2 A derivation of
∧

(π) of type dV

∗ is a derivation of the form dV

L, with iLdt = 0.

Computing the commutator [dV

L, dV ], with L ∈ V
r
(π) say, one easily finds, using (8), that D = dV

L

has the property
[D, dV ] + (−1)rdt ∧ D = 0. (14)

Further obvious properties of a derivation of type dV

∗ are that it vanishes on basic functions and on dt.
We want to show that these three properties completely characterize derivations of type dV

∗ . To that end,
observe first that for a basic 1-form α, we have

dV α̂ = α − α̂ dt , α ∈
∧1

(IR × M). (15)

This is, for example, easy to verify in coordinates. Using (15), it follows from (14) that for a basic 1-form
α,

Dα = Dα̂ ∧ dt + α̂D(dt) + (−1)r(dV − dt∧)Dα̂. (16)

In other words, a derivation with property (14) is completely determined by its action on functions and
on dt.

Proposition 2.3 A derivation D of
∧

(π), of degree r, is of type dV

∗ if and only if it vanishes on basic
functions and on dt and has the property (14).

Proof: It remains to be shown that a D with such properties is of the form dV

L, with L ∈ V (π). To this
end, given D we construct a derivation D′ of degree r− 1 by the requirements: D′F = 0 for all functions
F , D′α = Dα̂ for basic 1-forms α. Since D′ is of type i∗, it is of the form iL and since D′(dt) = 0
we will actually have L ∈ V

r
(π). The claim now is that the original D is dV

L. Following the above
remark, both derivations are completely determined by their action on functions. They trivially coincide
on basic functions, so that it remains to compare their action on fibre linear functions of the form α̂, with
α ∈

∧1
(IR × M). We have

dV

Lα̂ = iL(α − α̂ dt) = iLα = D′α = Dα̂,

which concludes the proof. ✷

Proposition 2.4 Every derivation D of
∧

(π), vanishing on basic functions, has a unique decomposition
into the sum of a derivation of type i∗ and a derivation of type dV

∗ .

Proof: From the given D, of degree r say, we construct a derivation D2 by the following requirements:
D2F = DF on functions, whereas on basic 1-forms α, inspired by (16), we impose:

D2α = Dα̂ ∧ dt + (−1)r(dV − dt∧)Dα̂.
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By construction, D2 vanishes on basic functions and on dt. In view of the link between (14) and (16), D2

further has the property (14) for its action on functions. We check that (14) also holds on basic 1-forms
α:

[D2, d
V ]α + (−1)rdt ∧ D2α = −(−1)rdV D2α + (−1)rdt ∧ D2α

= −(−1)rdV Dα̂ ∧ dt − dV dV Dα̂ + dV (dt ∧ Dα̂) + dt ∧ dV Dα̂ = 0.

It follows that D2 is of type dV

∗ . The difference D1 = D − D2 vanishes on functions and therefore is of
type i∗. It is easy to see that this decomposition is unique. ✷

As in [9] it appears that the full characterization and classification of derivations of
∧

(π) requires
some extra input, for the description of what happens with functions on the base manifold IR×M . Before
going into that in the next section, it is worthwhile pointing out again some pecularities about our notion
of dV

∗ -derivations. Note, for example, that dV itself is not a derivation of type dV

∗ , but dV

I
is! Also, as is

seen from (14), derivations of type dV

∗ do not commute with dV , nor do they commute with dV

I
. These

features may look unpleasant if one has the standard Frölicher-Nijenhuis calculus in mind, but are not
too difficult to live with once one is aware of them.

3 Classification of derivations of
∧

(π)

From now on, we assume to have a connection on the bundle π at our disposal, i.e. a splitting of the
sequence

0 → Vert (IR × TM)
i
→ T (IR × TM)

j
→ π∗(T (IR × M)) → 0,

where Vert (IR× TM) denotes vertical tangent vectors (over IR×M), i is the inclusion and the essential
component of j is the projection Tπ. With the aid of such a connection we have a mechanism for lifting
basic vector fields “horizontally” to corresponding vector fields on IR × TM . We set

Hi =

(

∂

∂qi

)H

=
∂

∂qi
− Γj

i

∂

∂vj
, H0 =

(

∂

∂t

)H

=
∂

∂t
− Γi

0

∂

∂vi
, (17)

which identifies n(n+1) so-called connection coefficients Γj
i ,Γ

i
0. The horizontal lift construction trivially

extends to X (π) by linearity. Of particular interest is TH , which defines a sode on IR × TM with the
following coordinate espression:

TH =
∂

∂t
+ vi ∂

∂qi
− (Γi

0 + vjΓi
j)

∂

∂vi
. (18)

As in [9], the horizontal exterior derivative dH on
∧

(π) (associated to a given connection) is defined by
the rule: ∀F ∈ C∞(IR × TM), X ∈ X (π),

dHF (X) = XH(F ), (19)

plus the requirement that dH coincides with the ordinary exterior derivative on
∧

(IR × M) for basic
forms. For computational purposes, using as before the local basis {dt, θi} to describe forms along π, dH

is completely determined by:

dHF = Hi(F )θi + TH(F ) dt, (20)

dH(dt) = 0 , dHθi = Γi
kθk ∧ dt. (21)

Definition 3.1 A derivation of
∧

(π) is said to be of type dH

∗ if it is of the form dH

L = [iL, dH ] for some
L ∈ V (π).

A further digression on alternative selections is appropriate here. With the given connection comes
a horizontal projector PH on X (IR × TM), which in coordinates is given by PH = dt ⊗ Hi. This tensor
field, however, has a natural decomposition in the form

PH = dt ⊗ TH + PH , PH = θi ⊗ Hi. (22)
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To PH is associated, what is sometimes called a strong horizontal lift (cf. [5]). Whereas our definition
of dH is somehow governed by PH , it is conceivable that somebody else would introduce two separate
derivations at this point, one for each part of the decomposition (22). Yet another way of thinking of two
separate derivations arises as follows. Similar to (9), we have

dH = dH

I = dH

dt⊗T
+ dH

I
, (23)

whereby the two parts we encounter here are not exactly the two separate derivations referred to above.
It must be said that there are grounds for paying attention to these two parts separately, coming from
the jet bundle structure of IR × TM . Indeed, we have the chain of inclusions of rings:

C∞(IR) ⊂ C∞(IR × M) ⊂ C∞(IR × TM) ⊂
∧

(π),

which indicates that a possible approach towards the classification of derivations of
∧

(π) would attribute
a distinct role to properly chosen derivations with respect to (i.e. vanishing on) each of the subrings. The
derivations iL, dV

I
and dH

I
are suitable for such a purpose and at the end of such a process one then has

to select another derivation which is an extension of the exterior derivative on the base IR. A possible
candidate in that respect is dH

dt⊗T
, particularly since its square is zero. As in the discussions of the

previous section, our prevailing feelings are that the full dH is somehow born first, that other interesting
derivations originate from it (e.g. by (23)) and that a classification of arbitrary derivations in terms of
three components (instead of four) will more closely relate to the autonomous theory of [9] and [10].

Theorem 3.2 Every derivation D of
∧

(π), of degree r, has a unique decomposition in the form

D = iL1 + dV

L2
+ dH

L3
, (24)

with L1 ∈ V r+1(π), L2 ∈ V
r
(π), L3 ∈ V r(π).

Proof: For fixed X1, · · · , Xr ∈ X (π) and variable basic functions f , Df(X1, · · · , Xr) maps basic func-
tions into functions on IR × TM while satisfying a Leibnitz-type rule and therefore defines an element
of X (π). Since the dependence on X1, · · · , Xr is C∞(IR × TM)-multilinear and skew-symmetric, we are
actually looking at some L3 ∈ V r(π) such that

L3(X1, · · · , Xr)(f) = Df(X1, · · · , Xr).

The left-hand side is also dH

L3
f(X1, · · · , , Xr). It follows that D− dH

L3
vanishes on basic functions, so that

Proposition 2.4 immediately yields the desired result. ✷

For computational purposes, if we write a general L ∈ V (π) in the form

L = L0 ⊗ T + Li ⊗
∂

∂qi
,

Dt and Dqi determine consecutively L0
3 and Li

3. Subsequently, (D − dH

L3
)(vi) will provide us with the

forms Li
2. Finally, the action of D − dH

L3
− dV

L2
on dt and θi will respectively yield L0

1 and Li
1.

4 Derivations of vector-valued forms and self-duality

For extending the action of a derivation D to the module of vector-valued forms V (π) over the graded
ring

∧

(π), it suffices to specify the action on X (π) (or in fact on basic vector fields) in a way which is
consistent with the already determined action on functions. Defining the extension of a commutator of
two derivations to be the commutator of the extensions, the main issue is to define the action of iL, dV

and dH on V (π). There are different ways of doing this, but what we regard as being the most natural
procedure goes as follows. As in [9], we define iL and dV to vanish on basic vector fields, which is justified
by the fact that they vanish on basic functions. We thus have,

dV (∂/∂qi) = 0 , dV T = I, (25)
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and exactly the same formulas for dV

I
. Next, using the vertical projector PV = IIR×TM − PH , for an

arbitrary X ∈ X (π), we define dHX ∈ V 1(π) by the following two prescriptions:

∀Z ∈ X (π) , dHX(Z)
V

= PV ([ZH , XV ]), (26)

together with
idHXdt = dH(iX dt). (27)

It is easy to verify that this construction makes dHX tensorial indeed and satisfies the derivation require-
ment dH(FX) = dHF ⊗ X + FdHX, ∀F ∈ C∞(IR × TM). An important consequence of this extension
of dH , following from TV = 0, is that

dHT = 0, and thus also dH

I
T = 0. (28)

For coordinate calculations, it is useful to know that

dH
∂

∂qi
=

(

∂Γk
0

∂vi
+ vj

∂Γk
j

∂vi

)

dt ⊗
∂

∂qk
+

∂Γk
j

∂vi
θj ⊗

∂

∂qk
, (29)

where the two terms in the right-hand side correspond to the decomposition (23) of dH .

Starting from a general derivation D of V (π), one can consider its restriction to
∧

(π) and regard
this in turn as a derivation of V (π) again, via the rules of extension which have just been adopted.
The difference with the original derivation obviously vanishes on

∧

(π): it is a derivation of type a∗ and
explicit formulas for the action of such derivations have been given in [9]. From Theorem 3.2, following
exactly the line of proof of the autonomous theory in [9], we obtain the following classification result.

Theorem 4.1 Every derivation D of V (π), of degree r, can uniquely be written in the form

D = iL1 + dV

L2
+ dH

L3
+ aQ, (30)

with L1 ∈ V r+1(π), L2 ∈ V
r
(π), L3 ∈ V r(π), Q ∈

∧r
(π) ⊗ V 1(π). ✷

An important class of derivations of degree 0 are the ones that have the property

D〈X,α〉 = 〈DX,α〉 + 〈X,Dα〉 , α ∈
∧1

(π), X ∈ X (π) (31)

and are said to be self-dual for this reason. In Section 3 of [10] one can find an extensive discussion
of self-dual derivations in a way which is valid in a general setting and thus directly applies also to the
present situation. The most important features for later use can be summarized as follows.

Let d(1) stand for either the vertical or horizontal exterior derivative on V (π). Then, with X ∈ X (π),
d(1)

X is not self-dual, so that two self-dual derivations can be constructed from it. On the one hand, the
restriction of d(1)

X to
∧

(π) can be extended to the whole of V (π) by imposing the duality rule (31). This
defines a derivation of Lie-derivative type, denoted by L(1)

X , giving rise to a bracket operation on X (π),
say [X, Y ](1) = L(1)

X Y . On the other hand, we can start from the restriction of d(1)

X to X (π) and use (31)
again, this time to define a new action on

∧

(π). This defines a derivation D(1)

X , depending linearly on the
argument X and therefore said to be of covariant-derivative type. Clearly, by construction, the difference
between d(1)

X and L(1)

X is of type a∗, whereas the difference between d(1)

X and D(1)

X is of type i∗. To find the
element of V 1(π) which will determine both difference terms, we can proceed as follows. First, it is easy
to verify from the defining relations that D(1)

X Y − D(1)

Y X − [X,Y ](1) is C∞(IR × TM)-linear in X and Y
(and obviously skew-symmetric) and this way defines a ‘torsion form’ Td(1) ∈ V 2(π). It then follows that

L(1)

X = d(1)

X − aQX
, D(1)

X = d(1)

X − iQX
, with QX = d(1)X + iXTd(1) . (32)

We will learn from the analysis in the next section that the ‘vertical torsion’ is zero, while the ‘horizontal
torsion’ corresponds exactly to the torsion of the non-linear connection we started from. To that end, it
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is useful to know that the characterizing property (31) of a self-dual derivation D, as has been proved in
[10], is equivalent to

[D, iL] = iDL , ∀L ∈ V (π). (33)

In view of their importance for applications, we list the following coordinate expressions for the action
of a vertical and horizontal covariant derivative on the local basis of

∧1
(π) and X (π) and on functions

F ∈ C∞(IR × TM). For

X = X0T + Xi ∂

∂qi
, (34)

using a notation like Γk
ji as shorthand for ∂Γk

j /∂vi, we have

DV

XF = XV (F ), DV

X(dt) = 0, DV

Xθi = −Xi dt,
(35)

DV

X

(

∂

∂qi

)

= 0, DV

XT = Xi ∂

∂qi
= X

and

DH

XF = XH(F ), DH

X(dt) = 0, DH

XT = 0,

DH

Xθi = −[XjΓi
jk + X0(Γi

jkvj + Γi
0k)]θk, (36)

DH

X

(

∂

∂qi

)

= [XjΓk
ji + X0(Γk

jiv
j + Γk

0i)]
∂

∂qk
.

A special case of interest, certainly, concerns the covariant derivatives with respect to the canonical vector
field T. Since dV

T
is zero on functions and on vector fields, we have

DV

T
= 0 (37)

by construction. This is, of course, also clear from (35). DH

T
on the other hand is an important derivation

and will manifest itself more distinctively when we consider the connection associated to a sode.

As a final remark for this section, note that the action of the vertical and horizontal covariant
derivative trivially extends to tensor fields of arbitrary type (as is true for all self-dual derivations). We
can then define operators DV and DH , which increase the covariant order of a tensor field U along π by
1 and are defined by

DV U(X, . . .) = DV

XU(. . .), DHU(X, . . .) = DH

XU(. . .). (38)

5 Commutators

The computation of commutators of interesting derivations is a rather boring story. We will limit ourselves
to relations which are essential for introducing geometrical concepts such as torsion and curvature, and
to identities which are frequently needed in applications.

Before starting, we collect a few simple properties of derivations which are often used in the subse-
quent analysis. For example, it is easy to verify that for arbitrary L ∈ V (π):

dt ∧ iL = idt∧L, dt ∧ dV

L = dV

dt∧L, dt ∧ dH

L = dH

dt∧L. (39)

Also frequently used are the properties

dV

L1
iL2

α = idV
L1

L2
α , for α ∈

∧1
(IR × M), (40)

and
iL1

iL2
σ = iiL1

L2
σ , for σ ∈

∧1
(π) or σ ∈ V 1(π). (41)
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Thinking of a decomposition such as (2), one readily deduces from (15) that dV

L0⊗T
is a derivation of type

i∗. It then follows from (40) that in fact, with L0 ∈
∧ℓ

(π), we have

dV

L0⊗T
= (−1)ℓidV (L0⊗T). (42)

One of the main tools in obtaining commutator relations is of course the graded Jacobi identity of
derivations. The commutator of dH and dV trivially vanishes on basic functions and on dt. From the
Jacobi identity involving another dV , it follows from (8) that [dH , dV ] has the property (14). According

to Proposition 2.3, it is therefore a derivation of type dV

∗ , which means that there exists a T ∈ V
2
(π),

such that
[dH , dV ] = dV

T on
∧

(π). (43)

The tensor field T is called the torsion of the non-linear connection and is found to have the following
coordinate expression

T =
1

2
(Γi

kj − Γi
jk)θk ∧ θj ⊗

∂

∂qi
+ (vjΓi

jk − Γi
k + Γi

0k)dt ∧ θk ⊗
∂

∂qi
, (44)

which is in good correspondence with the expression of the torsion in [17]. Comparing with the situation
in the time-independent framework, we observe that not only do contact forms replace the coordinate
1-forms dqk and do coefficient functions depend on the extra variable t, but there is also an additional
term. Despite this fact, when one computes the derivation of type a∗ which may come in when (43) is
extended to vector-valued forms, one obtains formally the same result as in [10], namely:

[dH , dV ] = dV

T − aDV T on V (π). (45)

The commutator of dH with a general dV

∗ -derivation has a decomposition which will be useful below for

arriving at further interesting relations. For L ∈ V
ℓ
(π), one can verify, in coordinates for example, that

[dH , dV

L
] = (−1)ℓi

dV dHL
+ dV

dHL
− dH

dV L
on
∧

(π). (46)

Note in passing that dV (V (π)) ⊂ V (π) and also dH(V (π)) ⊂ V (π), which indicates that (46) truly
represents a decomposition as guaranteed by Theorem 3.2. From (46) with L = I and comparison with
(43), one can learn that

dV I = dt ∧ I, or equivalently dV I = 0, (47)

and more interestingly that
T = dHI = dHdV T. (48)

Turning next to the commutator of dH with itself, which clearly vanishes on basic functions, we know
that

1

2
[dH , dH ] = iP + dV

R on
∧

(π),

for some P ∈ V 3(π), R ∈ V
2
(π). In fact, it is clear that also iP dt = 0, i.e. P ∈ V

3
(π). To specify P

further, the trick is to compute from the above relation dV

P , using the Jacobi identity and property (14)
of dV

R. It follows that
dV

P = [dH , dV

T ] + dt ∧ dV

R,

which with the aid of (46) shows that

dV T = 0 , dV dHT = 0 (49)

and P = dHT + dt ∧ R. A similar calculation produces (always on
∧

(π))

dH

P = [dH , dV

R] = idV dHR + dV

dHR − dH

dV R,

i.e. P = −dV R and
dHR = 0. (50)
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From a combination of the two expressions for P , we also conclude that

dHT + dV R + dt ∧ R = 0. (51)

The tensor field R ∈ V
2
(π) represents the curvature of the non-linear connection and the properties (50)

and (51) can be seen as Bianchi identities. Finally, extending the action to V (π) again, we will have

1

2
[dH , dH ] = −idV R + dV

R + aRie, (52)

with Rie ∈
∧2

(π) ⊗ V 1(π).

In coordinates, we have

R =
1

2
Ri

kj θk ∧ θj ⊗
∂

∂qi
+ Ri

0j dt ∧ θj ⊗
∂

∂qi
, (53)

with
Ri

kj = Hj(Γ
i
k) − Hk(Γi

j), Ri
0j = Hj(Γ

i
0) − H0(Γ

i
j) + vk(Hj(Γ

i
k) − Hk(Γi

j)), (54)

and one can verify that
Rie = −DV R − R ⊗ dt, (55)

in other words, ∀X, Y, Z ∈ X (π):

Rie(X, Y )Z = −(DV

ZR)(X,Y ) − R(X, Y )〈Z, dt〉.

For the commutator of two i∗-derivations we have (as a result of (41)) the usual formula:

[iL, iM ] = iiLM − (−1)(ℓ−1)(m−1)iiM L. (56)

An unusual feature is that the commutator of two dV

∗ -derivations is not of type dV

∗ . In fact, if D1 and D2

are two such derivations, of degree r1 and r2 respectively, it follows from the Jacobi identity that

[[D1, D2], d
V ] = −2(−1)r1+r2dt ∧ [D1, D2], (57)

which violates the property (14) of a dV

∗ -derivation. In any event, since the commutator certainly vanishes
on basic functions and on basic vector fields, we have a decomposition as in Proposition 2.4. The resulting

relation reads as follows: for L ∈ V
ℓ
(π), M ∈ V

m
(π),

[dV

L
, dV

M
] = −(−1)ℓ+mi

dt∧[L,M ]
V

+ dV

[L,M ]
V

. (58)

The dV

∗ -part in (58) must be seen as defining the bracket [L,M ]
V
. The i∗-part subsequently follows

from using the same procedure as the one which identified the tensor field P above. To find the explicit
meaning of the vertical bracket thus defined, it suffices to apply (58) to fibre linear functions α̂ = iTα

with α ∈
∧1

(IR × M) and to make use of the property (40). One obtains:

[L,M ]
V

= dV

L
M − (−1)ℓmdV

M
L. (59)

It would seem natural to have a similar relation applying also to arbitrary vector-valued forms. There
will be ground for imposing this as an extension of the vertical bracket after what follows.

Consider the commutator of an i∗ and a dV

∗ -derivation, which again decomposes as described by
Proposition 2.4. The dV

∗ -part is easy to identify from the action on functions α̂. We thus have, for
L ∈ V ℓ(π), M ∈ V

m
(π):

[iL, dV

M
] = iA + dV

iLM
,

for some A. The identification of A, which does not belong to V (π), is a rather tedious matter and will
therefore not be described. One obtains that A = (−1)m[L,M ]

V
, provided we define this bracket by the

right-hand side of (59), with L replacing L. If we next enlarge the setting by considering an M ∈ V (π),
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M = M + M0 ⊗T say, it is easy to compute the commutator [iL, dV

M0⊗T
] with the aid of (42) and (56).

Recollecting terms, one again can express the result in the form

[iL, dV

M ] = (−1)mi[L,M ]
V

+ dV

iLM , (60)

provided the definition of the vertical bracket is further extended in the way indicated by (59). The
nice feature about this end result is that it is formally identical to the situation in the calculus along
τ : TM → M (see [10]). Beware, however, that the right-hand side of (60) is not a decomposition in the
strict sense of Theorems 3.2 or 4.1, because part of the second term will be of type i∗, when iLM does
not belong to V (π).

The computation of the commutator [dV

L, dV

M ] for general L,M ∈ V (π) is not a very thrilling story.
We limit ourselves to the remark that the vector-valued form which determines its dV

∗ -part is given by
dV

LM − (−1)ℓmdV

ML.

Concerning the commutator of iL and dH

M , one easily identifies, using (41), that the term of type dH

∗

is dH

iLM and subsequently can verify that the remaining part is of type i∗. By analogy with (60), it makes
sense to use this i∗-part for defining the horizontal bracket [L,M ]

H
, i.e. we set

[iL, dH

M ] = (−1)mi[L,M ]
H

+ dH

iLM . (61)

An explicit formula like (59) is not available for the horizontal bracket. The best approximation of such
a formula is the following coordinate expression. Writing L and M in their canonical decomposition (2)
with for example L = Li ⊗ (∂/∂qi), we have

[L,M ]
H

=
{

dH

LM i − (−1)ℓmdH

MLi − Γi
k(Lk ∧ M0 − (−1)ℓmMk ∧ L0)

}

⊗
∂

∂qi

+ (dH

LM0 − (−1)ℓmdH

ML0) ⊗ T. (62)

Since we have already introduced vertical and horizontal brackets, at least for vector fields, when dis-
cussing self-dual derivations of Lie-derivative type in the previous section, we have a question of consis-
tency to verify. To that end, observe first that when M in (60) or (61) is taken to be a vector field X,
the right-hand side reduces to the i∗-part. On the other hand, if dV

X and dH

X are viewed as derivations of
scalar forms and then extended to corresponding Lie derivatives by duality, we have the property (33).
It follows that

LV

XL = [X, L]
V

, LH

XL = [X, L]
H
, (63)

and the subcase where L is also a vector field is indeed consistent with earlier considerations.

There is an interesting way now of reinterpreting the result T = dHI (cf. (48)). We have, using (61),

T (X,Y ) = iY iXdHI = iY dH

XI − dH

Y X

= dH

XY − [X, Y ]
H
− dH

Y X

= DH

XY − DH

Y X − [X,Y ]
H
. (64)

This confirms, as was announced in the previous section, that T relates to the ‘horizontal torsion’.

That there is no ‘vertical torsion’ follows in the same way from dV I = 0, or from the explicit formula
(59) which for vector fields can be written in the form

[X, Y ]
V

= DV

XY − DV

Y X. (65)

To finish this section we want to arrive at the commutator relations of the important vertical and hor-
izontal covariant derivatives. There are several ways of computing these; we choose to give first some
information on commutators of dV

X and dH

Y -type derivations.

From the Jacobi identity for iX , dV and dV one easily obtains that

[dV

X , dV ] = 〈X, dt〉dV − dt ∧ dV

X .
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The Jacobi identity for dV

X , iY and dV subsequently gives, with the aid of (60):

[dV

X , dV

Y ] = dV

[X,Y ]
V

+ 〈X, dt〉 dV

Y − 〈Y, dt〉 dV

X − dt ∧ i[X,Y ]
V
. (66)

There are, however, several terms of type i∗ hidden in the right-hand side of (66). In fact, following a
remark made before, the dV

∗ -part is determined by dV

XY − dV

Y X, which is the same as [X, Y ]
V

in view
of (37). Recalling the definition of DV

X , which is an extension by duality of the action of dV

X on vector
fields, there are two observations which are important now. First of all, the extension by duality of a
commutator is the commutator of the extensions. Secondly, for extensions in this direction, terms of type
i∗ clearly do not matter, since they vanish on vector fields. As a result, we conclude that

[DV

X , DV

Y ] = DV

[X,Y ]
V

. (67)

For the computation of [dH

X , dH

Y ] and [dV

X , dH

Y ], we can fully rely on the corresponding calculations in [10].
Indeed, the results in [10] were essentially obtained from the Jacobi identity and relations like (59), (60)
and (61), which are formally identical to the corresponding ones in [10]. The only difference which may
and will occur is that the tensor field which determines the a∗-part in each result is expected to pick up
extra terms in coordinates. Leaving this apart, the formulas for [dH

X , dH

Y ] and [dV

X , dH

Y ] are the same as
(15) and (18) in [10]. In the process of extension by duality from vector fields to forms, derivations of type
a∗ create a corresponding derivation of type i∗. As in [10], we denote the resulting self-dual derivation
by µA, where

µA = aA − iA , A ∈ V 1(π). (68)

This way we arrive at the following important commutator relations:

[DH

X , DH

Y ] = DH

[X,Y ]
H

+ DV

R(X,Y ) + µRie(X,Y ), (69)

[DV

X , DH

Y ] = DH

DV
X

Y
− DV

DH
Y

X
+ µθ(X,Y ). (70)

The last one can be interpreted as defining the tensor field θ, which is a type (0, 2) tensor field along π,
taking values in V 1(π). The coordinate expression of θ is found to be:

θ =
{

Γk
jiℓ θi ⊗ θj + (Γk

0iℓ + vjΓk
jiℓ)θ

i ⊗ dt
}

⊗

(

θℓ ⊗
∂

∂qk

)

. (71)

Although, in comparison with the autonomous case, there is indeed an extra term in the expression for
θ, it has no effect on the following interesting property which follows from exactly the same calculation
as in [10]:

θ(X, Y ) − θ(Y,X) = −DV T (X, Y ). (72)

This shows that θ is symmetric for a torsionless connection, i.e. a connection generated by a sode (see
later).

6 Lifts and prolongations

The introduction of a connection has provided us with a horizontal lift operator from X (π) to X (IR×TM),
which together with the natural vertical lift gives rise to a decomposition of vector fields on IR × TM in
two parts. Specifically, every Z ∈ X (IR × TM) can be written in the form

Z = XH + Y
V

, X ∈ X (π), Y ∈ X (π). (73)

Indeed, if Z is given, X is pointwise defined by X = π∗Z and the vertical vector field Z − XH then
uniquely corresponds to a vector field Y ∈ X (π).

Vector fields on IR × TM of course have 2n + 1 components and, in the present context, are most
appropriately expressed with respect to the local basis {TH , Hi, Vi = ∂/∂vi}. This may suggest that a
decomposition of Z should contain three parts. It turns out, however, that the two-fold decomposition

13



is most convenient and economical for discussing a number of general features. A corresponding three-
fold decomposition can easily be obtained afterwards, if desired. For example, it suffices to consider the
natural decomposition of X in the form (2), to obtain for Z itself a formula like

Z = X
H

+ Y
V

+ 〈X, dt〉TH . (74)

This is of course related to the decomposition (22) of the horizontal projector.

Important for later calculations are the Lie brackets of horizontal and vertical lifts. Knowing that
on functions F , we have XV (F ) = DV

XF and XH(F ) = DH

XF , it immediately follows from (67) (69) and
(70) that:

[XV , Y V ] = ([X, Y ]
V
)

V

, (75)

[XH , Y V ] = (DH

XY )
V
− (DV

Y X)
H
, (76)

[XH , Y H ] = ([X, Y ]
H
)

H
+ (R(X,Y ))

V
. (77)

A dual basis for expressing 1-forms on IR × TM is given by {dt, θi, ηi}, where

ηi = dvi + Γi
k dqk + Γi

0 dt.

There are corresponding lift operators for 1-forms along π. For α ∈
∧1

(π), we define αH , αV ∈
∧1

(IR ×
TM) as follows, taking into account that vector fields on IR × TM decompose as in (73):

αH(XH) = α(X) , αH(X
V

) = 0, (78)

αV (XH) = 0 , αV (X
V

) = α(X). (79)

It is clear that αH corresponds to a kind of pull back operation and that, referring to the decomposition
(11) of

∧

(π), we have αV = α̃V . Every ρ ∈
∧1

(IR × TM) can uniquely be written in the form

ρ = αH + β̃V , (80)

where β̃ is the semi-basic form S(ρ), regarded as form along π, and α likewise is the semi-basic form
ρ − β̃V . As in [9], we have the property

dF = (dHF )
H

+ (dV F )
V
. (81)

The construction of various lifts of type (1,1) tensor fields along π follows the same pattern. For any
U ∈ V 1(π), we define UH and UV by:

UH(XH) = U(X)
H

, UH(X
V

) = U(X)
V

, (82)

UV (XH) = U(X)
V

, UV (X
V

) = 0. (83)

If U , in coordinates, is given by

U = ui
j θj ⊗

∂

∂qi
+ ui dt ⊗

∂

∂qi
+ uk θk ⊗ T + u0 dt ⊗ T,

we have

UH = ui
j(θ

j ⊗ Hi + ηj ⊗ Vi) + ui dt ⊗ Hi + uk θk ⊗ TH + u0 dt ⊗ TH ,

UV = ui
j θj ⊗ Vi + ui dt ⊗ Vi.

Having in mind the way the (2n + 1) × (2n + 1) coefficient matrix of a (1, 1) tensor on IR × TM can be
separated into four blocks, it is further useful to consider the following lifts:

UH;H(XH) = U(X)
H

, UH;H(X
V

) = 0,

UH;V (XH) = U(X)
V

, UH;V (X
V

) = 0,

UV ;H(XH) = 0 , UV ;H(X
V

) = U(X)
H

,

UV ;V (XH) = 0 , UV ;V (X
V

) = U(X)
V

.
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We have UV = UH;V and UH = UH;H + UV ;V . Note that the blocks involving a horizontal lift can be
further separated into subblocks, in accordance with the earlier discussion of a three-fold splitting of
vector fields on IR × TM (see (74)).

All interesting tensor fields on IR × TM come from simple tensor fields along π. For example, we
have

S = IV , IIR×TM = IH , PH = IH;H , PV = IV ;V .

Also, putting
J = IH;V − IV ;H = θi ⊗ Vi − ηi ⊗ Hi, (84)

we obtain a tensor field which is close to an almost complex structure, because

J2 = −IIR×TM + dt ⊗ TH . (85)

Important constructions for the study of Lagrangian systems are the Sasaki and Kähler lift of a symmetric
type (0,2) tensor field g along π. It suffices to restrict the introduction of these concepts to symmetric g
which have a coordinate expression of the form

g = gijθ
i ⊗ θj .

In view of the symmetry, such tensor fields can be characterized by the requirement T g = g(T, ·) = 0.

Definition 6.1 The Sasaki lift gS of g is the symmetric type (0,2) tensor field on IR× TM , determined
by

gS(XH , Y H) = gS(XV , Y V ) = g(X,Y ),

gS(XV , Y H) = 0, ∀X, Y ∈ X (π).

Definition 6.2 The Kähler lift gK of g is the 2-form on IR × TM , determined by

gK(XH , Y H) = gK(XV , Y V ) = 0

gK(XV , Y H) = g(X,Y ) = −gK(XH , Y V ).

In view of the form of g, it is clear that the arguments in both definitions can in fact be restricted
to lifts of elements of X (π). We have the properties

gS(JZ1, JZ2) = gS(Z1, Z2),

gK(Z1, Z2) = gS(Z1, JZ2), ∀Z1, Z2 ∈ X (IR × TM),

gK(JZ1, JZ2) = gK(Z1, Z2).

In coordinates,
gS = gij(θ

i ⊗ θj + ηi ⊗ ηj) , gK = gijη
j ∧ θi.

We finally pay some attention to prolongations. The concept of prolongation of a vector field or “gen-
eralized vector field” is rather well known (see for example [16] or [12]). If X is an element of X (π), its
prolongation X1 is a vector field along the projection π2,1 : J2(IR,M) → J1(IR, M). We give a definition
of X1 here, which is perhaps not the most purely geometrical one, but turns out to be handy for obtaining
certain properties and introducing prolongations of other objects.

Recall first the standard definition of prolongation of a basic function f ∈ C∞(IR × M). For an
arbitrary section σ of IR×M → IR, whose first jet j1

t σ is a representation of a generic point in IR× TM ,
one defines

f1(j1
t σ) =

d

ds
(f ◦ σ)

∣

∣

∣

∣

s=t

.

Similarly, for F ∈ C∞(IR × TM), F 1 ∈ C∞(IR × T 2M) is defined by

F 1(j2
t σ) =

d

ds
(F ◦ j1

t σ)

∣

∣

∣

∣

s=t

.
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In coordinates (t, q, v) on IR × TM and (t, q, v, a) on IR × T 2M , we have

f1 =
∂f

∂t
+ vi ∂f

∂qi
, F 1 =

∂F

∂t
+ vi ∂F

∂qi
+ ai ∂F

∂vi
.

We have the property: ∀F, G ∈ C∞(IR × TM),

(FG)1 = (π∗
2,1F )G1 + F 1(π∗

2,1G). (86)

For X ∈ X (π), in a way similar to the construction in [9], X1 ∈ X (π2,1) can be determined by the
requirement: ∀f ∈ C∞(IR × M),

X1(f1) = X(f)1 − 〈X, dt〉1(π∗
2,1f

1). (87)

Writing X for example in the form X = X0T + X
i
(∂/∂qi), we have

X1 = X0T1 + X
i ∂

∂qi
+ Ẋ

i ∂

∂vi
,

where Ẋ
i

= T1(X
i
).

The action of the tensor field S (see (4)) extends to X (π2,1) by the pointwise construction: S(Y )(a) =
Sπ2,1(a)(Y (a)). One can then prove the following interesting property (using (87)):

(FX)1 = (π∗
2,1F )X1 + F 1S(X1). (88)

The prolongation of differential forms amounts essentially to a kind of “total time derivative” operation.
We limit ourselves to 1-forms α ∈

∧1
(π), for which the prolongation α1 can be introduced, thanks to the

definition (87), by duality as follows: ∀X ∈ X (π),

α1(X1) = α(X)1 − 〈X, dt〉1(π∗
2,1α̂). (89)

If α is written in the form (cf. (11)) α = α̂ dt + αiθ
i, we have

α1 = ˙̂α dt + α̇iθ
i + αiθ̇

i , θ̇i = dvi − ai dt.

Similar definitions can be given for general scalar or vector-valued forms along π. In the latter situation,
one needs in addition the notion of vertical lift: for L ∈ V ℓ(π), LV ∈ V ℓ(IR × TM) is defined by,

LV (Z1, · · · , Zℓ) = L(π∗Z1, · · · , π∗Zℓ)
V
.

To fix the idea, the prolongation of a type (1,1) tensor field U now can be defined as follows:

U1(X1) = U(X)1 − 〈X, dt〉1U(T)
V
◦ π2,1, (90)

and for a U of the form α ⊗ X, we have the property

(α ⊗ X)1 = π∗
2,1α ⊗ X1 + α1 ⊗ S(X1). (91)

Our interest in prolongations in this context comes from the fact that they give rise to another lift
operation from objects along π to objects on IR×TM , whenever we have a second-order system Γ at our
disposal. Indeed, regarding a sode as a section γ of the bundle π2,1, we can define maps IΓ :

∧

(π) →
∧

(IR × TM) and JΓ : V (π) → V (IR × TM) by:

IΓ : ω 7→ ω1 ◦ γ , JΓ : L 7→ L1 ◦ γ,

except for the functions F ∈ C∞(IR × TM), for which IΓ is taken to be the identity map. From the
defining relations (87),(89),(90) and property (88), we immediately obtain the following properties:

JΓ(FX) = FJΓX + Γ(F )XV , (92)

〈JΓX, IΓα〉 = LΓ〈X,α〉 − α̂LΓ〈X, dt〉, (93)

JΓU(JΓX) = JΓ(U(X)) − LΓ〈X, dt〉U(T)
V
. (94)
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It can be proved as in [9], or from a coordinate calculation, that the image sets XΓ = JΓ(X (π)) and

X ∗
Γ = JΓ(

∧1
(π)) are exactly the sets introduced in [15] for describing symmetries and adjoint symmetries

of a sode. In other words, they are characterised by,

XΓ = {Z ∈ X (IR × TM) | S([Γ, Z]) = 0} ,

X ∗
Γ =

{

α ∈
∧1

(IR × TM) | LΓ(S(α)) = α − 〈Γ, α〉 dt
}

.

Having at last brought a sode Γ into the picture, we are now ready to discuss the important extra
features of the case where the connection is coming from a sode.

7 The case of a connection associated to second-order dynamics

Let us present in some detail how the connection associated to a sode Γ can be conceived. In the
spirit of the general concept of connection, referred to at the beginning of Section 3, we are looking
for a map ξ : π∗(T (IR × M)) → T (IR × TM), linear in its vector argument, such that j ◦ ξ is the
identity map. Taking an arbitrary z ∈ π∗(T (IR × M)), formally represented in the form (t, q, v, w(t,q))
with w(t,q) ∈ T(t,q)(IR × M), we can choose any basic vector field X ∈ X (IR × M) with the property
X(t, q) = w(t,q), and define ξ(z) to be the value at (t, q, v) of the following vector field:

XH =
1

2

(

X1 + [XV ,Γ] + 〈X, dt〉Γ
)

. (95)

It is straightforward to verify, for example by a coordinate calculation, that this construction matches all
requirements. The horizontal lift is subsequently extended to vector fields along π by imposing linearity
over C∞(IR × TM). We can in fact arrive at an explicit formula for this extended definition as follows.
If X is a basic vector field and F a function on IR× TM , FX1 is a vector field on IR× TM while (FX)1

is a vector field along π2,1. It follows from the property (88) that we can write

FX1 = (FX)1 ◦ γ − (F 1 ◦ γ)XV ,

where γ is any section of π2,1. Choosing, in particular, γ to be the section associated to Γ, we can use
this in the right-hand side of (95) to write down a formula for (FX)

H
, which then automatically applies

to all Y ∈ X (π) and reads as follows

Y H =
1

2
(JΓY + [Y V , Γ] + 〈Y, dt〉Γ) . (96)

It is clear from the definition of JΓ that JΓT = Γ. Since TV = 0, we obtain the interesting conclusion
that Γ is horizontal:

TH = Γ. (97)

Recall that the tensor field LΓS on IR × TM has the following properties (see e.g. [3]): LΓS(Y V ) = Y V ,
LΓS(Hi) = −Hi, LΓS(Γ) = 0. Using the by now familiar representation of a general Y ∈ X (π) in the

form Y = Y 0 T + Y
i
(∂/∂qi), it is then trivial to verify that the projections PH and PV are given by

PH =
1

2
(IIR×TM − LΓS + dt ⊗ Γ), (98)

PV =
1

2
(IIR×TM + LΓS − dt ⊗ Γ). (99)

Denoting the right-hand sides of the given second-order equations by f i(t, q, v), the connection coefficients
are found to be

Γj
i = −

1

2

∂f i

∂vj
, Γi

0 = −f i − vkΓi
k. (100)

17



Before proceeding, it is worth repeating the difference between “weak” and “strong” horizontal lifts
referred to before, because the distinction between the two, in the present context, is merely a matter of
a different sign in one of the terms. Indeed, the projection PH in (22) is now defined by

PH =
1

2
(IIR×TM − LΓS − dt ⊗ Γ)

and correspondingly, the strong horizontal lift of a vector field along π could be defined as:

XH =
1

2
(JΓX + [XV , Γ] − 〈X, dt〉Γ) = X

H

.

Again, whenever there is need to, it is a simple matter to pass to a three-fold decomposition of vector
fields as in (74), but most of the subsequent results in this section bear great ressemblance to the time-
independent framework when we stick to the two-fold decomposition, with the horizontal lift (96).

Proposition 7.1 The connection associated to Γ is torsion-free. Conversely, every connection with zero
torsion comes from a sode.

Proof: With connection coefficients of the form (100), it is a matter of direct verification that the
components of the torsion T (see (44)) are identically zero. Conversely, assuming T = 0, we have
Γi

kj − Γi
jk = 0, which implies that Γi

k = − 1
2 (∂gi/∂vk) for some functions gi. The second term in (44)

subsequently tells us that vjΓi
j + gi + Γi

0 = −hi(t, q) for some basic functions hi. Setting f i = gi + hi,

we get expressions of the form (100) for the connection coefficients, i.e. the f i can be interpreted as
right-hand sides of a system of second-order equations. ✷

With the aid of Γ, we have at least two operations at our disposal for constructing tensor fields
on IR × TM : the first one is the lift JΓ (or IΓ), the second one is the process of Lie derivation with
respect to Γ of previously obtained objects. As in [10], we will discover new important concepts for the
calculus along π by looking at the decomposition into horizontal and vertical parts of the results of these
operations.

From the construction of JΓX, it is obvious that π∗(JΓX) = X, which means that XH is the
horizontal part of JΓX. Its vertical part relates to an element of X (π) or can uniquely be associated to
an element of X (π), if we add a prescription for fixing the component along T. The resulting new element
of X (π) originates in any event from some operation on the original X; we denote it by ∇X.

Definition 7.2 For X ∈ X (π), ∇X ∈ X (π) is uniquely defined by

JΓX = XH + (∇X)
V

, i∇Xdt = Γ(iXdt). (101)

Note the similarity here with the way we fixed dHX by (26),(27).

For the particular case of T, it follows from (97) and Γ(iTdt) = 0 that

∇T = 0. (102)

Consider similarly the decomposition of a 1-form IΓα according to (80). Looking at the coordinate
expression of α1, it is clear that the vertical part of IΓα can be written as αV . The horizontal part then
uniquely determines another 1-form along π.

Definition 7.3 For α ∈
∧1

(π), ∇α ∈
∧1

(π) is defined by

IΓα = (∇α)
H

+ αV . (103)

Proposition 7.4 Defining the action of ∇ on functions to be ∇F = Γ(F ), ∇ is a self-dual derivation of
degree 0 of V (π), which we call the dynamical covariant derivative associated to Γ.
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Proof: From the defining relations (101), it is easy to show with the aid of (92) that ∇(FX) =
F (∇X)+Γ(F )X. Hence, putting ∇F = Γ(F ), the operator ∇ becomes a degree zero derivation of X (π).
Next, using the property (93) on the one hand and the decompositions of JΓX, IΓα in conjunction with
the definitions (78),(79) on the other hand, we obtain the following two expressions,

〈JΓX, IΓα〉 = LΓ〈X, α〉 − α̂LΓ〈X, dt〉

= 〈X,∇α〉 + 〈∇X − 〈∇X, dt〉T, α〉,

which show that
〈X,∇α〉 + 〈∇X, α〉 = ∇(〈X,α〉).

In agreement with (31), we conclude that ∇ is self-dual. ✷

For practical calculations, we have to know, apart from (102) that

∇θi = −Γi
jθ

j , ∇ dt = 0 , ∇
∂

∂qi
= Γk

i

∂

∂qk
. (104)

It is further important to remember that the action of ∇, as is true for every self-dual derivation, extends
to tensor fields along π of any type. For example, if U ∈ V 1(π) is of the form U = ui

j θj ⊗ (∂/∂qi), we
have

∇U = (Γ(ui
j) + Γi

kuk
j − ui

kΓk
j ) θj ⊗

∂

∂qi
.

It is of interest to have a look also at the decomposition of JΓU for a general U ∈ V 1(π). Since a
local basis of vector fields on IR × TM can be constructed (away from the zero section over IR × M)
out of elements of the set XΓ, it is sufficient to evaluate JΓU on JΓX. Using first (94) and (101) and
subsequently (82) and (83), we obtain

JΓU(JΓX) = U(X)
H

+ (∇U(X) + U(∇X))
V
− LΓ〈X, dt〉U(T)

V

= UH(XH) + (∇U)
V
(XH) + U(∇X)

V

= UH(XH + (∇X)
V
) + (∇U)

V
(XH)

= (UH + (∇U)
V
)(JΓX),

so that
JΓU = UH + (∇U)

V
. (105)

We now turn to the decomposition of LΓ-derivatives.

Proposition 7.5 For all X ∈ X (π), we have:

1. LΓXV = −X
H

+ (∇X)
V

(106)

2. There exists a tensor field Φ ∈ V 1(π), which is determined by

LΓXH = (∇X)
H

+ Φ(X)
V

, iΦ dt = 0. (107)

Proof: We know that JΓX, as an element of XΓ, is characterized by the condition S(LΓ(JΓX)) = 0,
or equivalently LΓ(S(JΓX)) = LΓS(JΓX). Applying LΓS to this relation and using the well-known
property

(LΓS)2 = IIR×TM − dt ⊗ Γ (108)

together with the decomposition of JΓX, we obtain

LΓS(LΓXV ) = XH + (∇X)
V
− 〈X, dt〉Γ = X

H

+ (∇X)
V
.

Applying LΓS again, knowing that LΓS(Hi) = −Hi, LΓS(Y V ) = Y V for any Y and 〈LΓXV , dt〉 = 0,

the first property follows. Observe next that LΓXV = LΓ(S(XH)) = LΓS(XH) + S(LΓXH) = −X
H

+
S(LΓXH). Comparing with (106), it follows that S(LΓXH) = S(∇XH). Moreover, 〈LΓXH , dt〉 =
Γ〈X, dt〉 = 〈∇XH , dt〉 from the second part of (101). We thus see that (∇X)

H
is the horizontal part of

19



LΓXH . Its vertical part defines an element of X (π), which must come from some operation Φ on X.
Computing LΓ(FXH), it is easily seen that Φ is a C∞(IR × TM)-linear map and we can ensure that
it takes values in X (π) by imposing the additional prescription 〈Φ(X), dt〉 = 0 for all X. The second
statement now follows. ✷

Definition 7.6 The tensor field Φ ∈ V 1(π), defined by (107), is called the Jacobi endomorphism associ-
ated to Γ.

Remarks: Exactly as in [10], one can verify by duality that for any α ∈
∧1

(π):

LΓαH = αV + (∇α)
H

, LΓαV = (∇α)
V
− (Φ(α))

H
. (109)

In the same way, using the results of Proposition 7.5, we can obtain decompositions of the LΓ-derivative
of the various lifts of a type (1,1) tensor field U along π. We limit ourselves to listing the following two
results:

LΓUH = (∇U)
H

+ [Φ, U ]
V
− (U(dt) ⊗ T)

H;H
, (110)

LΓUV = (∇U)
H;V

− UH;H + UV ;V + (U(dt) ⊗ T)
H;H

. (111)

Applying (107) to the case X = T and using (97) and (102), one sees that Φ(T) = 0. To obtain a
coordinate expression for the important tensor Φ, it then suffices to compute LΓ(∂/∂qi)

H

. The result
reads,

Φ = −

(

∂f i

∂qj
+ Γ(Γi

j) + Γi
kΓk

j

)

θj ⊗
∂

∂qi
. (112)

Compared to the autonomous case (see Proposition 7.5 in [10]), the dynamical covariant derivative has
a very simple decomposition now and the Jacobi endomorphism is directly a curvature component. As a
matter of fact, we have

∇ = DH

T
, (113)

Φ = iTR. (114)

Both properties are simultaneously obtained from (107) if we recall that Γ = TH and use (77) for
computing [TH , XH ]. We find

(∇X)
H

+ Φ(X)
V

= ([T, X]
H
)

H
+ (R(T, X))

V
.

The conclusion (114) follows from the fact that both Φ and iTR take values in X (π). The first property
is a consequence of the relation (64), taking into account that the torsion is zero and that DH

XT = 0 (see
(36)). Note in passing that as a result of the vanishing torsion and the property dHT = 0, (32) shows
that

∇ = DH

T
= LH

T
= dH

T
. (115)

Proposition 7.7 The exterior derivatives of the Jacobi endomorphism are related to the curvature of
the connection in the following way

dV Φ + 2dt ∧ Φ = 3R , dHΦ = ∇R. (116)

Proof: As an auxiliary property, note first that from (32) applied to the vertical exterior derivative,
and knowing that DV

T
= 0, we find

dV

T
= idV T = i

I
= iI − dt ∧ iT. (117)

Since the torsion is zero, the Bianchi identities (50) and (51) simplify to dHR = 0 and dV R + dt∧R = 0.
We thus get, making use also of (114) and (115):

dV Φ = dV iTR = dV

T
R − iTdV R

= iIR − dt ∧ Φ + iT(dt ∧ R)

= 2R − dt ∧ Φ + R − dt ∧ Φ,

dHΦ = dHiTR = dH

T
R = ∇R,
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from which the statements (116) follow. ✷

A decomposition such as (11) for scalar forms of course also applies to vector-valued forms. In the
case of the curvature tensor we know by (114) that R̂ = Φ, i.e. we can write R in the form

R = R̃ + dt ∧ Φ. (118)

It is of interest for applications to see what the properties (116) imply for the essential part R̃ of the
curvature. From (9) we have dV Φ = dV

I
Φ + dt ∧ iIΦ = dV

I
Φ + dt ∧ Φ. Similarly, from (23) and (115) we

find: dHΦ = dH

I
Φ + dt ∧∇Φ = dH

I
Φ + ∇(dt ∧ Φ).

Comparison with (116) reveals that

dV

I
Φ = 3R̃ , dH

I
Φ = ∇R̃, (119)

which are direct analogues of the results for the autonomous theory.

We close this section with some interesting commutators involving the dynamical covariant derivative.
From the Jacobi identity applied to iT, dH and dV , knowing that dH and dV commute because we have
zero torsion, it follows that

[dH

T
, dV ] = [dV

T
, dH ] = [i

I
, dH ] = dH

I
.

Moreover, with the decomposition (9) of dV in mind, it is clear that [dt ∧ iI ,∇] = dt ∧ [iI ,∇] = 0. We
thus conclude that

[∇, dV ] = [∇, dV

I
] = dH

I
. (120)

The commutator of ∇ and dH is more involved and so we omit it. Of more importance for applications
are the commutators of general vertical and horizontal covariant derivatives with the dynamical covariant
derivative. They are easy to calculate from the general commutators (69) and (70) because ∇ is itself a
horizontal covariant derivative. To simplify the resulting expressions, it will be useful to express exterior
derivatives of a general U ∈ V 1(π) in terms of covariant derivatives. We have,

dV U(X, Y ) = iXdV U(Y ) = ((dV

X − dV iX)U)(Y )

= DV

XU(Y ) + (idV XU)(Y ) − DV

Y (U(X)),

from which it follows that
dV U(X, Y ) = (DV

XU)(Y ) − (DV

Y U)(X). (121)

In deriving this result we have made use of (32) and the fact that there is no “vertical torsion”. In the
present case of a connection associated to a sode, there is also no “horizontal torsion”, so that in a
similar way:

dHU(X, Y ) = (DH

XU)(Y ) − (DH

Y U)(X). (122)

Consider now the commutator (70) for the case that Y = T. As a preliminary remark, it is clear from
(70) that θ(T,T) = 0, which means that the tensor θ can never have terms involving dt⊗ dt. In the case
of zero torsion, we know from (72) that θ is symmetric, which then implies that it cannot have terms
involving a single dt either and thus that also θ(X,T) = 0. In fact it is easy to verify that the second
term in the coordinate expression (71) vanishes identically when the connection coefficients are of the
form (100). Making further use of the property DV

XT = X (see (35)), we conclude that

[DV

X ,∇] = DH

X
− DV

∇X = DH

X − DV

∇X − 〈X, dt〉∇. (123)

Consider next the commutator (69) for Y = T. For the first term, note that [X,T]
H

= DH

XT − DH

T
X =

−∇X. In the second term, we recognize that R(X,T) = −Φ(X) because of (114). Concerning the third
term, we make the following computation, in which we take advantage of the relations (55), (114), (121),
(116) and (118): for arbitrary Z ∈ X (π),

Rie(X,T)Z = −(DV

ZR)(X,T) + 〈Z, dt〉Φ(X)

= −DV

Z(R(X,T)) + R(DV

ZX,T) + R(X, Z) + 〈Z, dt〉Φ(X)

= DV

Z(Φ(X)) − Φ(DV

ZX) + R(X,Z) + 2〈Z, dt〉Φ(X)

= (DV

XΦ)(Z) − dV Φ(X,Z) + R(X,Z) + 2〈Z, dt〉Φ(X)

= (DV

XΦ)(Z) − 2R(X, Z) + 2(dt ∧ Φ)(X, Z) + 2〈Z, dt〉Φ(X)

= (DV

XΦ)(Z) − 2R̃(X, Z) + 2〈Z, dt〉Φ(X).
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Collecting results, we conclude that

[DH

X ,∇] = −DH

∇X − DV

Φ(X) + µ(DV
X

Φ−2iXR̃+2dt⊗Φ(X)). (124)

8 Applications and comments

At this stage, the reader will not dispute that developing the “calculus along π” has led to . . . a large
number of formulas. So what may be the purpose of this game? The applications we will discuss in this
section are in a way merely reformulations of known results in the present language. Yet, they will be
sufficient to underscore the main general advantage of this new approach: it provides the most economical
formulation of properties and problems, staying as closely as possible to the analytical equations which
in the end will have to be tackled and yet giving them a coordinate free, geometrical meaning. Needless
to say, we are convinced that this new formulation will lead to a better understanding and truly new
results. As a matter of fact, a couple of quite non-trivial applications have already been worked out, but
they require the space of a full-scale paper and so cannot be discussed within the scope of the present
general theory.

As is well known, a dynamical symmetry of a second-order system Γ is a vector field Z on IR×TM ,
satisfying LΓZ = h Γ for some function h. If we write Z locally in the form Z = τΓ+µi(∂/∂qi)+νi(∂/∂vi),
the symmetry requirement in principle gives rise to 3 conditions, but from a computational point of view,
if one has to set up determining equations for finding dynamical symmetries, there is only one system of
second-order partial differential equations that matters. To be precise, one of the three conditions will
merely fix h in terms of τ , another one will tell us that νi must be Γ(µi), which is just the analytical
content of saying that Z = JΓX for some X ∈ X (π), and with this information the last condition will
give rise to the equations

Γ2(µi) −
∂f i

∂vj
Γ(µj) −

∂f i

∂qj
µj = 0. (125)

It is exactly this set of equations which appears in a coordinate free way in the description of symmetries
in our new calculus.

Proposition 8.1 For X ∈ X (π), JΓX is a dynamical symmetry of Γ if and only if

∇2X + Φ(X) = 0. (126)

Proof: Using the decomposition (101) and the results of Proposition 7.5, we have

LΓ(JΓX) = (∇X)
H

+ (Φ(X))
V
− (∇X)

H

+ (∇2X)
V

= (∇2X + Φ(X))
V

+ (Γ〈X, dt〉)Γ,

from which the result immediately follows. ✷

Not surprisingly, one can make similar observations for the dual notion of adjoint symmetries. As
discussed in [15], adjoint symmetries of Γ essentially are 1-forms on IR × TM of type IΓα, which under
the action of the tensor LΓS become invariant. In coordinates, the determining equations for adjoint
symmetries are second-order partial differential equations for the leading coefficients, which are exactly
the adjoints of the linear equations (125). Their coordinate free representation is given by the following
result.

Proposition 8.2 For α ∈
∧1

(π), IΓα is an adjoint symmetry of Γ if and only if (with α = α̃ + α̂ dt),

∇2α̃ + Φ(α̃) = 0. (127)

Proof: We have made use before of the following properties of the tensor field LΓS on IR × TM :
LΓS(XV ) = XV , LΓS(XH) = −X

H

= −XH + 〈X, dt〉Γ. Using the definitions (78) and (79) of the
horizontal and vertical lifts of a 1-form, it is an easy matter to obtain the following dual properties:

LΓS(αV ) = αV = α̃V , LΓS(αH) = −α̃H .
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We now want to express that LΓS(IΓα) must be invariant. Using the decomposition (103) of IΓα and
the decompositions (109) of LΓ-derivatives, one arrives at:

LΓ(LΓS(IΓα)) = −(∇2α̃ + Φ(α̃))
H

,

from which the desired characterization directly follows. ✷

An interesting subclass of adjoint symmetries, as discussed in [15], consist of those which identify a
potential Lagrangian for Γ. We rederive this result to illustrate that it can be detected directly within
the present framework. Note also that despite the presence of extra time-components in many formulas,
the following results look formally identical to the corresponding ones of the autonomous calculus in [10].

Proposition 8.3 A regular L ∈ C∞(IR × TM) is a Lagrangian for Γ if and only if

∇θL = dHL, where θL = dV L + L dt. (128)

Proof: From [15], we know that Lagrangians correspond to exact 1-forms in the set X ∗
Γ , i.e. L is a

Lagrangian, provided we have
LΓ(S(dL)) = dL − Γ(L) dt.

Observe first that for a general α ∈
∧1

(π), we have S(αH) = 0 and S(αV ) = α̃H . Applied to the case
of dL = (dV L)

V
+ (dHL)

H
, knowing that 〈T, dV L〉 = 0, we get S(dL) = (dV L)

H
. Using (109), the above

criterion then easily translates to the desired result. ✷

The 1-form θL, regarded as semi-basic form on IR × TM is of course the familiar Poincaré-Cartan
1-form. In the next result, we transfer the denomination “adjoint symmetry” to elements of

∧1
(π) which

satisfy the condition (127) (a similar convention can be adopted for symmetries).

Proposition 8.4 If α is an adjoint symmetry of Γ, which can be written as dV F for some function F ,
the function L = Γ(F ) (provided it is regular) is a Lagrangian for Γ. Conversely, every Lagrangian of
the form Γ(F ) determines an adjoint symmetry.

Proof: Making use of the commutator (120), we have

(∇2 + Φ)(dV F ) = ∇(dV ∇F − dHF + dH

dt⊗T
F ) + dV

ΦF

= ∇(dV ∇F + (∇F )dt) −∇dHF + dV

ΦF.

From the Jacobi identity applied to iT, dH and dH , we have [∇, dH ] = − 1
2 [[dH , dH ], iT]. Restricting this

property to the action on functions F , it follows from (52) and (56) that

[∇, dH ](F ) = −[dV

R, iT](F ) = iTiRdV F

= iiTRdV F = dV

ΦF.

As a result, we get
(∇2 + Φ)(dV F ) = ∇(dV ∇F + (∇F )dt) − dH∇F,

and the conclusion follows from the two previous propositions. ✷

We conclude with the most economical formulation of the so-called Helmholtz conditions concern-
ing the inverse problem of Lagrangian mechanics. A geometrical version of these conditions, for time-
dependent systems, was given e.g. in [3]. It involves conditions on a 2-form on the (2n + 1)-dimensional
space IR × TM , which in the end is going to be the Cartan 2-form dθL. When expressed in terms of the
local basis {dt, θi, ηi} of 1-forms, however, dθL is actually fully determined by a symmetric (n×n)-matrix
gij (the Hessian of the Lagrangian). From an analytical point of view, the inverse problem concerns the
search for a multiplier matrix gij which will turn the given equations q̈j = f j into Euler-Lagrange equa-
tions. A concise analytical formulation of the Helmholtz conditions in this n-dimensional setting can be
found e.g. in [13]. The theorem below gives precisely a coordinate free version of these conditions and
the key to it is the fact that the Cartan 2-form is really the Kähler lift of a symmetric type (0,2) tensor
field along π.
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Theorem 8.5 The sode Γ is (locally) Lagrangian if and only if there exists a non-degenerate symmetric
type (0,2) tensor field g along π, with the property T g = 0, such that: ∇g = 0, Φ g is symmetric,
DV g|

X (π) is symmetric.

Proof: From the defining relations of the Kähler lift of g (see Definition 6.2) and the results of Propo-
sition 7.5, one easily obtains the following relations:

LΓgK(XH , Y H) = g(X, Φ(Y )) − g(Φ(X), Y ),

LΓgK(XV , Y V ) = 0 , LΓgK(XH , Y V ) = −∇g(X,Y ).

In fact, these relations can be taken over from the autonomous case (see [10]), since they rely on formulas

which look almost identical. The only difference is that we have X
H

in the right-hand side of (106) and
not XH . But this difference does not matter, because T g = 0. We conclude that the conditions ∇g = 0
and Φ g symmetric are equivalent to LΓgK = 0. We further have gK(XV , Y V ) = 0 by definition and
iΓgK = 0 from T g = 0. The above cited result of Crampin et al [3] thus says that there is only one
more requirement to be satisfied, which here translates to:

i
X

H dgK(Y V , ZV ) = 0 , ∀X,Y, Z ∈ X (π).

Since for any vector field Y , we have Y V = Y
V

, all arguments in this condition come from elements of
X (π). This entails that further manipulations of it follow exactly the same pattern as in the autonomous
case. We may therefore conclude that this last requirement is equivalent to DV g|

X (π) being symmetric.✷

Since at present it is not known what future applications of this new calculus might bring, we have
tried in this paper to bring together all essential ingredients of the theory and have elaborated only
on those formulas which are thought to be sufficiently relevant. Very likely, a number of applications
will only require a limited number of these formulas. Those involving the different kinds of covariant
derivatives and the Jacobi endomorphism would seem to be the most important ones. This is at least
what two extensive applications in progress are indicating. In a recent preprint [4], a true break-through
has been achieved in understanding in geometrical terms how Douglas has solved the inverse problem for
the case n = 2 [6]. This should lead also to new results for higher dimensions in the future. Incidentally,
the analysis in [4] was anticipating on the results for time-dependent systems of the present paper and, in
particular, starts from the above characterization of the inverse problem. This was possible because most
formulas formally look identical to their counterparts for time-independent systems, when the action is
restricted to vector fields in X (π) (and forms of the type ω̃ in (11)).

A second highly non-trivial application concerns the generalization to time-dependent systems of
the study of second-order systems which are totally separable into individual equations. Experience has
shown, in that problem, that it is better to do the analysis in the more general setup of the first jet
extension J1E of an arbitrary fibre bundle E → IR. In such a framework, we still have contact forms
θi and a canonical vector field T along π : J1E → E at our disposal. Also, the complementary part
for decomposing vector fields along π is well defined. Indeed, the set X (π) then is simply defined as
consisting of those vector fields along π, whose value is everywhere vertical over IR. Since none of the
constructions in the present paper was relying on the product structure of IR × M or IR × TM , we can
claim that our results are by no means resticted to the case E = IR × M . The separability analysis is in
preparation.
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