
This document was downloaded on October 27, 2014 at 08:27:34

Author(s) Salsman, Charles P.

Title Application of Multi-Frequency Modulation (MFM) for high-speed data
communications to a voice frequency channel

Publisher Monterey, California: Naval Postgraduate School

Issue Date 1990-06

UR L http://hdl.handle.net/10945/34823

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD- A2 3 8 019

4 .S ' GR1)r D T I C
BsELECTE w

THESIS B3 U

APPLICATION OF MULTI-FREQUENCY MODULATION

(MFM) FOR HIGH-SPEED DATA COMMUNICATIONS
TO A VOICE FREQUENCY CHANNEL

by

Charles P. Salsman

June 1990

Thesis Advisor: P. H. Moose

Approved for public release; distribution is unlimited

91-04464

Unclassified
security classification of this page

REPORT DOCUMENTIATION PAGE

I a Report Security Classification Unclassified I b Restrictive Markings

2a Security Classification Authority 3 Distribution'Availability of Report

2b Declassification Downgrading Schedule Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Momtoring Organization Report Number(s)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization

Naval Postgraduate School (If applicable) 32 Naval Postgraduate School

6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
Sa Name of Funding;Sponsoring Organization 8b Offce Symbol 9 Procurement Instrument Identification Number

(If applicable)

8c Address (city, state, and ZIP code) 10 Source of Funding Numbers

_.Program Element No Project No I Task No I Work Unit Accession No

11 Title (Include security classflcation) APPLICATION OF MULTI-FREQUENCY MODULATION (MFM) FOR
HIGH-SPEED DATA COMMUNICATIONS TO A VOICE FREQUENCY CHANNEL

12 Personal Author(s) Charles P. Salsman

13a Type of Report 13b Time Covered 14 Date of Report (year. mont':, day) 15 Page Count

Master's Thesis From To June 1990 1 105

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and Identify by block number)

Field Group Subgroup communications, multi-frequency modulation, high-speed modems

19 Abstract (continue on reverse if necessary and identify by block number)

Multi-FrequencyI Modulation (MFM) has been developed at NPS using both differential quadrature-phase-shift-keying
(DQPSK) and differential-quadrature- amplitude-modulation (DQAM) encoding formats. Previous applications of these
encoding formats were on industry standard computers (PC) over a 16-20 klIz channel.

This report discusses the implementation of MFM to a voice frequency channel of 200-3400 Hz, for possible future use
with high-spced modems over switched telephone networks. Research and testing for this report included the DQPSK and
differential 16-quadrature-amplitude-modulation (D16-QAM) encoding formats implemented on PCs. Experimental results
of the implemented MFM signal were comparable to theory with acceptable bit error rates for input signal-to-noise ratios
(SNR) of 15 dB and higher.

20 Distribution Availability of Abstract 21 Abstract Security Classification

S unclawsified unlimited 0l same as report El DTIC user, Unclassified
22a Name of Responsible Individual 22b I elcphone (Include Area code) 22c Office Symbol

P,111, Moose (409) 646-2838 62NMe

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted security classification of this page
All other editions are obsolete

Unclassified

- i
Reproduced From

Best Available Copy

Approved for public release; distribution is unlimited.

Application of Multi-Frequency

Modulation (MFM) for High-Speed

Data Communications to a Voice

Frequency Channel

by

Charles P. Salsman

Lieutenant Commander, United States Navy

B.S.I.E., University of Tennessee, 1977

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGIRXDUATE SCHOOL

Juiie 1990
Y

Author: _____

Approved by:

P.11. Moose, Thesis Advisor

.�.1.Miller, Second Reader

"'-"'John P. Powers, Chairman,

Department of Electrical and Computer Engineering

iir

ABSTRACT

Multi-Frequency Modulation (MFM) has been developed at NPS using both

differential quadrature-phase-shift-keying (DQPSK) and differential-quadrature-

amplitude-modulation (DQAM) encoding formats. Previous applications of these

encoding formats were on industry standard computers (PC) over a 16-20 kHz

channel.

This report discusses the implementation of MFM to a voice frequency

channel of 200-3400 Hz, for possible future use with high-speed modems over

switched telephone networks. Research and testing for this report included the

DQPSK and differential 16-quadrature-amplitude-modulation (D16-QAM) en-

coding formats implemented on PCs. Experimental results of the implemented

MFM signal were comparable to theory with acceptable bit error rates for input

signal-to-noise ratios (SNR) of 15 dB and higher.

Accessi.on For

NTIS GRA&I]

DTIC TAB [

Uniannoune:ed [
"'%, ~Just ificat i o

D 19 t ,: b i i t I_ _....

Av. labuilty (Codes

Dist 'Special

• i I I111

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research

may not have been exercised for all cases of interest. While every effort has been

made, within the time available, to ensure that the programs are free of compu-

tational and logic errors, they cannot be considered validated. Any application

of these programs without additional verification is at the risk of the user.

iv

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND I

B. THEORY OF MULTI-FREQUENCY MODULATION 2

1. M FM Signal Packet 2

2. MFM Generation and Demodulation 6

II. SYSTEM DEVELOPMENT 8

A. FUNCTIONAL DESCRIPTION OF HIGH-SPEED MODEMS .. 8

1. V.32 M odem Description 9

2. Echo Cancellation 12

B. DESCRIPTION OF THE VOICE FREQUENCY SWITCHED

TELEPHONE LINES 16

1. Switching Systems 16

2. Transm ission Lines 20

C. VOICE FREQUENCY MFN1 ENCODING SCHEMES 21

1. DQPSK 21

2. D 16-Q A MN 22

Ill. SYSTEM IMPLEMENTATION 24

A. HARDWARE 24

1. M FM Transmitter 24

2. M FNI Receiver 25

3. MFNI Synchronizer 26

4. Voice Channel Filter26

B. SOFTWARE . .. 27

1. Transmitter 2

2. R eceiver29

3. Synchronizer.30

v

IV. SYSTEM TESTING AND RESULTS 31

A. SYSTEM PHASE RESPONSE 31

B. BIT ERRORS AND SNR 36

1. DQPSK Performance 36

2. D16-QAM Performance 39

9

V. CONCLUSIONS AND RECOMMENDATIONS 43

APPENDIX A. MFM TRANSMITTER 45

APPENDIX B. DQPSK TRANSMIT PROGRAM 46

APPENDIX C. D16-QAM TRANSMIT PROGRAM 54

APPENDIX D. DQPSK RECEIVE PROGRAM 62

APPENDIX E. D16-QAM RECEIVE PROGRAM 70

APPENDIX F. SYNCHRONIZER PROGRAM 77

APPENDIX G. DQPSK STATISTICS PROGRAM 778

APPENDIX H. D16-QAM STATISTICS PROGRAM 83

LIST OF REFERENCES 93

INITIAL DISTRIBUTION LIST 95

vi

LIST OF TABLES

Table 1. DESIGN PARAMETERS FOR A 1/2.5 SECOND MFM SIG-

NAL PACKET IN A 200-3400 HZ PASSBAND 5

Table 2. BIT ERRORS IN 10,000 BITS TRANSMITTED VS BAUD

TYPE AND SNR 39

Table 3. MAGNITUDE AND PHASE BIT ERRORS FOR D16-QAM

FOR 20,000 BITS TRANSMITTED 42

vii

LIST OF FIGURES

Figure 1. M FM signal packet 4

Figure 2. V.32 signal-point constellations 10

Figure 3. Simplified block diagram of an echo canceller 14

Figure 4. DQPSK encoding scheme 22

Figure 5. D16-QAM signal constellation 23

Figure 6. Block diagram of the MFM transmitter 25

Figure 7. Block diagram of the MFM receiver 25

Figure 8. Voice channel filter wiring schematic 27

Figure 9. DQPSK phase response for different delays 32

Figure 10. DQPSK phase difference between adjacent tones 33

Figure ii. D16-QANI phase response for different delays 34

Figure 12. DI6-QAM phase difference between adjacent tones 35

Figure 13. DQPSK system SNR output 37

Figure 14. DQPSK output SNR versus input SNR 38

Figure 15. D16-QAM output SNR versus input SNR 41

Figure 16. MFM transmitter expansion board schematic 45

viii

I. INTRODUCTION

A. BACKGROUND

As technological improvements to communication equipment and systems

have been made, they have become more digital and less analog. This is primarily

because the advantages of digital communication far outweigh their disadvan-

tages. Some of these advantages include:

* Digital circuits are more reliable and can be produced at lower cost than can
analog circuits.

* Digital equipment is more flexible than analog equipment.

* Digital signals can be regenerated much easier than analog signals. Although
digital transmissions are degraded by electrical noise and other interferences.
the original transmitted digital pulse can be regenerated using digital signal
processing.

* Digital circuits are less subject to distortion and interference than analog
circuits. Since binary digital circuits are always in one of two states (fully-on
or fully-off). it takes a large disturbance to incorrectly change the state from
one to the other.

With the digitizing of communications, and the increased use of industry stand-

ard personal computers (PC) for information exchange, the need has arisen for a

signal modulation scheme that can be easily adapted to a variety of communi-

cation mediums, and that can emulate most existing modulation formats and

generate new formats. Multi-Frequency Modulation (MFM) is a modulation

technique that suits these needs well. It utilizes the hardware and software of the

host cnmputer to modulate and multiplex, demultiplex and demodulate the sig-

nal, thereby eliminating the requirement for analog equipment to perform these

functions. MFNI allows flexibility and utilizes existing PC hardware with minor

upgrades by the addition of expansion boards.

The focus of this thesis is the application of MFM to a voice frequency

channel over which high-speed (9600 bits per second (bps) or higher) modems

will communicate. Presently no standard high-speed (or low-speed) modems use

this modulation technique for transmission of data.

Chapter 11 gives functional descriptions of high-speed modems and of the

voice-frequency switched telephone lines. The focus of Chapter III is the imple-

mentation of the voice-frequency MFM system, including hardware and soft-

ware. Two differential Gray-encoding techniques were implemented with

software on PCs for this thesis. The encoding formats are Differential

Quadrature-Phase-Shift-Keying (DQPSK), and Differential 16-Quadrature-

Amplitude-Modulation (D16-QAM). A performance evaluation was conducted

on each technique and the results aic discussed and analyzed in Chapter IV.

Chapter V contains conclusions and recommendations.

B. THEORY OF MULTI-FREQUENCY MODULATION

The following sections provide an overviev: of the theory of MHFM. The

reader is referred to Refs. 1 and 2 for a more detailed description.

1. MFM Signal Packet

The basic structure of MFM is time and frequency slots. The MFIM

signals are actually sets of multiple tones which are grouped into "packets". These

packets are arbitrarily located in the frequency spectrum and in time. They con-

sist of one or more bauds. The following terms are used in the description of

M F NI:

2 w

T: Packet length in seconds

AT: Baud length in seconds

L : Number of bauds per packet

Af= 1/AT: Frequency spacing between MFM tones

kx: Baud length in number of samples

At : Time between samples in seconds

fx = I/At: Sampling frequency in Hz for DiA and AiD conversion

K: Number of MFM tones

ýSIk' Phase of the k'h tone in the I/h baud

Alk: Amplitude of the kth tone in the I[h baud

An MFM signal packet is shown in Figure 1. Each packet is comprised

of L bauds and K tones. The information to be transmitted is independently

amplitude and/or phase modulated onto the K tones. An orthogonal set is formed

bv thcse LK subsignals. In DQPSK. a single bit of information is carried by both

the in-phase and quadrature components of each tone. In D16-QAM, two bits

of information are carried by both the in-phase and quadrature components of

each tone. The muitiple tones that are picscnt in an MFM packet are superim-

posed, i.e., occur simultaneously, during a subinterval of the packet called a baud

[Ref. 1].

The sampling frequency is f, = kAf, since At = AT/k,. The Nyquist san-

pling theorem requires that f, be greater than twice the highest frequency con-

tained in the signal frequency spectrum. Conversely, Nyquist require- that the

highest frequency used in the signal be less than f/2. Consequently, an MFNI

3

Symbol 'lk' Baud '1'

k 2c

E

°T:T=

Time

Figure 1. MFM signal packet: (after Ref 1: p. 3).

baud is limited to a maximum of k,,2 - 2 harmonic tones spaced at Af Hz inter-

vals from Af Hz up to f /2 - Af Hz.

An MFM signal packet includes harmonics between k, -f 1 /Af and

k2 =f,/Af The values of k, and k2 are chosen to generate a signal in a given

passband anywhere between Afand f,/2 - Af. The voice frequency band between

200 Hz and 3400 Hz is the subject of this thesis. Harmonics outside the desired

passband are assigned zero amplitude. The number of tones sent in a baud is

K=k 2 -kI + 1. The signal passband is H'=KxAf. The time bandwidth

product of the whole signal packet, TW = LAT x KAf, is equal to LK, the total

4

number of symbols that can be sent in one packet. The MFM parameters selected

for the voice frequency channel used in this thesis are shown in Table I below.

Table 1. DESIGN PARAMETERS FOR A 1/2.5 SECOND MFM SIGNAL

PACKET IN A 200-3400 HZ PASSBAND

Baud length(sec) AT 1 40 1/20 1/10 1/5 1!2.5

No. of bauds L 16 8 4 2 1

Tone spacing Af 40 20 10 5 2.5

Lowest harmonic k, 5 10 20 40 80

Lowest tone freq. f1 200 200 200 200 200

Highes. harmonic k2 85 170 340 680 1360

Highest tone freq f2 3400 3400 3400 3400 3400

Sample perkx 256 612 1024 2048 4096
baud

Sampling freq .§ 10240 10240 10240 10240 10240

No. of tones k2 - k, 80 160 320 640 1280

The mathematical representation of the analog signal packet during the

I" baud is

kx /2-1

,It Allk cos(27-kAft (I 4,), (- 1) AT <! t /A AT,(1

k=1

5

and the corresponding sampled discrete time signal of length k, samples is

[Ref. 2: pp. 2-3]

k,/2-1

27rkn
x1(n)= Alk cosK kX +01k), 0<&n k! -. (2)

k=I

2. MFM Generation and Demodulation

The generation and demodulation of MFM is accomplished through ap-

plication of the properties of the Fast Fourier Transform (FFT) algorithm. To

generate the signal, software in the transmit PC is used to load the amplitudes

and phases of the MFM signal into the first half of a complex-valued array of

length k, for all tones between k, and k,. The second half of the complex array is

then loaded with the complex conjugate images of the values that were loaded

into the first half of the array. The Inverse FFT (IFFT) is then computed to

create a real signal sequence x,(n) containing k- values as given in (2). This process

is repeated until all bauds in the MFM signal have been processed. The resulting

M FM signal packet consists of kL real values. The modulated transmitted signal

xj(t) is obtained by sampling x,(n) through a digital-to-analog (D/A) converter at

fx samples per second.

Demodulation of MFM is simply the inverse of the process used to gen-

erate it. The received analog signal y1(t) is processed back into a digital signal

format in the receiving PC with an analog-to-digital (A/D) converter sampling

the signal at a rate off times per second. The resulting k, real values are loaded

6

into a ks-point complex array, while the imaginary parts are set to zero. The FFT

of the array is computed yielding, in the absence of noise, the values of Alk and

0,, which were used in the generation of the transmitted signal.

7

II. SYSTEM DEVELOPMENT

This chapter provides an overview of high-speed modems, the PSTN and

private telephone network, and the differential encoding schemes used for this

thesis. The actual development of the MFM system is not covered in this thesis

because it is covered sufficiently in other references. The reader is directed to

Gantenbein [Ref. 2] and Basil [Ref. 3] for a detailed description of the MFM

system development.

A. FUNCTIONAL DESCRIPTION OF HIGH-SPEED MODEMS

The definition of a high-speed modem varies from publication to publication,

but for the purpose of this thesis, high-speed modems in the voice frequency band

are considered those with a data signaling rate of 9600 bps or higher. Specifically,

the focus of this section is on full- duplex modems with a data signaling rate of

9600 bps. The international standard set by the International Telegraph and

Telephone Consultative Committee (CCITT) for the 9600 bps modem, referred

to as the V.32 modem, is the standard for most U.S.-manufactured full-duplex

9600 bps modems. This standard is the basis for the discussion in the following

paragraphs. The purpose of including this section on modems is to give the reader

a broad overview of the workings of high-speed modems. Presently, MFM cannot

be applied to modems, because the modulation schemes currently used with

modems are coded internally to the device and the actual modulation hardware

is proprietary. If NFIM is to be applied to modems, a redesign of existing modems

or a new design from the ground up is necessary. This section along with the

• ' I Il l I ll l

references should provide a background for accomplishing this for future appli-

cation of MFM to high-speed modems in the voice frequency band.

1. V.32 Modem Description

The V.32 modems are intended for use on public switched telephone net-

works (PSTN) and on point-to-point leased line telephone circuits. These circuits

will be discussed in the next section. The following characteristics are common

among V.32 modems [Ref. 4 pp. 221-226]:

"* Capable of full-duplex operation on the above telephone circuits at 9600 bps.

* Channel separation through the use of echo cancellation techniques.

"* Quadrature-amplitude-modulation (QAM) for each channel with synchro-
nous line transmission at 2400 bauds.

* Capable of operating in the following modes:
9600 bps synchronous,
4800 bps synchronous,
2400 bps synchronous.

"* At 9600 bps, there are two alternative modulation schemes, one using trellis
coding with 32 carrier states and one using nonredundant coding with 16
carrier states.

"* The rate sequence is exchanged during start-up to establish the data rate,
coding and any other special facilities.

Full-duplex operation means that the modem can transmit and receive data si-

multaneously on the same frequency on a two-wire or four-wire telephone circuit.

This is accomplished through the use of echo cancellation techniques, which will

be discussed later in this section. Synchronous transmission means that the

transmitted data is always accompanied by a clock signal. The data changes on

one edge of the clock and should be sampled by the receiving device on the other

edge. Synchronization between the transmitting and receiving modems allows

data to be properly timed for receiving and decoding.

9

The V.32 modems have a carrier frequency of 1800 ±1 Hz, and must be

able to operate with received frequency offsets of up to ±7 Hz. The modulation

rate of these modems is 2400 bauds ±0.01 %. The signal-point constellations used

for the two alternative modulation schemes are shown in Figure 2.

tl 01 Il ia tilflw 0010 11

00"0

* .® S S® S0 0 0
lOl~l 1001 1110 1101 @90 001 1 OC t I 0 01 0 0

110 1 .110 10 10

-00 0 0&.*- -, - - lile

-* l000o0 101 1 -0201 10110
A~~ 0

owl1 DOW 910 010)I'l 01001 0 0110 0 100 1 0 0100

270' 1100 1 11011

270

(a) 16 state nonredundant coding (b) 32 state trellis coding

Figure 2. V.32 signal-point constellations: (from Ref. 4: pp. 222.226).

Both of these schemes utilize differential coding. Trellis coding encodes four bits

as five, which increases the number of points (states) in the constellation from 16

to 32. Trellis coding, also referred to as forward error control, is actually a way

to minimize errors rather than to correct them. This modulation scheme has

proven to give a superior signal-to-noise ratio for situations where there is

10

primarily white noise, rather than burst noise. In situations where there is a lot

of burst noise, backward error correcting coding works better. Telephone

networks are much more prone to white noise than burst noise, so trellis coding

was a good choice for the V.32 modems. The big-trade off for trellis coding is

between the amount of data that is saved for decoding and the overall processing

time required for operation of the modem. When a receiving V.32 modem loses

the signal, it must "retrain" to synchronize with the transmitting modem. Unlike

slower modems, where the retrain time can be less than a second, V.32 modems

can take up to 10 to 12 seconds to retrain. If the modem has to retrain too often,

the throughput can be significantly degraded. For this reason, the timing and

trellis algorithms must be carefully thought out in the design and construction of

a V.32 modem. [Refs. 4, 5]

As with slower speed modems, V.32 modems contain a self-synchronizing

scrambler and descrambler. Unlike slower speed modems which utilize the same

generating polynomial for the calling and answering modems, V.32 modems have

different generating polynomials for each transmission direction due to the use

of the same carrier frequency for transmissions in both directions. The purpose

of the scrambler is for randomizing the data sequence, not for encryption or se-

crecy. Many components in data communication systems work best with random

bit sequences, such as the adaptive equalizers and echo cancellers in the V.32

modems. There are sequences of zeros or ones, or periodic sequences that might

appear in the data sequence to be transmitted that must be recoded for trans-

mission if the data transmission equipment has trouble in transmitting these se-

quences. Scramblers recode these undesirable sequences, removing most of the

11

common repetitions in the input data. The data sequence to be transmitted is

formed by the scrambler effectively dividing the input data sequence by the gen-

erating polynomial and taking the coefficients of this division in descending order

at the output of the scrambler. To recover the message, the received data se-

quence at the receiving modem is multiplied by the scrambler generating

polynomial. The major drawback to the use of scramblers and descramblers is

that error performance can be affected. A single error in the transmitted data

sequence may cause multiple errors at the output of the descrambler, due to the

propagation of the bit error in the shift register of the descrambler. Fortunately,

this propagation effect only lasts for a small number of bits. [Refs. 6, 7]

2. Echo Cancellation

Echoes are impairments in the telephone channel which are caused by

signal reflections at points in the transmission path where there is a mismatch of

circuit impedances. There are several types which will be discussed. Near-end

echoes occur at the hybrid of the transmitting modem and at the hybrid of the

central office. They are caused by reflections at these points due to mismatches

of impedances between the telephone line and the modem's hybrid. This, type of

echo is predominant and is characterized by a small delay time, typically less than

25 milliseconds (ms). A hybrid is a coupler used to make connections between

two-wire and four-wire circuits on the transmission path and in modems to allow

the transmitter and receiver to be connected to the telephone line at the same

time. Two-wire lines, four-wire lines, and central offices will be discussed in the

next section.

12

Far-end echoes occur at the hybrid of the receiving end central office and

the hybrid of the receiving modem. This type of echo is caused by reflections from

one of the hybrids at the far end of a four-wire circuit due to impedance mis-

matches between the four-wire to two-wire connection. The delay time for far-

end echoes is higher than for near-end echoes.

Listener echoes occur when a modem's receiver first hears a signal and

then hears its echo, and results from the signal making a single reflection. This

type of echo is not a problem with modems because the echo is usually much

weaker than the original signal. The adaptive equalization of the modem gener-

ally removes the listener echo. Talker echo is much more troublesome than lis-

tener echo. It is caused by a signal being reflected a second time and results in a

modem's transmitted signal being reflected back into its receiver. Talker echo is

removed through the use of echo cancellers in the telephone network. [Ref. 5]

The ability of a high-speed modem to perform echo cancellation is a pri-

mary factor in its overall performance. There are two general types of echo

cancellers. One type is located within the telephone network and the other type

is located in echo cancelling modems, such as the V.32. Both types operate simi-

larly in that echoes are cancelled by subtracting an estimated replica of the echo

from the signal containing the true echo. When V.32 modems are used over the

PSTN, the network cancellers are disabled by the answer tone of the modem,

which has periodic phase reversals, unlike the steady, tone of most slower speed

modems. This phase reversal activates the canceller-disable circuits contained in

the network cancellers. The network echo cancellers, also referred to as echo

suppressors, detect data transmitted from one end of the connection and

13

suppresses all signals going the other way. Since many high-speed modems are

full-duplex, the network echo cancellers must be disabled so full-duplex

communications can take place. The network cancellers are used for modems

which are not full-duplex, such as many slower speed modems. The following

discussion concerns the type of echo canceller located in the modems.

There are two stages of echo cancelling performed in modems, one can-

celling the near-end echoes and one the far-end echoes. Figure 3 is a simplified

block diagram of an echo canceller.

T o

"e I e hon e

Freedbc k

Figure 3. Simplified block diagram of an echo canceller: (after Ref. 5: p. 52.).

The echo emulator block in the diagram contains both the near-end and far-end

echo cancellers. These cancellers can be implemented as a passband circuit, where

the echo is cancelled before the signal is demodulated, or as a bandpass circuit,

where the echo is cancelled after the signal is demodulated. All echo cancellers

14

contain an adaptive tapped-delay line circuit which dynamically forms an echo

replica that is of approximately the same magnitude and phase of the true echo

signal. This circuit is the heart of the echo canceller. It allows the replication of

an echo signal that is nearly identical to the true echo if it is operating correctly.

The transmitted modulated signal (impaired by noise and other interferences

from the transmission path) is used as the input to the echo canceller. The echo

canceller first estimates the transfer function of the echo and then adaptively

updates the information in the canceller to approach the actual response of the

path from the original estimate. The initial estimate of the echo transfer function

is based on the delays that have been calculated for the system. These delays are

calculated during the initial handshaking sequence (defined in V.32 protocol in

Ref. 4) that takes place between the two modems during the startup phase. Dur-

ing this sequence, each modem sends a half-duplex signal through the telephone

line to find the line's echo characteristics. This information is used to set the taps

in the echo canceller's adaptive delay circuit. The output of the adaptive circuit

after it has been updated is the replicated echo which is then subtracted from the

transmitted. modulated signal (which contains the true echo). The result is

checked for correlation with the transmitted signal using a decision-feedback-

equalizer type algorithm. If the transmitted and received signals show correlation,

the echo emulator of the canceller is modified to cancel the correlation. 'When the

two signals show no correlation, the echo has been maximally removed.

[Refs. 8. 9]

Although echo cancellation may sound like a reasonably easy task after

the description above, it is very complicated. Accurately detecting the presence

15

and time delay of echoes is one of the most difficult tasks that is done during echo

cancellation. Another factor in effectively cancelling echoes is the ability of the

modem to neutralize the effects of any impairments that may affect the signal as

it passes through the transmission path such as noise, frequency translation, en-

velope delay distortion, attenuation distortion, amplitude and phase jitter,

quantization effects, and intermodulation distortion. These impairments can dis-

tort the echo and cause it to be falsely or inadequately cancelled. The higher the

speed of the modem, the more it is affected by these impairments. The modem

must be able to perform well in the presence of impairments or it will not perform

well en the PSTN. The reader is directed to Refs. 8 and 9 for further discussion

concerning neutralization of impairments.

B. DESCRIPTION OF THE VOICE FREQUENCY SWITCHED

TELEPHONE LINES

This section provides a description of the PSTN and private telephone net-

work which both use a voice frequency channel in the 0-4000 Hz band for voice

and data communication. The actual voice channel used in these systems is

200-3400 Hz for m st applications. This 200-3400 Hz voice channel was simu-

lated for this thesis bv a bandpass filter which will be discussed in the next

chapter. The purpose of this section is to provide the reader with a basic know-

ledge of the system over which MFM will be applied in the future.

1. Switching Systems

The main question to be answered is, "Why use switching instead of

having direct connections between all users?". The cost of such a system and the

number of lines and connections would be prohibitive. Switching reduces the

16

number of lines required dramatically, and multiplexing on the networks reduces

the number of lines even more. There are some trade-offs associated with the use

of switching. With thc addition of switches, the system becomes more complex

and with fewer lines the system can become overloaded and blocking may occur

if the demand is too high. The network must be expandable to meet the needs of

the future, as well as peak traffic periods such as holidays or national emergen-

cies. Large switching centers have the Electronic Switching Systems (ESS), which

are capable of terminating hundreds of thousands of lines and of processing

hundreds of thousands of calls per hour.

In order to provide a logical and efficient means to switch, a hierarchy

was establisheJ. There are two basic types of switches in the PSTN, local offices

and toll offices. of which there are four levels. The local office or central office

(CO) is the lowest switch in the network. There are over 20.000 COs in the net-

work. The user is directly connected to We CO through a transmission link. Many

COs are connected through transmission links to a single switching office, ,allcd

a toll center, which is located on the lowest level of the toll network. The three

higher levels of switching in the toil network are called primary centers, sectional

centers, and regional centers (the highest level of the PSTN). Ten regional centers

are located in the United States and two in Canada. The lowest available level

of the PSTN is always used for routing traffic. This is done because fewer net-

work facilities are used resulting in shorter transmission paths, ultimately result-

ing in better circuit quality.

In addition to the five levels of switching in the PSTN, there is one more

type of switching system in use, called a private branch exchange (PBX). The

17

PBXs are not part of the PSTN, but do provide the users access to the PSTN

through a transmission link to the COs, as well as performing internal switching

functions for the users of the private telephone network. The private telephone

network consists of the PBXs and the transmission links connecting the users to

the PBXs. This system is available to users through leasing of the lines.

There are two types of user-to-user connections that may be established

on the telephone networks. The first, the dialed circuit, or dial-up line, is a

switched circuit telephone line connection established on the PSTN. This is the

type of connection most users establish on a day-to-day basis. The qualit% of a

dialed circuit can vary widely and is difficult to predict. One connection between

two points may haxe an excellent quality, while another connection between the

same two points may be terrible. This difference in quality of the connection is

because the transmission path will most likely be different from one call to the

next. The second type of connection, the private leased line, is a line that connects

two or more communication poinLs on a dedicated 24 hriday basis. The charac-

teristics of this t\pc of connection are guaranteed to meet certain criteria. There

are two different sets of criteria specified for leased lines:

* C-conditioning. Specification of the frequency response and envelope delay
(linear distortion) characteristics of the line.

0 D-conditioning. Specification of the minimum signal-to-noise ratio (SNR)
and the second- and third-harmonic (nonlinear) distortion minimum signal-
to-distortion ratios. [Ref. 10: pp. 691-692]

There are three types of switching presently in use in the telephone sys-

tern: circuit switching. message switching, and packet switching. Circuit switch-

in- is used for %oice and data communication and is the predominant type. It iN

IS

accomplished by establishing a dedicated path for the duration of the call. Not

to be confused with a leased line, this dedicated path is only for the duration of

the one call; the next call between the same two points will be on a dedicated

path, but most likely a different path. Circuit switching is most efficient for calls

of long duration and can use three types of multiplexing: space division multi-

plexing (SDM), frequency division multiplexing (FDM), and time division multi-

plexing (TDM). Message switching is used for transmitting data only, and uses

only SDM. With this type of switching, the entire message is stored into memory

at each switching station and then forwarded to the next station as the message

traffic load permits. It is routed to the destination listed in the header information

of the message. Message and packet switching are both known as store-and-

forward switching, because the messages and packets are stored into memory at

each switching station and then forwarded as the load permits.

Packet switching is the latest technology; it is readily adaptable to digital

processing and uses only TDM. This type of switching is uniquely different from

circuit and message switching in that the data is broken down into segments

called packets and then sent via the first open line to the destination. As in mes-

sage switching. the packets are stored into memory at each switching station.

With packet switching the transmission channel is only occupied during the

transmission of each packet. The packets may or may not follow the same path

and consequently may arrive out of order. When the packets arrive at the desti-

nation they are sequenced and processed in order. Packet switching is the most

efficient type of switching when the duration of the call is relatively short

compaied to circuit or message switching, because of the extra overhead required

19

for routing, packet construction, and sequencing. MFM is well-suited for packet

switching.

2. Transmission Lines

The transmission links between the users and the switching centers are

referred to as trunks. These trunks can be implemented with a variety of medi-

ums including twisted pair (pairs of wire), coaxial cable, point-to-point micro-

wave links, and optical cable. Most of the telephone network still uses twisted

pair, so this is the medium that is discussed here. Transmission through a single

wire (with a ground return) is possible and has been used in the past, but the

noise level of the circuit is unacceptable for customer use. The twisted pair

(known as two-wire) presently used is a balanced pair of wires through which

signals propagate as a voltage difference between the two wires. Interference or

induced noise is coupled equally into both wires of a twisted pair and propagates

along the pair in one direction. Almost all user-to-CO trunks in the PSTN are on

two-wire links. The two-wire link allows for two-way communication. The trunks

used for transmission between switching centers and over longer distances usually

involves a pair of two-wire lines, one for transmitting and one for receiving, in

which the two connections are to be kept separate. This configuration is referred

to as a four-wire system. These systems are often uscd with some form of multi-

plexing to provide multiple channels in one direction on one pair of wires.

Since most toll network circuits are four-wire, the switches for th-ese sys-

tems are designed to connect both directions of transmission separately. Two

paths are needed for each connection for these switches. The switches for

20

two-wire systems, as used in local switching in the COs, require only one path

through the switch for each direction.

C. VOICE FREQUENCY MFM ENCODING SCHEMES

This section provides a brief description of the two encoding formats utilized

for this thesis. Bit error rate (BER) and SNR data generated for both encoding

formats is discussed in Chapter IV.

1. DQPSK

DQPSK encoding is similar to QPSK encoding in that they both use the

same four Gray-encoded two-bit symbols in the signal constellation. Phase am-

biguity is eliminated in QPSK through the use of strict phase coherent regener-

ation of the sampling frequency, but this results in the requirement of complex

synchronization techniques. DQPSK resolves the phase ambiguity problem by

transforming the original two-bit symbol into a new differential two-bit symbol,

which is then encoded as QPSK. This transformation is shown in Figure 4. As

can be seen in the figure, the inputs generate new symbols as shown below.

"* An input of '00' produces a new symbol in the same quadrant as the previ-
ous symbol.

"* An input of '01' rotates the new symbol +-/2 radians from the previous
svymbol.

"* An input of '10' rotates the new symbol -77/2 radians from the previous
symbol.

"* An input of '11' rotates the new symbol 7r radians from the previous symbol.

Decoding of the MFM signal in the receiver is performed by determining the

phase difference between successive symbols. [Ref. 2: pp. 9-11]

21

Previous Symbol Previous Symbol

'('oo\'o,'
symbol

0 10

1 1

0 '01

'10' ,

10 00 00 0

Figure 4. DQPSK encoding scheme: (from Ref. 2: p. 10.).

2. D16-QAM

The data rate for D16-QAM is double that of DQPSK; it uses four-bit

symbols vice the two-bit symbols of DQPSK. The Gray-encoded D16-QAM sig-

nal constellation studied in this thesis is shown in Figure 5. As can be seen in the

figure, this signal constellation has eight 450 sectors and two magnitude levels.

Although the data rate for D16-QAM is doubled, it is at the cost of an increased

22

Figure 5. D I 6-A siga cntlaion.

Imag.

0101 0110 00i0 ", 0001

bit error rate. For the same baud size and noise level, the D16-QAM encoding

format cannot accept as much system differential phase error as the DQPSK

scheme, due to the smaller sector size. In addition, noise and other system

impairments can cause a magnitude error when using the D1I6-QAM scheme. A

detailed discussion of D16-QAM encoding/decoding is contained in [iRef. 3: pp.

10.13].

23

010
In i 0

i l
i il i

III. SYSTEM IMPLEMENTATION

A. HARDWARE

The MFM system developed by LT Terry K. Gantenbein, USN, in Ref. 2

and modified by LT Peter G. Basil, USCG, in Ref. 3 is the basis for the exper-

imental part of this thesis. The hardware utilized in this research is the same with

the exception of the channel filter. The 16-20 kHz bandpass filter utilized by

Gantenbein and Basil was replaced with a 200-3400 Hz filter for the testing de-

scribed in Chapter IV.

1. MFM Transmitter

The MFM transmitter contains a D/A converter circuit that is built on

an IBM PC/XT interface breadboard which is inserted into an expansion slot in

the transmit PC. The original transmitter, designed and built by LT Robert D.

Childs, USN [Ref. 11], was modified by Gantenbein [Ref. 2]. The current con-

figuration of the transmitter is documented in the schematic in Appendix A. A

second MNIFM transmitter board was built during this thesis to allow flexibility

by providing a backup transmitter for testing alternate filtering schemes. The

transmitter board used in this thesis for all data transmission was this backup

transmitter.

A functional block diagram of the transmitter is given in Figure 6. The

input to the encoder is a serial binary signal which is processed through the

transmitter as discussed in Chapter 1. The encoding of the input data is

24

accomplished in software and is discussed in the next chapter. The output of the

D1A converter contains MFM tone frequencies in the 200-3400 Hz band.

SSource '-• Ecd•- I 1F FT : DAa To L ink

Figure 6. Block diagram of the MFM transmitter.

2. MFM Receiver

The MFM receiver utilizes a Metrabyte, Inc., DASH16F data acquisition

board with software routines to accomplish the A/D conversion. The

reception/demodulation of the MFM signal is the reverse of the

transmission/modulation process as discussed in Chapter 1. The receive PC uti-

lizes a PL1250 floating point processor (FPP) board from Eighteen-Eight Labo-

ratories, Inc., to perform the FFT on the output of the A/D converter for

decoding. This allows real-time demodulation of the signal as described by Basil

[Ref. 3]. A functional block diagram of the receiver is given in Figure 7.

Fr om

Figure 7. Block diagram of the MFM receiver.

25

3. MFM Synchronizer

In MFM communications, each transmitted packet must be synchronized

at the receiver before the signal can be acquired and demodulated. Each trans-

mitted packet has a synchronization baud of length 256 appended to the begin-

ning of packet. The polarities of the synchronization baud are known. The

receiving PC contains a synchronization board which is pre-loaded with the

known polarities of the last 128 samples of the synchronization baud for the

purpose of synchronization. The synchronization process and the board designed

and built to accomplish synchronization are discussed in detail by Basil [Rcf. 3].

4. Voice Channel Filter

The 200-3400 Hz channel characteristic of the public switched telephone

network was simulated by a National Semiconductor TP3040J PCM monolithic

filter chip. The 16-pin TP3040J contains both a transmit filter and a receive filter

designed to the specifications used in the telephone network. The transmit filter

is a fourth-order Chebyshev highpass filter in series with a fifth-order elliptic

lowpass filter. The receive filter is a fifth-order lowpass filter designed to recon-

struct the voice or data signal from a decoded signal. Both filters are constructed

with switched capacitor integrators. [Ref. 12]

The master input clock frequency for the TP3040J can be selected as

2.048 MHz, 1.544 MHz, or 1.536 Mhz. A clock frequency of 2.048 MHz was

used for this thesis. The gain of the filter is also selectable and can be chosen by

properly selecting the resistor values. The gain was chosen to maximize the

26

amplitude of the signal, without exceeding the range of the A/D converter, which

was set at ±2.5 volts. The TP3040J was connected as shown in Figure 8.

Tpo- 340J

___tN C N C 1-n-6
--N C GND 15s-• --

-- eNC CLKOw powe 5 V

.o-in VFRO NC rec. i

V ... e p I CoLwKe 2 2 u48 pHz

N - C VFRI F ye F toewr isnpu-5 V 8 vBB V C C 9 +5 V

N C =Not coannMec te d

VFRO[Recei to rilter low power output

PC RIL Rece~ ve filter ditf power cmp input

P RO- on lo-inverking output of receive

Sfilter power amp
VTh p r ue iN tis thve prwesr s u p p y

VtCoC wPt b i foire pSoKw e br s u p pr
V FR I Inp u toa re ce i ve fi Itte r

C LK M os te f cloac k n pu t

C LK 0 1rpu I cIoac k Ir eq ue n cy s elIectI

GN" -Ground

Figure 8. Voice channel filter Airing schemnatic.

B. SOFTWARE

The programs used in this thesis research are written and compiled in Turbo

Pascal, version 5.5, from Borland International. The programs are similar to

those written by Gantenbein for DQPSK, but have been modified for application

to the voice frequency channel and for D16-QAM encoding/decoding. The mod-

ified DQPSK and D16-QAM programs used for this research are included as

Appendices B, C, D, and E.

27

1. Transmitter

The DQPSK and D16-QAM transmit programs are called DQPSKXMIT

and DQAMXMIT respectively. The programs are divided into subroutines,

known as procedures in Pascal. The procedures are discussed in the order in

which they are called in the programs. The primary difference between the two

programs is in the encoding section of the programs, due to the different modu-

lation constellations used. Unless otherwise noted, the following discussion ap-

plies to both programs.

The PL1250 FPP is initialized at the start of the main body of the trans-

mit programs. Next, the procedure SYNCBAUD generates the synchronization

baud (syncbaud) of length 256 of which the last 128 samples are used for syn-

chronization with the receiver. The polarities of the syncbaud samples are identi-

cal each time SYNCBAUD is executed, so the receiver can acquire the

transmitted data as long as the synchronizer board has been properly loaded with

the syncbaud. SYNCBAUD calls the procedure CNVTTOTIME which, in turn,

calls the PL1250 FPP to perform the IFFT on the syncbaud tone values. Next,

SELECTBAUD chooses the values of k, and k2 based on the baud length selected

by the user. The procedure TAILORPACKET then determines the maximum

number of bauds that can be transmitted for each packet. Next, DIFFENCODE

performs the encoding of the data as described in Chapter 1, using the different

encoding formats for DQPSK and D16-QAM. DIFFENCODE also calls

CNVTTOT1ME to perform the IFFT on the data. The next procedure called is

SCALEDATA, which takes the time domain samples and stores them in an array

of 61440 bytes. If the message is longer than 61440 bytes, then the entire message

2S

cannot be sent at once. DMAINIT takes the values stored in the array and clocks

them through the D,'A converter. Finally, DMASTOP ends the data transfer

when all values in the array have been clocked through the converter. The

DQPSK and D16-QAM transmit programs are included as Appendix B and

Appendix C, respectively.

2. Receiver

As with the transmit programs, the DQPSK and D16-QAM receive pro-

grams are very similar to each other; both arc discussed in this section. The two

receive programs are called DQPSKREC and DQAMREC. The procedures in

the receive programs are discussed in the order in which they are called. and un-

less otherwise noted, the discussion applies to both receive programs.

The PLI1250 FPP is initialized at the start of the main body of the receive

program and a pointer is set up by GETDMABUFFER to point to the array in

which the received values are stored. PACKETSETUP, the first procedure called.

determines the maximum number of bauds that can be received and assigns the

values of k, and k. based on the baud length input to the receive PC by the user.

The receive baud length must be the same as the baud length of the transmitted

data. The next procedure, ACQUIREDATA initializes the DASHI16F board for

the 12- bit A/D conversion process. The received data is stored in the DASH I6F

board, in 16-bit words. The four most sgniflicant bits of each word contain

channel identification data. so the procedure CONVERTDATA remo\es these

four bits. The remaining 12-bit words are sent to the main body of the program.

The PL1250 FPP performs the FFT of the data and places the resulting values

in the first half of the complex array as discussed in Chapter 1. The next

29

procedure, DIFFDECODE, performs the decoding of the data. In DQPSKREC,

DIFFDECODE decodes the phase difference between adjacent tones for all

transmitted tones. In D16-QAMREC, DIFFDECODE decodes the phase and

magnitude differences between the adjacent symbols for all transmitted tones.

The decoded symbols are displayed to the receive PC monitor as ASCII charac-

ters, with two four-bit symbols representing one ASCII character. Each baud of

the received message is processed by the receive program until the whole received

message has been displayed. The receive programs are included as Appendix D

(DQPSKREC) and Appendix E (DQAMREC).

3. Synchronizer

The synchronizer board is initialized with the program SYNCLOAD

which calls an assembly language routine named SYNCINIT. SYNCLOAD

causes the synchronizer board to be initialized with the last 128 samples of the

syncbaud. The synchronizer board needs only to be initialized once each time the

MtNI Msystem is powered up, prior to transmitting any data. The svncbaud values

are contained in the data file VALS.DAT and are loaded into the synchronizer

board by typing "SYNCLOAD" and then pressing the enter key on the receive

PC keyboard. The program SYNCLOAD is included as Appendix F.

30

IV. SYSTEM TESTING AND RESULTS

This chapter discusses the performance evaluation of the MFM system over

a voice frequency channel. The first section deals with the system phase response

and the selection of the syncbaud delay to optimize the system performance. The

second section discusses the SNR and the bit error rate estimates for various in-

1p ut SNRs.

A. SYSTEM PHASE RESPONSE

The relevant system phase response is the difference between the received

phase and the transmitted phase for each tone. The values used for the calcu-

lation of phase response are the received phase before decoding and the trans-

mitted phase after encoding. Ideally, the plot of phase response would be flat.

The DQPSK phase response plot of the system is shown in Figure 9 for three

different delays of the syncbaud. The curve for a delay of one is the most linccr

and flattest. Figure 10 is a plot of the difference between adjacent

received/transmitted tones for DQPSK. Since the sectors for DQPSK are 900 in

width, all points within +45' represent symbols which are correctly decoded. Any

points outside 4±45° represent symbols which are incorrectly decoded. Figure 11

is the DI6-QAM phase response for three different delays of the synchr(ization

baud. A delay of one produced the most linear, flattest response. The difference

between adjacent received/transmitted tones for D16-QAM is shown in Figure

12. The sectors for this encoding format are 45' in width, so all points within

_:22.5' represent data which is correctly decoded.

31

aC:

C21

- Q0
CCD

CD te D

CD

C:) CD

C:)
L-1C: -)

CD ~DC.
C-fD

z C

I CDa:D

I: CD
ZZ

Z JL-- CD
Li DD C- D _

a: .n (Z

CD CDC\

LiJ

CDCD

Figure 9. DQPSK phase response for different delays.

32

L) O

z C)i

C-) '-'
LIL) CC

z -J
F- CD

C~)

CE: CDC

--) C:

LCD D

mi LiWW

:K CD
ZL :

CD CCD

Li CE>-

Li CD CD

a-)C
Li L

C)~IU~ M (if

Fiur C0. DQPS phsCifrnebtDe daettns

33:

DC

CD

ED CD _ _ _ -

CD
CD

ID CD

--- CC
U-) CDCD

Li CD

w ~CD
-~C L-__

C-) U) C

CDDLii_1 C3)
CD

-'ý

Li

Li 0

C34

CD
z ~CE:

z M

CD- ELLJ
z CD

cc: F- CD0

C-) C:D

LO C
LCD o0

LiJ

F- L CD

if)) 1 -Lf

LL CD1

Otf CD

Li L- LW

CcC

CD

Lin

C-_ >- 0
LLJ CE:

O'Z S'1 01 SO 010 S*O- 021- S'l- 0*Z-

(SNUIOU8) 3SUHc

Figure 12. D16-QANI phase difference betN~een adjacent tones.

35

The phase difference between adjacent tones is introduced by the system and

varies from tone to tone. The phase differences introduced by the system increase

the possibility that the phase difference between adjacent tones will be incorrectly

decoded. Additionally, when noise is added to the system, the phase differences

increase, possibly resulting in decoding phase errors. To minimize the possibility

of the errors in decoding of phase, sync delays of one for DQPSK and one for

D16-QAM were chosen for all subsequent testing which was conducted for this

research.

B. BIT ERRORS AND SNR

Bit errors and SNR are both discussed in the same section as they are directly"

related. The number of bit errors that can be expected in a transmission is di-

rectliv related to the SNR as will be shown graphically later in this section. The

results for DQPSK and D16-QAM encoding formats are discussed separately

and will be compared and commented on in the next chapter.

System performance testing was conducted on a channel with additive white

Gaussian noise (A\VGN), i.e.. each transmitted sample is affected independently

by the noise. The output SNR was estimated for different input noise levels for

baud lengths of 256. 512, 1024, and 2048. The output SNR is defined as the ratio

of the square of the mean of each of the complex multiplied adjacent tones to

their variances.

1. DQPSK Performance

Data was generated and analyzed for DQPSK encoding of approximately

10.000 bits for each baud length and each input SNR. The program QPSKSNR,

included as Appendix G, counts the number of bit errors and estimates the

36

output SNR for the transmitted data. The system SNR, which is the output SNR

of the system with no input additive noise, is shown versus the frequency spacing

Af in Figure 13. As shown in the figure, the performance of DQPSK improves

with decreasing Af. This is as expected, because the phase difference between

adjacent tones gets smaller as Af gets smaller.

MAXIMUM SNR OUTPUT
0

0

0.0 10.0 20.0 30.0 40.0

TONE SPACING (HZ)

Figure 13. DQPSK system SNR output.

37

In Figure 14, the output SNR is shown versus various input SNRs for the

different baud lengths. The theoretical curve for output SNR versus input SNR

is also shown for comparison. According to theory, the output SNR is expected

to be equal to the narrowband input SNR [Ref. 1: pp. 24-251.

SNROUT VS SNRIN

LEGEND
o BAUD 256

o B UD512
~~- -7 --- -- E -O__ R ---CQ - -BAUD_1 024

x THEORY

10.0 15.0 20.0 25.0

SNRIN (DB)

Figure 14. DQPSK output SNR versus input SNR.

38

Table 2 lists the bit errors for various input SNR levels for the different baud

lengths. In general, at higher input SNR levels, the larger baud sizes perform

better because the tones are spaced closer together.

Table 2. BIT ERRORS IN 10,000 BITS TRANSMITTED VS BAUD TYPE AND
SNR

Af k, SNRIN (dB)

5 10 15 20 25

40 256 507 105 43 8 0

20 512 487 57 7 0 0

10 1024 402 42 0 0 0

5 2048 419 27 0 0 0

2. D16-QAM Performance

The data generated and analyzed for D16-QAM encoding consisted of

approximately 20,000 bits for each baud length and each input SNR. The num-

ber of bit error- and calculation of the output SNR were generated by the pro-

gram QANISNR. which is included as Appendix H.

The decoding procedure for D16-QANI, like DQPSK, requires the com-

plex multiplication of adjacent tones to obtain the phase differential. Unlike

DQPSK, which has one magnitude level as a result of the complex multiplication,

D16-QAM has three magnitude levels as a result of the decoding procedure. In

D16-QAM, the encoded transmitted data has two possible magnitudes, depend-

ent upon whether the symbols are from the inner (small) or the outer (large) ring

of the constellation. When decoding the received data, the three possible magni-

tude levels are created as follows:

39

* Small times small Lowest magnitude

* Small times large M Middle magnitude

• Large times large =- Highest magnitude

These three magnitude levels are affected differently by AWGN. The lowest

magnitude level is degraded most by AWGN and the highest magnitude level is

degraded least, since the AWGN will affect each magnitude level equally. Figure

15 is a plot of output SNR versus input SNR for different baud lengths. The

output SNRs contained in this figure are only for the lowest magnitude level,

since it is the one most affected by AWGN. The performance for the other two

magnitude levels is better. As with DQPSK, the larger baud sizes in D16-QAM

perform better due to the smaller frequency spacing between adjacent tones. The

theoretical curve for output SNR \ersus input SNR for the lowest magnitudes is

also shown for comparison and is calculated by the equation [Ref. 13]

S\RoW = S\R,. c+ (4)

where c is the ratio of the highest magnitude to the lowest magnitude.

40

SNROUT VS SNRIN
0

tt•

0-

LEGEND
o BAUD 256
o BAUD 512

S'Z BAli i024...-
+ BAUD 2048

x THEORY

5.0 10.0 15.0 20.0 25.0
SNRIN (DB)

Figure 15. D 16-QAM output SNR versus input SNR.

Table 3 shows the number of magnitude and phase bit errors for 20,000

transmitted bits for each of the baud lengths at various input SNRs. As expected.

the system performance is better for higher input SNRs and larger baud sizes. In

general, the number of magnitude decoding errors and phase decoding errors is

approximately equal for almost all cases. Also, most of the phase errors are of

41

the single bit type, indicating that the phase decoding errors occurred due to re-

ceived phases being decoded only one sector away from the transmitted sector

(since the data is Gray-encoded).

Table 3. MAGNITUDE AND PHASE BIT ERRORS FOR D16-QAM FOR

20.000 BITS TRANSMITTED

Baud Size 256 512 1024 2048

SNRIN (db) 25

Mag bit errors 72 19 5 1

1 bit phase errors 86 11 5 1

_ b1er0 ___

2 bit phase errors 0 0 0 03bit phase errors 0_0__ 0

SNRIN (db) 20

Mag bit errors 253 63 42 36

1 bit phase errors 311 4535 36

2 bit phase errors 7 0 0 0

3 bit phase errors 3 0 0 0

SNRIN (db) 15

Mag bit errors 495 352 379 353

I bit phase errors 537 393 421 376

2 bit phase errors 8 6 0 0

3 bit phase errors 0 0 0 0

SNRIN (db) 10

Niag bit errors H114 1035 949 102Q

1 bit phase errors 1424 1214 1173 1171

2 bit phase errors 55 13 0 0

3 bit phase errors 5 3 0

42

V. CONCLUSIONS AND RECOMMENDATIONS

With proper choice of synchronization delay, both differential MFM encod-

ing formats performed well in the test environment. The number of bit errors for

baud sizes of 512 and larger were acceptable for SNRs above 15 dB, which is 10

dB below the SNR specifications for the PSTN and the private telephone net-

works.

The data throughput that can be achieved by MFM signals over a voice fre-

quency channel compares favorably with that of high-speed modems. The

DQPSK encoding format carries two bits per tone per baud, resulting in a band-

width efficiency of two bits/s/Hz. With this bandwidth efficiency, a throughput

of 6400 bps can be achieved on a telephone line having a bandwidth of 3200 Hz.

The bandwidth efficiency of the MFNI D16-QAM encoding format is four

bits/s/Hz. since this format carries four bits per tone per baud. The D16-QANI

signal can achieve a throughput of 12800 bps for this bandwidth efficiency. In

comparison, the V.32 throughput is 9600 bps.

"Though not shown in tabular form in this report, the bit error rate (BER) for

DQPSK is lower than that of D16-QAM for every case of input SNR and baud

length tested. The achievable throughput for DQPSK is half that of D16-QAM,

but on a switched telephone network that generally has higher noise levels, such

as overseas telephone lines, a trade-off of throughput for lower BER may be de-

sirable. DI6-QANI encoding is the best choice of the two formats tested for use

43

on telephone networks that have guaranteed maximum noise levels, such as the

private telephone networks.

Areas of further study should include the design and implementation of a PC

expansion board that contains both a transmitter and receiver to allow testing of

full-duplex MFM communications on industry standard computers. Echo can-

celling algorithms for MFM should be studied. Additionally, error control coding

should be incorporated into the existing Pascal software for improvement of the

BERs. Error control coding for MFM is the subject of a thesis by LT Robert

W. Ives [Ref. 14]. Finally, a high-speed (V.32 compatible) modem utilizing an

MFM encoding format should be designed and built for further testing of the

MFM signal over a voice frequency channel.

44

APPENDIX A. MFM TRANSMITTER

j~
7 ,*

-

Figur 16 NIN trns ite exanio board schematic..

S_....-
_ --4

Figure 16. MF.M transmitter expansion board schematic.

45

APPENDIX B. DQPSK TRANSMIT PROGRAM

program DQPSKXMIT;
(*Transmits a syncbaud and message from file 'MESSAGE.DAT'.

The message is encoded using DQPSK. 'MESSAGE.DAT' is a text
file. It should already exist before using this program.
Output is used to collect data for TESTING*)

uses crt,graph,plrte55;

const
FIRST-ELEMENT = -28929;

type
TNvector = array[0..4095] of single;
TNvectorPtr = TNvector;
BCSTARRAY = arraylFIRST_ELEMENT..32767] of byte;

var
kx,

k!,k2,I,w,
NUMBAUDS, MAXNUMBAUDS,

BAUDCOUNT, BYTECOUNT,
SYMBOLCOUNT, MAXNUMCHAR,
MESSAGESIZE,dmachn,
n2p,bk0psz,bklpsz,
port,Aadd,proc :integer;
Eadd : word;
MAGNITUDE,
CHARACTERSPERBAUD,
xmr,xp :single;
XREAL,XIMAG :TNvectorPtr;
INVERSE :boolean;
TEMPBYTE,ERROR :byte;
ECSK :BCSTARRAY;
BY-EFILE : file of byte;
TESTFILE :text;
ANSWER,
NEXTCHAR :char;
plbuf :array[0..768] of integer;

(SL dmainit)
($L dmastop)

(Q ..------------------------- ---------------------------------

procedure Cnvttotime;
(*computes inverse FFT, returns values in XREAL *)

type
pass = array[O..81911 of single;

46

passptr = pass;

var
FVALUES :passptr;

begin

new(FVALUES);
fillchar(FVAL!JES ,sizeof(FVALUES) ,O);
for i:= 0 to kx-1 do

begin

FVALUES 12*i] XREAL [ij;
FVALUES [2*i+lJ XIMAG [i];

end;
plxfto(FVALUES ,Aadd,2*kx);
plwtxf;

vfieee(Aadd,Aadd, 2*kx);
Ci'fft(Aadd,n2p);
cereal(Aadd,Badd.kx);

vtieee(Badd,Badd,kx);

plwtrn;
plxffm(BaddXREAL ,kx);
p lwtxf;
dispose(FVALUES);

end; (*Cnvttotime*~)

procedure SyncBaud;
(*Process the synchronization baud and stores the 256 point
time d3main sequence at the beginning of the packet storage
crea. *-)

v aI_
J, TEMP : integer;
SYNCDATA :byte;
SYNC-MAG :single;
s yncvals : text;

begin
ass ign(syncvals, 'syncvals. dat');
rewrite(syncvals);
kx:=256;
n2p: =8;
SYNC"IAG: =MIAGNITUDE;
fillchar(XREAL ,sizeof(XREAL),0);
fiJllchar(XIMAG ,sizeof(XIMAC),0);
XREA'L [68]:= -SYNCMAC- ; XIMAG [68]: = -SYNCMAG;
XREAL [691 -S YNCMAG ; XTMAG [69]: = -SYNCMAG;
XREAL [7 03 -SYNCMýAG ; XIMAG [7031:= SYNCNAG;
XKEASL [71]:) -SYNCMýAG ;XIMAG [7 1]: = SYNOCMAG
XPEAL [72]:= SYNCMAG ;XIMIAG [721: -SYNCMAS
YRFEA [,773] := SYNCMAG ;XINAG [73] 1 SYNCIMAG
XREAL [74j : = -SYNCMAG ;XIMAG [743 ' SYNCMAG
XREAL [753]:= SYNCMAG X NI MAG [75]1 SYNCMAG
XREAL [7o,' -SY CIG ;Xl1NAG [761 . SYNCŽ'IAG;

4^7

XREAL [771:= -SYNCMAG ; XIMAG [j771:= -SYNCMAG ;
XREAL [78]:= SYNCMAG ; XIMAG 178]:= -SYNCMAG ;
XREAL [791:= -SYNCMAG ; XIMAG [791:= -SYNCMAG ;
XREAL [80]:= SYNCHAG ; XIMAG [80]:= SYNCMAG ;
XREAL [81]:= SYNCMAG ; XIMAG [81]:= -SYNCMAG
XREAL [821:= -SYNCMAG ; XIMAG [82):= -SYNCMAG ;
XREAL [83]:= SYNCMAG ; XIMAG 183]:= SYNCMAG

(*complex conjugate image*)
for J := 68 to 83 do

begin
XREAL [256-J]:= XREAL [JJ;
XIMAG [256-J]:=-XIMAG [J];

end; (*for J*)

Cnvttotime; (*compute the 256 time domain values*)

for J := 0 to 255 do (*force values to range 0-255*)
begin (*for d/a conversion*)
if (XREAL [J] > 127) then

begin
writeln('syncvals exceed range of D/A converter');
halt;

end;
TEMP:=round(XREAL [J] + 126);
if TEMP < 0 then

TEMP: =0;
SYNCDATA: =TEMP;
BCST[J+FIRSTELEMENTI :=SYX'CDATA;

(* writeln(syncvals,BCST(J+FIRST-ELENENTJ); *)
end; (*for J*)
close(syncvals);

end; (*SyncBaud*)

(*- *

procedure SelectBaud;
(*SelectBaud establishes kx, k1, and k2, and n2p*)

var
ANSWER :integer;

begin
kx: =0;
repeat

if kx < 0 then writeln('TRY AGAIN');
writeln('What is the length of the bauds (kx)?');
writeln('i.e. 256, 512, 1024, 2048, 4096');
read in(ANSvO'ER);
case ANSWER of
256: begin

kl:=5; k2:=85; kx:=256; n2p:=8;
end;

512: begin
kl:=10; k2:=170; kx:=512; n2p:=9;

end;

4S

1024: begin
kh =20; k2: =340; kx: =1024; n2p: =10;

end;
2048: begin

kl:=40; k2:680; kx:=2048; n2p:=ll;
end;

4096: begin
ki:=80; k2:=1360; kx:=4096; n2p:=12;

end;
end; (*case kx*)

if kx = 0 then kx := -1;
until kx > 0;

end; (*SelectBaud*)

(* ..--

procedure TailorPacket;
(*TailorPacket sets the maximum number of baud required to

encode the message*)

begin
MESSAGESIZE:= filesize(BYTEFILE);
writeln('Messege is ',MESSAGESIZE,' bytes.');
CHARACTERS_PERBAUD: =(k2-kl)/4;
MAXNUMCHAR: = trunc(10240.0/kx * CHARACTERSPERBAUD);
if MESSAGESIZE > MAXNUMCHAR then

begin
writeln('Message is to large. The last

MESSAGESIZE - MAXNUMCHAR,
characters will not be transmitted. ');

MESSAGES IZE: =MAXNUNCHAR;
end;

MAXNUMBAUDS: =trunc(MESSAGESIZE / CHARACTERS_PERBAUD);
if frac(MESSAGESIZE / CHARACTERSPER_BAUD) > 0.0 then

MAXNUMBAUDS: =MAXNUMBAUDS + 1;
repeat
writeln;
writeln('Enter number of ',kx,' bauds to process.

MAXNUMBAUDS,' is the maximum.');
read ln(NUMBAUDS);

until NUMBAUDS in [1 .. MAXNUMBAUDS];
end; (*TailorPacket*)

(*--

procedure DiffEncode;
(*DiffEncode differential encodes symbols on a tone-to-tone

basis. BYTEFILE is read from one byte at a time. The byte
is isolated into 2-bit groups and stored in BITS. BITS is
then used to DQPSK encode the frequency domain arrays
XREAL and XIMAG. Bytes partially encoded are carried over
into the next baud by global variable TEMPBYTE.*)

var
J : integer;
BITS :byte;

49

begin
fillchar(XREAL ,sizeof(XREAL),0);
fillchar(XIHAG ,sizeof(XIMAG),0);

(*first tone of every baud set to pi/2*)

XREAL [kl]: = MAGNITUDE;
XIMAG [kl]:= MAGNITUDE;
if SYMBOLCOUNT = 0 then

read(BYTEFILE, TEMPBYTE);
for J:= (kl + 1) to k2 do

begin
SYMBOLCOUNT:=SYMBOLCOUNT + 1;
if frac(SYMBOLCOUNT / 4) = 0.25 then

BITS:= (TEMPBYTE and $C0) shr 6;
if frac(SYMBOLCOUNT / 4) = 0.5 then

BITS:= (TEMPBYTE and $30) shr 4;
if frac(SYMBOLCOUNT / 4) = 0.75 then

BITS:= (TEMPBYTE and $OC) shr 2;
if frac(SYMBOLCOUNT / 4) = 0.0 then

begin
BITS:= TEMPBYTE and $03;
if not EOF(BYTEFILE) then

read(BYTEFILE,TEMPBYTE)
else

TEMPBYTE: =$40; (*fill character*)
end;

if (BITS < 0) and (BITS > 3) then
writeln('Bits not assigned properly');

(*differential encode*)

case BITS of
0: begin XREAL [J]:= XREAL [J-1];

XIMAG [J]:= XIMAG [J-l]; end;
1: begin XREAL [J]:=-XIMAG [J-1];

XIMAG [J]:= XREAL [J-l]; end;
2: begin XREAL [J]:= XIMAG [J-1];

XIMAG [J]:=-XREAL [J-l]; end;
3: begin XREAL [J]:=-XREAL [J-1];

XIMAG [JI:=-XIMAG (J-1; end;
end; (*case BITS".)

end; (*for J*)

(*complex conjugate image*)

for J:= k1 to k2 do
begin

XREAL [kx - J]:= XREAL [J];
XIMAG [kx - JI:=-XINAG [J];
xp : arctan(ximag [j]/xreal [j]) * 180/pi;
xm : sqrt(sqr(xreal [j])+sqr(ximag [j]));

if (ximag [j] > 0) and (xreal [j] > 0) then
xp := xp;

if (ximag [j] > 0) and (xreal [j] < 0) then
xp := (90+xp) + 90;

if (ximag [Ij] < 0) and (xreal [j] < 0) then
xp := 180 + xp;

5O

if (ximag [j] < 0) and (xreal [j] > 0) then
xp := (90+xp) + 270;

(* if baudcount = 3 then *)
begin

writeln(TESTFILE,baudcount,' ',J,' ',xm,' 'xp);
end;

end;
end; (*DiffEncode*)

(* ..- *

procedure ScaleData;
(*ScaleData converts each real value in XREAL dowm to a byte

and stores the byte in the packet storage buffer, BCST.
INDEX establishes the location in the buffer of each byte
in the packet.*)

var
INDEX,J,TEMP :integer;
DATA :byte;

begin

for J := 0 to kx-I do
begin
if (XREAL [J] > 127) then

begin
writeln('broadcast values > 127',XREAL [J]:8:2);

(* halt; *)
end;
TEMP := round(XREAL [J] + 126);

if TEMP < 0 then
TEMP := 0;

DATA := TEMP;
(*256 is added to INDEX to start message bauds

after the sync baud*)
INDEX := J+(BAUDCOUNT-)*kx+FIRSTELEMENT+256;

BCST[INDEX] DATA;

(* if baudcount 3 then
writeln(testfile,J:4,' ',round(XREAL [J])); *)

end; (*for J*)
end; (*ScaleData*)

procedure Dmastop;external;
(M',asks D:IA, stopping data transfer.*)

(*- *

procedure Dmainit(var BCST: BCSTARRAY; BYTECOUNT: integer); external;
(*Assembly lanuage procedure used to initialize and unmask

the DMA for data transfer. The source code must be

converted to a BIN file.*)

5-

begin
dmachn: =0;
plinit(dmachn,plbuf,sizeof(plbuf));
plslib('C: PL1250 PLLIB. 15');
proc: =1;
port: =$0318;
bk~psz: =0;
bklpsz: =1024;
plsprc(proc,port , bkOpsz,bklpsz);
Aadd:=$ 0400;
B add: =$8400;

new(XREAL);

new(XIIIAG);

(*contains hex values to be encoded and transmitted*)

assign(BYTEFILE, 'MESSAGE. DAT');

reset(BYTEFILE);

(*Output file of encoded symbols. Used for system testing*)
assign(TESTFILE, 'XNITDAT.DAT');
rewrite(TESTFILE);

repeat
writeln('Enter magnitude of tones. (greater than 65,

less than 1501)');
read ln(t4AGNIT UDE);

until MAGNITUDE > 0.0;

writeln('Loading sync baud.');
SyncBaud;.
SelectBaud;
TailorPacket;

SYMBOLCOUNT: =0;
TEM,-PBYTE:=S00;
writeln('Nurnber of bauds is ',numbauds);

for baudeount := I to numbauds do
begin

Di ffEncode;
writeln('Performing IFET ',BAUDCOUN`T,'

N-UMBAUDS-BAUDCOU.N7,' left');
Cnvttot ime;
ScaleData;

end; (*efor BAUDCOUNTI*)

BYTECOUNT -= 256 + NUMBP.UDS*kx - 1;
write ln(bytecount);

repeat
writeln('Press return to transmit');readln;
Dmainit(BCST ,BYTECOUNT);
repeat

writeln('Transmit some more? (*yes or no*)')

52

read ln(ANSWER);
until ANSWER in [

t
n',?N', Iy I IV']

Dmastop;I
until ANSWER in ['n',N'N];

dispose(XREAL);
dispose(XIMAG);
close(BYTEFILE);
cl~ose(TESTFILE);

(*reset(TESTFTLE);
while not EOF(TESTFILE) do

begin
while not EOLN(TESTFILE) do

begin
read(TESTFILE ,NEXTCI{AR);
write(NIEXTCHAR);

end;
readln(TESTFILE);
writein;

end;
close(TEESTFILE); *

end.

53

APPENDIX C. D16-QAM TRANSMIT PROGRAM

program DQAMXMIT;
(*Transmits a syncbaud and message from file 'MESSAGE. DAT'.

The message is differentially encoded using 16-QAM. 'MESSAGE.DAT'
is a text file. It should already exist before using this program.
Output is used to collect data for TESTING*)

uses crt,plrte55;

const
FIRST_ELEMENT = -28929;

type
TNvector = array[O..4095] of single;
TNvectorPtr = TNvector;
BCSTARRAY = array[FIRSTELEMENT.. 32767] of byte;

var
kx,
kl,k2,I,w,
NUMBAUDS,MAXNUMBAUDS,
BAUDCOUNT,BYTECOUNT,
SYMBOLCOUNT,MAXNUMCHAR,
MESSAGESIZE,dmacbn,
n2p,bkOpsz,bklpsz,
port,Aadd,proc :integer;
Badd :word;
MAGNITUDE,
CHARACTERSPERBAUD,
PREVTONEMAGNITUDE,PREV_PHASE :single;
XREAL,XIMAG :TNvectorPtr;
INVERSE :boolean;
TEMPBYTE ,ERROR :byte;
BCST :BCSTARRAY;
BYTEFILE : file of byte;
TESTFILE :text;
ANSWER,
NEXTCHAR :char;
plbuf :array[0..768] of integer;

($L dmainit)
($L drmastop)

(* ..- *

procedure Cnvttotime;

(*computes inverse FFT, returns values in XREAL *)

type
pass = array[0..8191] of single;
passptr = pass;

54

var
FVALUES :passptr;

begin
new(FVALUES);
fillchar(FVALUES ,sizeof(FVALUES) ,O);
for i:= 0 to kx-1 do

begin

FVALUES [2*i] XREAL [i];
FVALUES 12*i+1] XIMAG [i];

end;
plxfto(FVALUES ,Aadd,2*kx);

plwtxf;

vfieee(Aadd,Aadd, 2*kx);
cifft(Aadd,n2p);

cereal(Aadd,Badd,kx);
vtieee(Badd,Badd,kx);

p lwtrni;
plxffrn(Badd,XREAL ,kx);
plwtxf;
dispose(FVALUES);

end; (*Cnvttotime*)

procedure SyncBaud;
(*Process the synchronization baud and stores the 256 point
time domain sequence at the beginning of the packet storage

area. *)

var
J, TEMP integer;
SYNCDATA byte;
SYNOMAG single;

syncvals :text;
begin

assign(syncvals, syncvals. datt);
rewrite(syncvals);

kx: =256;
n2p: =8;

SYNC'iAG:= MAGNITUDE;
fillchar(XREAL ,sizeofOMREAL),0);
fillchar(XIMAG ,sizeof(XIMAG),O);

XREAL [68]:= -SYNCMAG ; XIMAG [68]:= -SYNCMAG;
XREAL [69]:= -SYNCMAG ; XIMAG [691:= -SYNCMAG;

XREAL [70]:= -SYNCMAG ; XIMAG [70]:= SYNCMAG;
XREAL [71]:= -SYNCHAG ;XINAG [71]:= SYNCMAG

XREAL [72]:= SYNCHAG ;XIMAG [72]:= -SYNCMIAG
XREAL [73]:= SYNCMAG ;XI14AG [73]:= SYNCMAG
XREAL [741:= -SYNCMAG ;XIMAG [74]:= SYNCMAG
XREAL [75]:= SYNO"MAG ;XIMAG [75]:= SYNCMAG

XREAL [76]:= -SYNCMAG ; XIMAG (76]:= SYNOMAG;
XREAL [77]:= -SYNCMAG ; XIMAG [77]:= -SYNCMAG ;
XREAL [78]:= SYNCMAG ; XIMAG [78]:= -SYNCMIIAG ;

XREAL [79]:= -SYNCMAG ; XIMAG [79]:= -SYNCMAG;

XREAL [80j: S71NCMAG ; XIMAG [80]: SYNCMAG;

55

XREAL [81]:= SYNCMAG ; XIMAG [81]:= -SYNCMAG
XREAL [82]:= -SYNCMAG ; XIMAG [821:= -SYNCMAG
XREAL [83]:= SYNCMAG ; XIMAG [831:= SYNCMAG

(*complex conjugate image*)

for J := 68 to 83 do
begin

XREAL [256-J]:= XREAL [J];
XIMAG [256-J]:=-XIMAG [J];

end; (*for J*)

Cnvttotime; (*compute the 256 time domain values*)

for J := 0 to 255 do (*force values to range 0-255*)
begin (*for d/a conversion*)

TEMP:=round(XREAL [J] + 126);
if TEMP < 0 then

TEMP: =0;
SYNCDATA: =TEMP;
BCST[J+FIRSTELEMENT] :=SYNCDATA;

(* writeln(syncvals,BCST[J+FIRSTELEMENT]); *)

end; (*for J*)
close(syncvals);

end; (*SyncBaud*)

(*- -

procedure SelectBaud;
(*SelectBaud establishes kx, ki, and k2, and n2p*)

var
ANSWER : integer;

begin
kx: =0;
repeat

if kx < 0 then writeln('TRY AGAIN');
writeln('What is the length of the bauds (kx)?');
w•iteln('i.e. 256, 512, 1024, 2048, 4096');
readln(ANSWER);
case ANSWER of
256: begin

kl:=5; k2:=85; kx:=256; n2p:=8;
end;

512: begin
kl:=10; k2:=170; kx:=512; n2p:=9;

end;
1024: begin

kl:=20; k2:=340; kx:=1024; n2p:=10;
end;

2048: begin
kl:=40; k2:=680; kx:=2048; n2p:=ll;

end;
4096: begin

ki:=80; k2:=1360; kx:=4096; n2p:=12;
end;

56

end; (*case kx*)
if kx = 0 then kx := -1;

until kx > 0;
end; (*SelectBaud*)

procedure TailorPacket;
(*TailorPacket sets the maximum number of baud required to

encode the message*)

begin
MESSAGESIZE:= filesize(BYTEFILE);
writeln('Message is ',MESSAGESIZE,' bytes.');
CHARACTERSPERBAUD:= (k2-kl)/2; (*for qpsk:(k2-kl)/4;*)
MAXNUMCHAR:= trunc(10240.0/kx * CHARACTERSPERBAUD);
if MESSAGESIZE > MAXNUMCHAR then

begin
writeln('Message is to large. The last ',

MESSAGESIZE - MAXNUMCHAR,
I characters will not be transmitted.');

MESSAGESIZE:=MAXNUNCHAR;
end;

MAXNUMBAUDS:=trunc(MESSAGESIZE / CHARACTERSPER BAUD);
if frac(MESSAGESIZE / CHARACTERSPER_BAUD) > 0.0 then

MAXNUMBAUDS:=MAXNUMBAUDS + 1;
repeat
writeln;
writeln('Enter number of ',kx,' bauds to process.

MAXNUNBAUDS,' is the maximum.');
read In(NUNBAUDS);

until NUMBAUDS in [1. . MAXNUMBAUDS];
end; (*TailorPacket*)

(*- -

procedure DiffEncode;
(*DiffEncode differentially encodes the message on a tone-to-tone

basis. BYTEFILE is read from one byte at a time. The byte
is isolated into two 4-bit groups. Then the first three bits
in each symbol of 4 bits are used to determine the phase shift
between tones, and the last bit of the 4 bit symbol is to
determine the magnitude offset . The encoded tones are
converted to rectangular coordinates and are stored in the arrays
XREAL and XIMAG. Bytes partially encoded are carried over into the
next baud by global variable TEMPBYTE *)

var
SHORTVECTOR,LONG3TECTOR,PHASESHIFT,
TONEMAGNITUDE,TONE-PHASE,
PREVTONEPHASE,PREVTONEMAGNITUDE :single;
DELTAPHI,DELTAMAG :byte;
J :integer;

begin
fillchar(XREAL ,sizeof(XREAL),0);

57

fillchar(XIMAG ,sizeof(XIMAG),0);
LONG_VECTOR MAGNITUDE;
SHORT_VECTOR LONG_,ECTOR*0.5;
PREVTONE-MAGNITUDE := SHORTVECTOR;
PREVPHASE := 22.5;

XREAL [kl] SHORT_VECTOR * cos(22.5*pi/180.0);
XIMAG [kl] SHiORTVECTOR * sin(22.5*pi/180.0);

(*if BAUDCOUhNf = 3 then *)writeln(TESTFILE,baudcount,' ',kl,' ',PREVTONE_MAGNITUDE,

I ',PREVPHASE);

if SYMBOLCOUNT = 0 then
read(bytefile,TEMPBYTE);

for J:= (kl +1) to k2 do
begin

SYMBOLCOUNT := SYMBOLCOUNT + 1;

(*seperate magnitude/phase bits*)

if frac(SYMBOLCOUNT/2) = 0.5 then
begin

DELTAPHI (TEMPBYTE and $EO) shr 5;
DELTAMAG (TEMPBYTE and $10) shr 4;

end;
if frac(SYMBOLCOUNT/2) = 0.0 then

begin
DELTAPHI (TEMPBYTE and $OE) shr 1;
DELTAMAG (TEMPBYTE and $01);
if NOT EOF(bytefile) then

read(bytefile,'TEMPBYTE)
else

TEMPBYTE := $02;
end;

(*differentially encode the last bit in the four bit symbol*)

if PREVTONE_MAGNITUDE = SHORTVECTOR then

begin
case DELTAMAG of

0: TONE_-MAGNITUDE := SHORTVECTOR;
1: TONEMAGNITUDE LONG_VECTOR;

end;
end (*previous tone short case*)

else (*PREV_TONEMAGNITUDE = LONGVECTOR*)
begin

case DELTAMAG of
0: TONE-MAGNITUDE : LONGVECTOR;
1: TONEMAGNITUDE : SHORT_VECTOR;

end; (*end previous tone long case*)
end;

(*Now use the first three bits in the symbol to determine the
amount of phase rotation to the next encoded tone',)

58

case DELTAPHI of
0:PFASESHIFT 0;
l:PHASESHIFT 45;
2:PHASESHIFT 135;
3:PHASESHIFT 90;
4:PHASESHIFT -45;
5:PHASESHIFT -90;
6:PHASESHIFT 180;
7:PHASESHIFT -135;

end; (*case DELTAPHI of*)

(*Now assign the actual phase of the tone being encoded which is a
function of the previous phase, and the phaseshift*)

TONE-_PHASE := PREV_PHASE + PHASESHIFT;
if TONEPHASE >= 360.0 then

TONEPHASE := TONE_PHASE - 360.0;

(*Now convert the magnitude and phase of the tone to rectangular

coordinates*)

XREAL [J] TONEMAGNITUDE * cos(TONE_PHASE*pi/180);
XIMAG [J] TONE_MAGNITUDE * sin(TONEPHASE*pi/180);

(*Save the newly encoded tone's magnitude and phase for the next

encoding iteration **)

PREVTONEMAGNITUDE TONEMAGNITUDE;
PREVPHASE TONEPHASE;

(* if BAUDCOUNT = 3 then *)

writeln(TESTFILE,baudcount,' ',J,' ',TONE_MAGNITJDE,' ',

TONE_PHASE);

end; (*end of encoding proce's for one tone,
encode next tone,')

(*Put the complex conjugate of the encoded tones in the second half
of the array before computing the IFFT for this baud*)

for J:= k1 to k2 do
begin

XREAL [kx - J]:= XREAL [J];
XIMAG [kx - Jj:=-XIMAG [J];

end;
end; (*DiffEncode*)

(*- *

procedure ScaleData;
(*SualeData converts each real value in XREAL down to a byte

and stores the byte in the packet storage buffer, BCST.
INDEX establishes the location in the buffer of each byte
in the packet.*)

59

var
INDEX,J,TEMP :integer;
DATA :byte;

begin
for J := 0 to kx-l do

begin
IF (xreal [J] > 127) then

begin
writeln('broadcast values > 127',xreal [JJ:8:2);

(* halt; *)
end;
TEMP := round(XREAL [J] + 126);
if TEMP < 0 then

TEMP : = 0;
DATA : TEMP;

(*256 is added to INDEX to start message bauds

after the sync baud*)
INDEX : = J+(BAUDCOUNT-)*kx+FIRSTELEMEN'T+256;
BCST[INDEX] := DATA;

(* if baudcount = 1 then
writeln(testfile,J:4,' ',round(XREAL [J])); *)

end; (*for J*)
end; (*ScaleData*)

procedure Dmastop; external;
(*Masks DMA, stopping data transfer.*)

procedure Dmainit(var BCST: BCSTARRAY; BYTECOUN'T: integer) ; external;
(*Assembly language procedure used to initialize and unmask

the D:!A for data transfer. The source code must be
converted to a OBJ file.*)

(*- -

begin
dmachn: =0;
plinit(dmachn,plbuf,sizeof(plbuf));
plslib('C: PL1250 PLLIB. 13');
proc: =i;
port: =$0318;
bk0psz: =0;
bklpsz: =1024;
plsprc(proc,port,bkOpsz,bklpsz);
Aadd: =$0400;
Badd: =$8400;

new(XREAL);
new(XIMAG);

(*contains hex values to be encoded and transmitted*)

assign(BYTEFILE, 'MESSGE. DAT');

60

reset(BYTEFILE);

(*Output file of encoded symbols. Used for system testing*)
assign(TESTFILE, 'XMITDAT. DAT');

rewrite(TESTFILE);

repeat

writeln('Enter magnitude of tones. (greater than 65, less than
1501)');

readln(MAGNITUDE);
until MAGNITUDE > 0.0;

writeln('Loading sync baud.');
SyncBaud;
SelectBaud;
TailorPacket;

SYMBOLCOUNT: =0;

TEMPBYTE:=$00;
writeln('Number of bauds is ',numbauds);

for baudcount := 1 to numbauds do
begin

DiffEncode;
writeln('Performing IFFT ',BAUDC0UNT,' '

NUMBAUDS-BAUDCOUNT,' left');
Cnvttot ime;

ScaleData;

end; ('for BAUDCOUNTQ~

BYTECOUNT :=256 + NUMBAUDS*kx - 1;
wrice ln(bytecount);

repeat
writeln('Press return to transmit'); readln;
Drnainit(BCST, BYTECOUNT);
repea~t

writeln('Transmit some more? (*yes or noQ)')
readln(ANSWER);

until ANSWER in ['n', 'N', 'y',?Yj
Drnas top;

until ANSW'ER in ['n' ,'N'];

dispose(XREAL);
dispose(XIMAG);

close(BYTEFILE);
ciose(TESTFILE);

end.

61

APPENDIX D. DQPSK RECEIVE PROGRAM

program DQPSKREC;
(*Acquires the signal. Stores it in a memory buffer.

Differential decodes between tones. Maximum number of bauds
are received. The number of bauds processed is a user input*)

uses Graph,Crt,tp55dl6,plrte55;

($I-)
($R-)
const MaxBuffer = 65500;

type

(*TYPE for real and imaginary data for FFT routing*)

TNvector = array[0..4095] of single;
TNvectorPtr = TNvector; (*Pointer for FFT data array

which allows dynamic
allocation of memory*)

clr = array[0..4095] of word;
clrptr = clr;

var
INVERSE :boolean;
XREAL,XIMAG :TNvectorPtr;
'olor :clrptr;
ERROR,TEfPBYTE :byte;
J, I,xradd,xroadd,proc,port,
kl ,k2,kx,ANSWER,ERRCODE,
BAUDCOUNT, SYMBOLCOUNT, n2p,

NUMBAUDS, MAXNUMBAUDS, dmachn,
bkOpsz,bklpsz :integer;
MAGNITUDE,PHASE :real;
DATAVECTOR : integer;

DMAPOINTER :pointer;
OUTFILE, recdat :TEXT;

plbuf :array[0..4095] of integer;

procedure PacketSetUp;

begin
repeat

clrscr;
if kx < 0 then writeln('TRY AGAIN');
writeln('Enter baud size ');
readln(ANSWER);
case ANSWER of

256: begin
kx: = 256; n2p: =8; kl: =5; k2: =85;

end;

62

512: begin
kx: = 512; n2p: =9; kl: =10; k2: =170;

end;
1024: begin

kx: =1024; n2p: =10; ki: =20; k2: =340;
end;

2048: begin
kx:=2048; n2p:=11; ki:=40; k2:=680;

end;
4096: begin

kx:=4096; n2p:=12; ki:=80; k2:=1360;
end;

end; (*case*)

if kx = 0 then kx := -1;
until kx > 0;

MAXNUMBAUDS := trunc((MAXBUFFER/2)/kx);

repeat
writeln;
writeln('Enter number of ',kx,' bauds to process.

MAXNUMBAUDS,' is the maximum.');
readln(NUMBAUDS);

until NUMBAUDS in [1 i. MAXNUMBAUDSI;
end; (*PacketSetUp*)

procedure AcquireData;
(*AcquireData initializes Metrobyte DASH-16F data acquisition

board, using TTOOLS procedure Dl6_int and Dl6_ainm. Data
transfer is controlled by the DMA controller and initialized
by D16_ainm and disabled by D16_dmaint_disable. TTOOLS
procedures are external procedures included by 'uses' tp4dl6.*)

var
RATE: real;
I,CNTNt2,, MODE, CYCLE, TRIGGER,
BASEADR, INTLEVEL, DMALEVEL,
BOARDNUM, CHANLO,
OPTYPE, STATUS, NEXTCNTf, ERRCODES : integer;

begin
BOARDNU := 0; INTLEVEL := 7; DMA_LEVEL := 1;
BASEADR : $300;

D16_init(BOARDNUM,BASE_ADR, IN•TLEVEL,DNA_LEVEL,ERRCODE);

CHANLO := 0;
CYCLE:=0; (*0-one sweep of the DMA l-autoinitialize*)
TRIGGER:=0; (*0 - external 1 - internal*)
CNTNUX:=32767; (*# of samples*)
RATE : 10000.0; (*used for internal trigger*)
MODE : 2; (*DMA mode*)
writeln('Ready to acquire');

63

D16_ainm(BOARD_NUM,CHANLO,MODE,CYCLE,TRIGGER,CNT..NUM,

RATE, DATAVECTOR ,ERR-CODE);

STATUS := 11;

(*status indicates the progress of acquisition. When all

samples have been acquired status=0*)
repeat

D16_dmaint-status(BOARD_NUM,OPTYPE,STATUS,NEXT_CNT,
ERR_CODE_SS);

until STATUS = 0;
writeln('Data received');

if ERR_CODE <> 0 then
D16_print_error(ERRCODE);

D16_dma_int_disable(BOARD_NUM,ERR.CODE);
end; (*Acquire*)

(*--

procedure ConvertData;
(*ConvertData seperates channel and acquired data. CHANDATA

is not used. Acquired data is stored in XREAL.*)

var
ADDATA: array[0..4095] of integer;
I,CHAN_DATA, ERRCODE,
SEGMENTPART, OFFSETPART :integer;
NEWDATAVECTOR : integer;
TEMPPOINTER : pointer;

begin
fillchar(xreal ,sizeof(xreal),0);
fillchar(ximag ,sizeof(ximag),0);
SEGMENTPART: =seg(DATAVECTOR);
OFFSETPART:=ofs(DATAVECTOR) + 2 * kx * (BAUDCOUNT - 1);
TEMPPO INTER: =ptr(SEGMEN'TPART, OFFSETPART);
NEWDATAVECTOR := TEMPPOINTER;
d16_convertdata(2047,kx,NEWDATAVECTOR ADDATA[0j,

CHAN_DATA 0,ERRCODE);

for I:= 0 to (kx - 1) do
begin

xreal [i] ADdata[i];
end;

end; (*ConvertData*)

(* ...--

procedure DiffDecode;
(*DiffDecode differentially decodes complex frequency domain

arrays XREAL and XIMAG. Four decoded symbols are recombined
into a byte and transferred to file BYTESOUT.DAT.*)

var

64

:integer;
TEMPREAL,TEMPIMAG :single;
BITS :byte;
TEMPCHAR :char;

begin
fillchar(color ,sizeof(color),0);
for I := k1 to (k2 - 1) do

begin
(*Complex multiply two adjacent tones, I and the complex

conjugate of I+1. This will give the phase difference
between the two tones. The answer is in rectangular
notat ion*)

TEMPREAL:=XREAL [I] * XREAL [I+1] +
XIMAG [I] * XIMAG [I+1];

TEMPIMAG:=XREAL [I] * XIMAG [I+1] -

XREAL [I+1] * XIMAG [I];

(*Complex multiply (TEMPREAL + j TEMPIMAGE) and (l+j).

This rotates the differential vector pi/4 radians.
XREAL [I] and XIMAG [I] are used to store the results.
This eliminate the original data*)

XREAL [I]:=(TEMPREAL - TEMPIMAG) / 80;
XIMAG [I]:=(TEMPREAL + TEMPIMAG) / 80;

(*decode*)

if (XREAL [I] >= 0) and (XIMAG [I] > 0) then
begin

BITS:=$00; color [I] := 0;
end;

if (XREAL [I] < 0) and (XIMAG [I] > 0) then
begin

BITS:=$01; color [I] := 10;

end;
if (XREAL [I] < 0) and (XIMAG [I] <= 0) then

begin
BITS:=$03; color [I] := 14;

end;
if (XREAL [I] >= 0) and (XIMAG [I] <= 0) then

begin
BITS:=$02; color [I] := 12;

end;
SYMBOLCOUNT := SYMBOLCOUNT + 1;

(*fill TEMPBYTE with four symbols*)

if frac(SYMBOLCOUNT / 4) = 0.25 then
TEMPBYTE := (BITS shl 6);

if frac(SYMBOLCOUNT / 4) = 0.5 then
TEMPBYTE := (BITS shl 4) or TEMPBYTE;

if frac(SYMBOLCOUNT / 4) = 0.75 then
TEMPBYTE := (BITS shl 2) or TEMPBYTE;

if (frac(SYMBOLCOUN'T / 4) = 0.0) then
begin

TEMPBYTE BITS or TEMPBYTE;
TEMPCHAR chr(TEMPBYTE);

65

write(tempchar);

TEKPBYTE: =0;
end; (*if frac*)

end; (*for I*)

XREAL [k21:=l;
XIMAG [k2]:=1;

end; (*DiffDecode*)

procedure viewphase;

var
shade :word;
gd~gm~pta,ptb,ptl,pt2,ynzlo,ynzhi,yzlo,yzhi :integer;

begin

gd: =detect;
initgraph(gd,gm,'C: TP DRIVERS');
if graphresult <> grOk then

halt(1);

setgraphmode(1);

setbkco lor(0);

setcolor(15);

(*draw axes*)

line(50,0,50, 140);
line(50,140,590, 140);
line(50,180,50,320);
line(50,320,590,320);

(*compressed and zoom spectrum*)

pta 75;
ptb 555;

yzlo 140;
yzhi 15;
Pt61 50 + round(0. 53 * (590-50));
Pt2 50 + round(0.70 * (590-50));
ynzlo 320;
ynzhi 320 - 130;

line(pta,yzlo,ptl ,ynzlo);
line(pta+30-,'15 ,yzlo,ptl+48,ynzlo);
i: =68;

repeat
shade :=color (ii;
setcolor(shade);
line(ptl + 3*(i-68),ynzlo,pt1 + 3*(i-68),ynzhi);
if shade = 0 then

begin

setfillstyle(ltslashfill ,14);
bar(pta+30*(i-68)-3,yzlo,pta4-30*(i-68)+3,yzhi);

end
else if shade > 0 then

line(pta +30*(i-68),yzlo,pta +30*(i-68),yzhi);

i i1

66

until(i83);
setcolor(14);
settextjustify(centertext ,centertext);

outtextxy(300,10, 'Zoom Spectrum');

outtextxy(295,getmaxy div 2, 'Compressed Spectrum');

outtextxy(295,ynzlo +20?'Relative position of tone in 256 baud')

outtextxy(ptl,ynzlo-I10, Ki);

outtextxv(ptl+16*3,ynzlo+10,2K2');
outtextxy(590,ynzlo+10, 'KX/2');

repeat
uritil(keypressed);

end; (*viewphase*)

procedure Showmessage;
(*Showmessage read in decoded message*)

var
NEXTCHLAR: char;

begin

write in;
writeln('The message transmitted is..');
a ss i gn (OUTF I LE , ',ME SSAGE. DAT')
reset(OUTFILE);

while rnot EOF(OUTFILE) do
begin

while not EOLN(O =FILE) do

begin
read(QUTFILE ,NEXTCHAR);

write(NEXTCHIAR);

end; (*while not EOLN"*)
read ln(OUTFILE);

writeln;
end; (" ,,iiile not EOF*)

close(OITFILE);

end; (*Showmessag~e*)

begin (*main body*~)

dmachn-.=0;
plinit(dmachn,plbuf,sizeof(plbuf));
plslib('C: PL850 PLLIB. 15');
proc:= 1;
port:= $0318;
bkOpsz:=0;

bklpsz:=1024;

plsprc(proc,port ,bkOpsz,bklpsz);

GetDMABuffer(MA:*:...BUFFER ,DMAPOINTER ,ERR_.CODE);

DATAVECTOR :=DMAPOINTER; (*This statement assigns a

generic pointer to a variable of a specific pointer

67

type, i.e. integer, so that the pointer can be
passed to the dl6-ainm routine. *)

assign(recdat, 'recdat. dat');
rewrite(recdat);

new(color);
new(XREAL);
new(XIM'AG);

ERROR :=0;
kx: =0;
SYMBOLCOUNNT: =0;
TEMPBYTE: =0;

PacketSetUp; (*determine baud lengths*)

AcquireData; (*AcquireData samples input analog signal*)

xradd:=S0400;
xrcadd:=$4400;

for BAUDCOUNT 1= to NUM1BAUDS do
begin

ConvertData;
plxfto(xreal ,xradd,kx);
plwtxf;
vfieee(xradd,xradd,kx);
rfft(xradd,n2p);
vtieee(xradd ,xradd,kx);
plwt in;

plxffm(xradd,xreal ,kx);
p lwtxf;

for j:= 0 to kx div 2 do
begin

xreal j]i xreal [2*jJ;
xirnag [j] xreal [2-,,j+1};

end;
ximag [0] :=0;
if baudcount = 3 then

begin
for i :=k1 to k2 do

begin wrtl~edtbucut'',I,' ',XREAL [I],

',XIMAG [I]);
end;

end;
DiffDecode;

end;
delav(1000);
if kx = 256 then

viewphase;

close('recdat);
(*close(OUTFILE); *

6S

dispose(XREAL);
dispose(XIMAG);
FreeDMABuf fer(MAC BUFFER ,DMAPOINTER, ERR CODE);
(*Showmessage; *

(*writeln('Error ',ERROR,' hit the enter key');readln; *
end.

69

APPENDIX E. D16-QAM RECEIVE PROGRAM

program DQAMREC;
(*Acquires the signal. Stores it in a memory buffer.

Differential decodes between tones. Maximum number of bauds
are received. The number of bauds processed is a user input*)

uses Graph, Crt, tp55d16,plrte55;

($I-)
($R-)

const MaxBuffer = 65500;

type
(*TYPE for real and imaginary data for FFT routing*)

TNvector = array[0..4095] of single;
TNvectorPtr = TNvector;(*Pointer for FFT data array whiah

which allows dynamic allocation of memory*)

var
INVERSE :boolean;
XREAL, XIMAG :TNvectorPtr;
ERROR, TEMPBYTE :byte;
J, I, xradd, xroadd,proc,port,
kl ,k2 ,kx,ANSWER,ERRCODE,
B AUDCOUNT, SYMBOLCOUNT, ri2p,
NUMBAUDS,MAXNUMBAUDS,dmachn,
bkOpsz,bklpsz : integer;
MAGNITUDE, PHASE : real;
DATAVECTOR : integer;
DIAPOINTER : pointer;
OUTFILE, recdat : TEXT;
plbuf :array[O..4095] of integer;

procedure PacketSetUp;

begin
repeat

clrscr;
if kx < 0 then writeln('TRY AGAIN');
writeln('Enter baud size ');
readln(ANSWER);
case ANSWER of

256: begin
kx:= 256; n2p:=8; kl:-5; k2:=85;

end;
512. begin

kx:= 512; n2p:=9; kl:-10; k2:--170;
end;

1024: begin

70

kx:=1024; n2p:=10; ki:=20; k2:=340;
end;

2048: begin
kx:=2048; n2p:=11; kl:=40; k2:=680;

end;
4096: begin

kx:=4096; n2p:=12; ki:=80; k2:=1360;
end;

end; (*case*)

if kx = 0 then kx:=-;

until kx > 0;

MAXNUMBAUDS := trunc((MAXBUFFER/2)/kx);

repeat
writeln;
writeln('Enter number of ',kx,' bauds to process.

MAXNUMBAUDS,' is the maximum. ');
readln(NUMBAUDS);

until NUMBAUDS in [1.. MAXNUNBAUDS];

end; (*PacketSetUp*)

(*- .

procedure AcquireData;
(*AcquireData initializes Metrobyte DASH-16F data acquisition

board, using TTOOLS procedure D16_int and D16_ainm. Data
transfer is controlled by the DMA controller and initialized
by Dl6_ainm and disabled by D16_dma_int_disable. TTOOLS
procedures are external procedures included by 'uses' tp4dl6.*)

var
RATE: real;
I,C.NTNUM, MODE, CYCLE, TRIGGER,
BASEADR, INT-LEVEL, DMALEVEL,
BOARDNUM, CHANLO,
OP_TYPE, STATUS, NEXTLCNT, ERRCODES :integer;

begin
BOARD NUM : 0; INT LEVEL : 7, DMALEVEL := 1;
BASEADR : $300;

D16_init(BOARDNUM,BASEADR, IN'TLLEVEL,DMA...LEVEL,ERRCODE);

CHANLO := 0;
CYCLE:0O; (*O-one sweep of the DMA l-autoinitialize*)
TRIGGER:cO; (*0 - external 1 - internal*)
CNTNUM:=32767; (*# of samples*)
RATE : 10000.0; (*used for internal trigger*)
MODE : 2; (*DMA mode*)
writeln('Ready to acquire');

D16_ainm(BOARDNUM,CHANLO,MODE,CYCLE,TRIGGER,CNT_NUM,
RATE, DATAVECTOR ,ERRCODE);

71

STATUS := 11;
(*status indicates the progress of acquisition. When all

samples have been acquired status=O*)

repeat
D16_dma_int_status(BOARDNUM, OPTYPE,STATUS,NEXTCNT,

ERR_CODES);
until STATUS = 0;
writeln('Data received');

if ERR-CODE <> 0 then
Dl16_printerror(ERRCODE);

D16_dmaint_disable(BOARD_NUM, ERR_CODE);
end; (*Acquire*)

(* ...- *

procedure ConvertData;
(*ConvertData seperates channel and acquired data. CHANDATA

is not used. Acquired data is stored in XREAL.*)

var
ADDATA: array[0..4095] of integer;
I, CHANDATA,ERRCODE,
SEGMENTPART,OFFSETPART :integer;
NEWDATAVECTOR :integer;
TEl'iPPOINTER : pointer;

begin
fillchar(xreal ,sizeof(xreal),0);
fillchar(ximag ,sizeof(ximag),0);
SEGMENTPART: =seg(DATAVECTOR);
OFFSETPART:=ofs(DATAVECTOR) + 2 * kx * (BAUDCOUNT - 1);
TEýIPPOINTER: =ptr(SEGMEN'TPART,OFFSETPART);
NEWDATAVECTDR := TEMPPOINTER;
dl6_convert-data(2047 ,kx,NEWDATAVECTOR ,AD-DATA 0],

CHANDATA, O,ERRCODE);

for I:= 0 to (kx I o) o
begin

xreal [i] AD-data[i];
(* writeln(valsin,'Real in is ',xreal [i):8:3,

at ',i:5); *)
end;

end; (*ConvertData*)

(* ...--

procedure DiffDecode;
(*DiffDecode differentially decodes complex frequency domain

arrays XREAL and XTMAG. Two decoded symbols are recombined
into a byte and transferred to the screen*)

var
I : integer;

III l I IN l !

TEMPREAL,TEMPIMAG,OLDMAG,NEWMAG :single;
BITS,PHASEBITS ,MAGBIT byte;
TEMPCHAR :char;

begin
for I:= kl to (k2-1) do

begin
SYMBOLCOUNT: = SYMBOLCOUNT + 1;

(*save the current and next magnitudes for future decoding*)

OLDMAG sqrt(sqr(XREAL [I]) + sqr(XIMAG [I]));

NEWMAG sqrt(sqr(XREAL [I+11) + sqr(XIMAG [1I+11));

(*complex multiply adjacent tones to get phase differential*)

TEMPREAL XREAL [I] * XREAL [i+1] +
XIMAG [I] * XIMAG [I+i];

TEMPIMAG XREAL [I] * XIMAG [I+1] -

XREAL [I+i] * NIMAG [I]

(*now rotate phase by 22.5 degrees to line up with constellation

phase sectors*)

XREAL [I] 0.92 * TEMPREAL - 0.38 * TEMPIMAG;

XIMAG [I] 0.92 * TEMPIMAG + 0.38 * TEMPREAL;

(* writeln(freqsl,I,' ',XREAL [1]:8:4,' ',XIMAG [1]:8:4); *)

(*decode the phase difference into the first three bits of the

symbol to be recovered*)

PHASEBITS := $00;

if (XREAL [I] > 0) and (XIMAG [.I] > 0) then
if XREAL [I] > XIMAG [I] then

PHASEBITS $00
else PHASEBITS $02;

if (XREAL [I] < 0) and (XIMAG [I] > n) then
if abs(XREAL [I]) > XIMAG [I] then

PHASEBITS $04
else PHASEBITS : $06;

if (XREAL [I] < 0) and (XIMAG [I] < 0) then
if abs(XREAL [I]) > abs'XIMAG [I]) then

PHAST.BiTS : $OC
else PHASEBITS $OE;

if (XREAL [I] > 0) and (XIMAG [I) < 0) then
if XREAL [I] > abs(XfMIAG [I]) then

PHASEBITS := $08
else PHASEBITS $OA;

(*now differentially decode the magnitudes of the tones to get the

fourth and last bit in the symbol*)

73

if (NEWMAG > l.5*OLDMAG) or (NEWIIAG < 2*OLDMAG/3)
then MAGBIT : 01
else MAGBIT $00;

(*now jam all the bits together*)

(*fill TEMPBYTE with two symbols*)
if frac(SYMBOLCOUNT / 2) = 0.5 then

TEMPBYTE := ((PHASEBITS or MAGBIT) shl 4);
if (frac(SYMBOLCOUNT / 2) = 0.0) then

begin
TEMPBYTE (PHASEBITS or MAGBIT) or TEMPBYTE;

TEMPCHAR chr(TEMPBYTE);
write(TEMPCHAR); (*put ascii character to screen*)

(* write(OUTFILE,TEMPCHAR); *)
TEMPBYTE: =0;

end; (*if frac*)
end; (*for I*)

end; (*DiffDecode*)

(*- -

procedure Showmessage; (*not used in this version*)
(*Showmessage read in decoded message-)

var
NEXTCHAR: char;

begin
writeln;
writeln('The message transmitted is..');
ass ign(OUTFILE, ' IESSAGE. DAT');
reset(OUTFILE);
while not EOF(CUTFILE) do

begin
while not EOLN(OUTFILE) do

beg 4 n
read(OUTFILE,NEXTCHAR);
wr it e(NEXTCHtAR);

end; (*vhile not EOLN*)
read l.-(OUTFI LE);
writeln;
end; (*while not EOF*)

close(OUT-ILE);
end; (*Showmessage*)

begin (-,'main body*)

dmachn: =-0;
plinit(dmachn,plbuf,sizeof(plbuf));
plslib('c: p11250 p11ib. 13');
proc: 1;
port:= $0318;
bk.Gpsz: =0;

74

bklpsz: =10214;

plsprc(proc~port ,bk~psz,bklpsz);

GetDMABuffer(MAX BUFFER, DMAPOINTER ,ERR-CODE);

DATAVECTOR :=M)APOINTER; (*This statement assigns a
generic pointer to a variable of a specific pointer
type, i.e. integer, so that the pointer can be
passed to the d16_ainm routine. *)

assign(recdat, 'recdat. dat');
rewrite(reedat);

new(XREAL);
new(XIMAG);

ERROR :=0;
kx: =0;

PacketSetUp;

SYMBOLCOUNT: =0;
TEMIPBYTE: =0;

AcquireData; ('*AcquireData samples input analog signal*)

xradd:=S0400;
xroadd: =$4400;

for BAtJDCOUNT 1= to NUMBAUDS do
begin

ConvertData;

plxfto(xreal ,xradd,kx);
plwtxf;

vfieee(xradd ,xradd,kx);
rfft(xradd,n2p);
vtieee(xradd ,xradd,kx);
piwtrn;
plxffrn(xradd,xreal ,kx);
plwtxf;

for j:= 0 to kx div 2 do
be-gin

xreal [j] xreal [2*j];
xirnag [j] xreal [2*j+1];

end;
ximag [0] 0;

(*if baudcount =3 then *
for i :=kl to k2 do

bgnwriteli(recdat ,baudcount,' ',I,' ',XREAL [I],
,XIIMAG [I]);

end;
DuffDecode;

delay(500);
end;

(*close(OUTFILE); *

close(recdat);

dispose(XREAL);
dispose(XIMAG);
FreeDM4ABuffer(MAXBUFFER,DI4APOINTER,ERR_CODE);

(*Showrnessage; *
*wr it eln('Error =',ERROR,' hit the enter key');readln;

end.

76

APPENDIX F. SYNCHRONIZER PROGRAM

program SYNCLOAD;

uses crt;

type

reference-array =array[1.. 1281 of byte;

var
j :integer;
reference-values :reference-array;
nurn-ref-vals : integer;
vals :text;
data :byte;
testref2 : text;

procedure I(var reference-values: reference~array;num_ref_vals: integer);

external;

begin
assign(vals, 'vals. dat');
reset(vals);

assign~testref2, 'testref2. dat');

reset(testref2);
num-ref-vals := 127;
for j :=1 to 128 do

begin

read(vals ,data);
reference-values[j] := data;

writeln(reference-values[j]);
end;
I(reference-values,num ref_vals);
close(vals);

close(testref2);

end.

77

APPENDIX G. DQPSK STATISTICS PROGRAM

program QPSKSNR;
(* This program uses the files XMITDAT. DAT and RECDAT. DAT to generate

a color plot of the errors in the received decoded tones. Green
indicates at least one phase decoding error in the ascii character.
(note that the file XMITDAT. DAT must be imported to the receive terminal
from the transmit terminal) *

uses crt, graph;

var
answer,answer2 :char;
i,j ,n,rbaud,xbaud,rtone,xtone,
baudcount,numbauds,kl,k2,kx,count,
sympbolcount ,sector,b,btot,badbaud,
numbits,badbaud2,bj,colorflag :integer;
xtempreal ,rtempreal ,xtempimag,
rtempimag, totphaserrs ,symerrs ,del,
sumr ,sumi ,tot ,rmean, imean,varx,
xmagr,xmagi,totsnr,snravg :single;
xbits ,xphasebits ,xmagbit ,xtempbyte,
rbits ,rphasebits ,rtempbyte,

phasebitdiff,hue,pbdl,pbd2 :byte;
xtempchar,rternpchar :char;
xmitdat,recdat,output :text;
xreal,xirnag,rreal,rimag,xmag,xphase :array[l..12801 of single;
recdata :array[l. .48,1. .120] of single;
snrin :stringf 4];

---)

begin (main body)
clrscr;
assign(output, 'output. dat');
rewrite(output);
assign(xrnitdat, 'xmi.tdat. dat');
reset(xmitdat);
assign(recciat, 'recdat. dat');
reset(recdat);
writeln('Enter the input snr');
readln(snrin);
writeln('Erter the baud length')
read!;-,(kx);
writeln(out~put);
writeln(output,'The baud length is ',kx,' and the SNRIN -',snrin);

writeln('Enter the number of bauds to be processed');
read'in(numbauds);
writeln('Throw out any bauds ?')
readln(answer);
badhaud :=0;
baidbaud2:=0;

if answer in ['y','Y'] then

bgnwriteln('Which
baud V');

read ln(badbaud);
writeln('Any others V');
readln(answer2);
if answer2 in [1y','Y'I then

begin
writeln('Enter baud j/)

* ~readln(badbaud2);
end;

end;

case kx of
256: begin

kl:=5; k2:=85;
end;

512: begin
kl:=10; k2:=170;

end;
1024: begin

kl:=20; k2:=340;
end;

2048: begin
kl:=40; k2:=680;

end;
4096: begin

kl:=80; k2:=1360;
end;

end; (case Kx)
TOTPI{ASERRS :=O
SYMBOLCOUNT :0O;numbits:=0;
pbdl:=O; pbd2:0O; bj:=0;
totsnr: =0;
(count bit errors baud by baud)
(*read in transmit and receive values *

for j:= 1 to numbauds do
begin

del:0O; rmean:=0; imean:0O;
tot:0O; sumr:=0; surni:=0;
fillchar(recdata,sizeof(recdata),;
for i:= 1 to k2-kl+1 do

begin
readln(xmitdat,xbaud,xtone~xmag~ il,xphase~ iJ);
readln(recdatý,rbaud,rtone,rreal[ii,rimag[i]);

if (xbaud <> rbaud) or (xtone <> rtone) then
begin
writeln('RECDAT and XMIITDAT do not match');
halt;

end; (if xbaud)
xreal[i]:=xmag[i] *cos(xphase[ii*pi/180);
ximag[i]:=xmag[ii*sin(xphase[i] *pi/180);

end; (for read data files)
write in;

* ~write~j,' ;

79

for I:= 1 to k2-kl do
begin

colorflag: =0;
symbolcount: =symbolcount+l;

(*complex multiply adjacent tones to get phase differential*)
XTEN.PREAL = XREAL[I] * XREAL[I+l] +

XIMAG[I] * XIMAG[I+I];
XTEMPIMAG XREAL[I] * XIMAG[I+i]

XREAL[I+l] * XIMAG[II
RTEMPREAL : RREAL[I] * RREAL[I+lj +

RItIAG[I] * RIMAG[I+l];
RTEMPIMAG = RREAL[I] * RIMAG[1+1]

RREAL[I+IJ * RIMAG[I];

(*now rotate phase by 45 degrees to line up with constellation

phase sectors*)
XREAL[II] : (XTEMPREAL - XTEMPIMAG)/80;
XIMAG[I] : (XTEMPIMAG + XTEMPREAL)/80;

RREAL[I] := (RTEMPREAL - RTEMPIMAG)/80;
RIMAG[I] := (RTEMPIMAG + RTEMPREAL)/80;

(*decode transmitted bits*)

XBITS := $00;

if (XREAL[I] >= 0) and (XIMAG[I] > 0) then
begin

XBITS := $00;
end;

if (XREAL[I] < 0) and (XIMAG[I] > 0) then
begin

XBITS := $01;
end;

if (XREAL[I] < 0) and (XIMAG[I] <= 0) then
begin

XBITS := $03;
end;

if (XREAL[I] >= 0) and (XIMAG[I] <= 0) then
begin

XBITS := $02;
end;

(*decode the received bits*)

RBITS := $00;

if (RREAL[I] >= 0) and (RIMAG[I] > 0) then
begin

RBITS := $00;
end;

if (RREAL[I] < 0) aud (RiMAG[I] > 0) then
begin

RBITS := $01;
end;

if (RREAL[I] < 0) and (RIMAG[I] <= 0) then
begin

so

RBITS := $03;
end;

if (RREAL[I] >= 0) and (RIMAG[I] <= 0) then
begin

RBITS := $02;
end;

(*determine the number of bit differences between the received decoded
bits and the decoded transmitted bits*)

PHASEBITDIFF := XBITS xor RBITS;

if (j <> badbaud) and (j <> badbaud2) then
begin
case PHASEBITDIFF of
$01: pbdl :=pbdl+l;
$02: pbdl :=pbdl+l;
$03: pbd2 :=pbd2+1;
end; (case PHASEBITDIFF)

(*now count the total number of phase decoding errors*)

TOTPHASERRS : TOTPHASERRS + PHASEBITDIFF and $01;
TOTPHASERRS : TOTPHASERRS +

(PHASEBITDIFF and $02) shr 1;
numbits: =numbits+2;

end;

(*assign colors to the text that is in error*)

if P}IASEBITDIFF > 0 then
colorflag :=l;

(*now jam all the bits together and color the errors*)

(*fill TEMPBYTE with four symbols*)
textcolor(15);
if frac(SYMBOLCOUNT / 4) = 0.25 then

begin
XTEMPBYTE : (XBITS shl 6);
RTEMPBYTE : (RBITS shl 6);
end;

if frac(SYMBOLCOUNT / 4) = 0.5 then
begin
XTE.>IPBYTE : (XBITS shl 4) or XTEMPBYTE;
RTEM•PBYTE : (RBITS shl 4) or RTEMPBYTE;
end;

if frac(SYMBOLCOUNT / 4) = 0.75 then
begin
XTEDPBYTE : (XBITS shl 2) or XTEMPBYTE;
RTEMPBYTE : (RBITS slil 2) or RTEMPBYTE;
end;

if frac(SYMBOLCOUNT / 4) = 0.0 then
begin

if colorflag > 0 then
textcolor(138); (l.green - phase error)

XTE!.'PBYTE : XBITS or XTEMPBYTE;
XTENIPCHAR : chr(XTEMPBYTE);

91

RTEMPBYTE HBITS or RTEMPBYTE;
RTEMPCHAR =chr(RTEMPBYTE);

write(rtempchar);
textcolor(15);
XTEMPBYTE :=0;
RTEMPBYTE :=0;

end; (*if frac*)
end; (*for I*)

(*now calculate the means and variances and snrout*)

if (Q <> badbaud) and (j <> badbaud2) then
begin
for I:1l to k2-kl do
begin

tot: tot+1;
sumr:=abs(RREAL[I])+sumr;

sumi:=abs(RIMAG[I])+sumi;
end;
begin

rmean:=sumr/tot;

imean: =sumi/tot;
end;
begin
del:=del+sqr(abs(RREAL[I])-rmean)+

sqr(abs(RIMAG[11) -imeari);
end;

end;
begin

varx:=del/(2*tot);
xrnagr: =rmean/cos(45*pi/180. 0);
xmagi: =imean/sin(45*pi/l80. 0);
snl~avg:=sqr((xmagr+xmagi)/2)/varx;
totsn-r: =totsnr+10*ln(snravg)/ln(10.0);
bj:=bj+1;

end;

end; (for j:= 1 to numbauds)
writeln(output);
writeln(out1'ut,'The overall SNROUT is '

(totsnr/bj):8:3,' db');
writeln(output);
writeln(output,'Total phase decoding bit errors=

TOTPHiASERRS: 5:0,
out of r,numbits,' bits transmitted');

writeln(output,'(' ,pbdl,
fsymbols with one bit phase decoding error)');

writeln(output, '(3,pbd2,
Isymbols with two bit phase decoding error)');

close(recdat);
close~xrnitdat);

closeC output);

end.

82

APPENDIX H. D16-QANI STATISTICS PROGRAM

program QAMSNR;
(*This program uses the files XMITDAT. DAT and R.ECDAT. DAT to generate

a multi color plot of the errors in the received decoded tones. Yellow
indicates at least one magnitude decoding error in the ascii character,
green indicates at least one phase decoding error in the ascii
character and red indicates a combination of magnitude and phase
decoding errors in the ascii character. (note that the file XMITAT. DAT
must be imported to the receive terminal from the transmit terminal)*)

uses crt, graph;

var
answer,answer2 .:char;

1,] ,n,rbaud,xbaud,rtone,xtone,dtot,
baudcount ,numb auds, kl1,k2 ,kx,con,

symbolcount,sector,b,c,d,btot,ctot,
badbaud~numbits,badbaud2,bj ,cj ,dj :integer;
xoldmag,roldmag,xtempreal ,rternpreal,
xnewmag ,rnewrnag ,xtempimag, rtempimag,
totphaserrs ,totmagerrs ,symerrs,
stnallmag,biLg,sml,del,meanbig,xmagbig,
mbig,msml,obig,osml.1 mieanbig,mmeansml,

oineanbig,omeansml,mdel,odel,msnravg,
osnravg,meansml ,varx,snrbig,snrsml,
xtnagsml ,sr~ravg,mvarx,ovarx,msnrbig,

rnsnrsml ,osnrbig,osnrsml ,mxtnagbig,
mxn~agsml ,oxmagbig,oxm~agsml ,totsnr,
mtotsnr,ototsnr,bigrnag .:single;

xbits,xphasebits ,xmagbit,xtempbvte,
rbits ,rphasebits ,rmagbit ,rternpbyte,
phasebitdiff,n-.agbitdiff,hue,pbdl,
pbd2 ,pbd3 :byte;

xternpchar,rternpchar :char;
xrmitdat~recdat,output : text;
xrea'l,ximag,rreal,rimag,xmag,xphase :array[1. .1280] of single;
statmat .array[l..8,l..3] of single;

recdata .array[1. .48,1. .160] of single;
snrin . string[4];

proc~edure sort;

begin

if (xmag[I]=smallmag) and (xmag[1+1]=smallmag) then
beg in

statmati sector, 1]:=statmat[sector,1] +1;
b :=round-lstatmrat[sector,lJ);
recdata[(2"ýsector)-1,b] =RREALI I];

83

recdataj (2*sector) ,bJ:=RItAG[]j;
end

else if (((xmag[Il~srallmag) and (xmagfjl+1]=bigmag)) or
((xmag[I)=biginag) and (xmag[1+1] smallinag))) then
begin

statmati sector ,21: =statmat[sector, 2] +1;
b :=round(statinatlsector,21);
recdata[(2*sector)-l+l6,b] :=RREAL[I];
recdata[(2*sector)+16 ,b]: RIMAG[I];

end
else (*both xxnag[I] and xmag[1+l] are large*)

begin
statinati sector,31 =statrnat[sector,31 4-;
b :=round(statinat[sector,3]);
recdata[(2*sector)-l+32,b] =RREAL[I];
recdata[(2*sector)+32,b):=RIMAG[I);

end;
end;

begin (*main body*)
clrscr;
assign(output, 'output. dat');
rewrite(output);
assign(xrnitdat, 'xinitdat. dat');
reset(xmitdat);
assign(recdat, 'recdat. dat');
reset(recdat);
writeln('Enter the input snr');
readln(snrin);
writeln('Enter the baud length)
read ln(kx);
writeln(output,'The baud length is ',kx,' and the SNRIN =',snrin);
writeln('Enter the number of bauds to be processed');
readln(nuinbauds);
whriteln('Enter the magnitude of the xmit short tones');
readln(sinallmag);
bigmag :=2*sniallmag;
writeln('Throw out any bauds ?')
readln(answer);
badbaud :=O;
badbaud2: =0;
if answer in ['y','Y'] then

begin
writeln('Which baud V');
readln(badbaud);
writeln('Any ochers V');
readln(answer2);
if answer'" in ['y','Y'] then

begin
writeln('Enter baud I;
read ln(badbaud2);
end;

end;

84

case kx of
256: begin

kl:=5; k2:=85;
end;

512: begin
ki: =10; k2: =170;

end;
1024: begin

kl:=20; k2:=340;
end;

2048: begin
kl:=40; k2:=680;

end;,
4096: begin

kl:=80; k2:=1360;
end;

end; (*case Kx*)
TOTPHASERRS :=0;
TOTMAGERRS : =0;SYMBOLCOUNT : =0;numbits: =0;
pbdl:0O;pbd2:0O;pbd3 :0O;bj:0O;cj:0O;dj:0O;
totsnr: =0: mtots nr: =0;ototsnr: =0;

(*count bit errors baud by baud*)
(*read in transmit and receive values*)

for j:= 1 to numbauds do
begin

del: =0;big: =0;smi: =0;meanbig: =0;meansml: =0;btot: =0;
mdel: =0;mrbig: =0;msml: =0;mmeanbig: =0;mmeansml:=0; ctot: =0;
odel: =0;obig: =0;osmi:=0; omeanbig: =0; oreansml: =0;dtot: =0;
fillchar(statmat ,sizeof(statmat) ,0);

f-'11char(recdata,sizeof(recdata) ,0);
for i:= 1 to k2-kl+l do

begin

readln(xmitdat,xbaud,xtone,xmag[il,xphase[ii);

readln(recdat,rbaud,rtone,rreal[ij,rimag[i]);

if (xbaud <> rbaud) or (xtone <> rtone) then
begin

writeli,('RECDAT and XMITDAT do not match');

halt;

end; (*if xbaud*)
(*convert the xmit vals to rectangular coordinates*)

xreal[i) xmag[ij~cos(xphase[i]*pi/180);
ximag[i] xmag[i]*sin(xphase[i] *pi/180);

end; (*for read data files*)
writeln;

write(j,')

for I:= 1 to k2-kl do

begin
SYMBOLCOUNT:= SYMBOLCOUNT + 1;

(*save the current and next magnitudes for future decoding*)

XOLDMAG: sqrt(sqr(XREAL[I]) + sqr(XIMAG[I]));
XNEWMAG :sqrt(sqr(XREAL[I+1]) + sqr(XIMAG[I+l]));
ROLDMAG :sqrt(sqr(RREAL[I]) + sqr(RIMIAG[I]));
RNEWIIAG :sqrt(sqr(RREAL[I+l]) + sqr(RIMAG[I+l]));

85

(*complex multiply adjacent tones to get phase differential*)

XTEMPREAL XREAL[I] * XREAL[I+1] +
XIMAG[I] * XIMAG[I+11;

XTEMPPIAG = XREAL[I] * XIMAG[I+1] -

XREAL[I+l] * XIMAG[I]
RTEMPREAL = RREAL[I] * RREAL[I+1) +

RIMAG[I] * RIMAG[I+11;
RTEMPIMAG RREAL[I] * RIMAG[1+1]

RREAL[I+l] * RIMAG[I);

(*now rotate phase by 22.5 degrees to line up with constellation

phase sectors*)
XREAL[I] 0.92 * XTEMPREAL - 0.38 * XTEMPIMAG;
XIMAG[I] 0.92 * XTEMP2IfAG + 0.38 * XTEMPREAL;

RREAL[I] := 0.92 * RTEMPREAL - 0.38 * RTEMPIMAG;
RIMAG[I] := 0. 92 * RTEMPIMAG + 0. 38 * RTEMPREAL;

(*decode the transmit phase difference into the first three bits of the

symbol to be recovered*)
XPHASEBITS := $00;

if (XREAL[I] > 0) and (XIMAG[I) > 0) then
if XREAL[I] > XIMAG[I] then

begin
XPHASEBITS := $00;
sector =1;
sort;

end
else

begin
XPHASEBITS := $02;
sector :=2;
sort;

end;

if (XREAL[I] < 0) and (XIMAG[I] > 0) then
if abs(XREAL[I]) > XIM-AG[I] then

begin
XPHASEBITS := $04;
sector := 4;
sort;

end
else

begin
XPHASEBITS := $06;
sector := 3;
sort;

end;

if (XREAL[I] < 0) and (XIMAG[I] < 0) then

if abs(XREAL[I]) > abs(XIMAG[IJ) then
begin

XPHASEBITS := $OC;
sector := 5;
sort;

86

end
else

begin
XPHASEBITS := $OE;
sector: =6;
sort;

end;
if (XREAL[I] > 0) and (XIMAG[I] < 0) then

if XREAL[I] > abs(XIMAG[I]) then
begin

XPHASEBITS
:= $08;

sector := 8;
sort;

end
else

begin
XPHASEBITS := $OA;
sector := 7;
sort;

end;

(*decode the received phase differenr;e into the first three bits of the
symbol to be recovered*)

RPHASEBITS := $00;

if (RREAL[I] > 0) a.id (RIMAG[I] > 0) then
if RREAL[I] > RIMAG[I] then

RPHASEBITS $00
else RPHASEBITS : $02;

if (RREAL(I1 < 0) and (RIMAG[I] > 0) thear
if abs(RREAL[I]) > RIMAG[I] then

RPHASEBITS := $04
else RPHASEBITS := $06;

if (RREAL[I] < 0) and (RIMAG[T] < 0) then
if abs(RREAL[I]) > abs(RIMAG[I)) then

RPHASEBITS := $0C
else RPHASEBITS := $0E;

if (RREAL[I] > 0) and (RIMAG[I] < 0) then
if RREAL[I] > abs(RIMAG[I]) then

RIhASEBITS := $08
else RPHAS BITS := $OA,

(*determine the number of bit differences between -he received decoded
phasebits and the decoded transmitted phasebits*)

PHASEBITDIFF := XPHASEBITS xor RPHASEITS;
if (j <> badbaud) and (j <> badbaud2) then
begin
case PHASEBITDITF of
$01: pbdl :=pbdl+l;
$02: nbdl :=pbdl+l;
$04: pbdl :=pbdl+l;
$08: pbdl "=pbdl+l;

87

$03: pbd2 :=pbd2+l;
$05: pbd2 :=pbd2+l;
$06: pbd2 :=pbd2+l;
$09: pbd2 :=pbd2+1;
$OA: pbd2 :=pbd2+l;
$QC: pbd2 :=pbd2+l;
$07: pbd3 :=pbd3+l;
$OB: pbd3 :=pbd3+l;
$OD: pbd3 :=pbd3+l;
$OE: pbd3 :=pbd3+l;
end; (*case PHASEBITDIFF*)

(*now count the total number of phase decoding errors*)

TOTPHASERRS TOTPHASERRS + PHASEBITDIFF and $01;
TOTPHASERRS TOTPHASERRS + (PHASEBITDIFF and $02) shr 1;
TOTPHASERRS TOTPHASERRS + (PHASEBITDIFF and $04) shr 2;
TOTPHASERRS TOTPHASERRS + (PHASEBITDIFF and $08) shr 3;
end;

(*now differentially decode the magnitudes of the tones to get the
fourth and last bit in the symbol*)

if (XNEWMAG > I.5*XOLDMAG) or (XNEWMAG < 2*XOLDMAG/3)
then XMAGBIT $01
else XMAGBIT $00;

if (RNEWMAG > 1.5*ROLDMAG) or (RNEWMAG < 2*ROLDMAG/3)
then RMAGBIT $01
else RM1AGBIT $00;

if (j <> badbaud) and (j <> badbaud2) then
begin

TOTMAGERRS := TOTMAGERRS + (XMAGBIT xor RMAGBIT);
numbits: =numbits+4;

end;
(*assign colors to the text that is in error*)

if PHASEBITDIFF > 0 then
textcolor(138); (*l.green - phase error*)

if RMAGBIT <> XMAGBIT then
textcolor(142); (*yellow - mag error*)

if (RMAGBIT <> XMAGBIT) and (PHASEBITDIFF <> 0) then
textcolor(140); (*I. red - dual error*)

if (RMAGBIT = XMAGBIT) and (PHASEBITDIFF = 0) then
textcolor(15);

(*now jam all the bits together and color the errors*)

(*fill TEMPBYTE with two symbols*)

if frac(SYMBOLCOUNT / 2) = 0.5 then
begin

hue := textattr;
XTEMPBYTE ((XPHASEBITS or XMAGBIT) shl 4);
RTEMPBYTE := ((RPHASEBITS or RMAGBIT) shl 4);

end;(* if frac *)
if (frac(SYMBOLCOUNT / 2) = 0.0) then

begin
if (hue = 140) or (textattr 140) then textcolor(140);

8s

if (hue = 142) and (textattr = 138) then textcolor(140);
if (hue = 138) and (textattr = 142) then textcolor(140);
if (hue = 142) and (textattr = 15) then textcolor(142);
if (hue = 138) and (textattr =15) then textcolor(138);

XTEMPBYTE (XPI{ASEBITS or XMAGBIT) or XTEMPBYTE;
XTEMPCHAR chr(XTEMPBYTE);
RTEMPBYTE :(RPI{ASEBITS or RIIAGRIT) or RTEMPBYTE;

if (RTEMPBYTE = $20) and (textattr <> 15) then
RTEMPBYTE :$5f;
RTEMPCHAR =chr(RTEMPBYTE);

(*put ascii character to screen*)
write(rtempchar);
XTEMPBYTE: =0;
RTEMPBYTE: =0;

end; (*if frac*)
end; (*for decode xmit and rec data*)

(*now calculate the means and variances and snrout*)

if Qj <> badbaud) and Qj <> badbaud2) then
begin
for i:= 1 to 8 do
begin

b: =round(statmat[i,lI);
btot:=btot+b;
c: =round(statmat[i,2]);
ctot: ctot+c;
d:=round(statmat[i,3]);
dtot*=dtot-Id;
if (i1l) or (i=4) or (i=5) or (i=8) then
begin

for count 1= to b do
begin

big:=abs(recdata[(2*i)-l,countj)+big;
smi:=abs(recdata[(2*i) ,count])+sml;

end;

for count := 1 to c do
begin

mbig:=abs(recdata[(2*i)-l+16,count])+mbig;
rnsml:=abs(recdata[(2*i)+16,count])+msml;

end;
for count :=1 to d do
begin

obig:=abs(recdata[(2*i)-1+32 ,count])+obig;
osmi:=abs(recdata[(2*i)+32,count])+osml;

end;
end

else
begin

for count := 1 to b do
begin

big:=abs(recdataj (2*i) ,count])+big;
sml:=abs(recdata[(2*i)-l,countI)+sml;

end;
for count :=1 to c do

begin

89

mbig:=abs(recdata[(2*i)+16,count])+mbig;
nismi:=abs(recdata[(2*i)-1+l6,countI)+msml;

end;
for count := 1 to d do
begin

obig:=abs(recdata[(2*i)+32,count])+obig;
osmi:=abs(recdata[(2*i)-1+32,count])+osxni;

end;
end;

end;

if btot > 1 then
begin
meanbig big/btot;
meansml :sml/btot;
end;
if ctot > 1 then
begin
mrneanbig mbig./ctot;
mmeansml :msrnl/ctot;
end;
if dtot > 1 then
begin
omeanbig obig/dtot;
orneansml :osml/dtot;
end;

for i:= 1 to 8 do
begin

b: =round(statmat[i, 1]);
c:=round(statmat[i,2]);
d:=round(statmatt i,3]);
if (1=1) or (i=4) or (i=5) or (i=8) then

begin
for couant := 1 to b do

begin
de1:=del+sqr(abs(recdata[(2*i)-1,count])-meanbig)+

sqr(abs(recdata[(2*i),countl)-zneansmJ.);
end;

for count 1= to c do
begin

mdel:=mdel+sqr(abs(recdata[(2*i)-1+16,count])-
mmeanbig)+sqr(abs(recdata[(2*i)+16,
count]) -rmeansrnl);
end;

for count :=1 to d do
begin

odel:=odel+sqr(abs(recdata[(2*i)-1+32,count])-
omeanbig)+sqr(abs(recdata[(2*i)+32,
count])-omneansml);
end;

end
else

begin
for count :=1 to b do

begin

90

del: =de14-sqr(abs(recdata[(2*i) ,count])-meanbig)+
sqr(abs(recdata[(2*i)-1,count])-rne&nsml);
end;

for count :=1 to c do
begin

mdel:=mdel+sqr(abs(recdata[(2*i)+16,count])-
rmmeanbig)+sqr(abs(recdata[(2*i)-l1l6,
count])-mmeansml);
end;.

for count := 1 to d do
begin

odel:=odel+sqr(abs(recdata[(2*i)+32,countl)-
omeanbig)+sqr(abs(recdatal (2*i)-1+32,
count]) -omeansml);
end;

end;
end;

if (btot > 1) then
begin
varx: =del/(2*btot);
snrbig:=sqr(meanbig)/varx;
snrsml:=sqr(meansml)/varx;
xmagbig: -meanbig/cos(22. 5*pi/18O. 0);
xmagsml:=meansml/sin(22. 5*pi/ 180. 0);
snravg:=sqr((xmagbig+xmagsml)/2)/varx;
totsnr:=totsnr+10*ln(snravg)/1n(10.0);
bj:=bj+1;
end;

if (ctot>l) then
begin
mvarx:=mdel/(2*ctot);
msnrbig:=sqr(mmeanbig)/rnvarx;
rnsnrsml:=sqr(mrneansml)/mvarx;
mxmagbig:=mmeanbig/cos(22. 5*pi/180. 0);
mxmagsnil: rnmeansml/sin(22. 5*pi/180. 0);
msnravg:=sqr((mxrnagbig+m~xmagsml)/2)/mvarx;
mtotsnr: rntotsnr+10*1n(msnravg)/ln(10. 0);
cj: cj+1;
end;

if (dtot >1) then
begin
ovarx:=odel/(2*dtot);
osnrbig:=sqr(omeanbig)/ovarx;
osnrsml:=sqr(omeansml)/ovarx;
oxmagbig:=omeanbig/cos(22. 5*pi/180. 0);
oxniagsml:=orneansml/sin(22. 5*pi/180. 0);
osnravg:=sqr((oxmagbig+oxmagsml)/2)/ovarx;
ototsnr:=ototsnr+10*ln(osnravg)/ln(10. 0);
dj:=dj+1;
end;

(*writeln(output,'The SINROUT for baud ',J,' is '

10*ln(snrbig)/ln(10.0):8:3,'db for the inner big means');

91

writeln(output,'The SNROUT for baud ',J,' is 1,
lO*ln(snrsml)/ln(l0. 0): 8:3,'db for the inner small means');

writeln(output,'The SNROUT for baud ',j,' is '
lQ*ln(snravg)/ln(10. 0): 8:3, 'db for the inner averaged means');

writeln(output,'The SNROtJT for baud ',j,' is '
l0*ln(msnrbig)/ln(l0. 0): 8:3,'db for the middle big means');
writeln(output,'The SNROUT for baud ',j,'I is ',

l0*ln(msnrsml)/ln(l0.0):8:3,'db for the middle small means');

writeln(output,'The SNROUT for baud ',J, is '
10*ln(msnravg)/ln(l0. 0): 8:3, 'db for the middle averaged means');

writeln(output,'The SNROUT for baud ',j , ' s
10*ln(osnrbig)/ln(l0. 0).:8:3,'db for the outer bigl means');
writeln(output,'The SNROUT for baud ,,is,
l0*ln(osnrsml)/ln(l0. 0):8: 3,'db for the outer sallrge means');

writeln(output); *
end;

end; (*for j := 1 to numbauds*)
writeln(output);
writeln(output,'The overall inner SNROUT is ',(totsnr/bj):8:3,

wrten~utut 'Teoerl idl NOT s'(mosrcj:83

writeln(output,'The overall outder SNROUT is ',(ototsnr/dj):8:3,

writeln(output);
writeln(output,'Total phase decoding bit errors

TOTPHASERRS: 5: 0);
writeln(output,'(',pbdl,' symbols with one bit phase decoding

error)');
writeln(output,'(',pbd2? symbols with two bits phase decoding

error))
writeln(output,'(',pbd3,' symbols with three bits phase decoding

error)');
writeln(output,'Total magnitude decoding bit errors

TOTMAGERRS: 5:0);
writeln(output,'out of ',numbits,' bits transmitted');
close(recdat);
close(xmitdat);
close(output);

end.

92

LIST OF REFERENCES

1. Paul H. Moose, "Theory of multi-frequency modulation (MFM) digital
communications," Technical Report No. NPS-62-89-019, Naval Postgrad-
uate School, Monterey, California, May 1989

2. Terry K. Gantenbein, "Implementation of multi-frequency modulation on
an industry standard computer," Master's Thesis, Naval Postgraduate
School, Monterey, California, September 1989

3. Peter G. Basil, "Real time multi-frequency modulation using differentially
encoded signal constellations," Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1990

4. The International Telegraph and Telephone Consultative Committee
(CCITT) Red Book vol. V, 8th Plenary Assembly, Malaga-Torrcmolinos,
1984

5. Johna Till, "Black magic: building a V.32 modem," Electronic Design , Vol.
37, No. 5, pp. 47-57, 1989

6. K. Sam Shanmugam, Digital and Analog Communication Systems, John
Wiley & Sons, Inc., New York, 1979

7. John A.C. Bingham, The Theory and Practice of Modem Design, John Wiley
& Sons, Inc., New York, 1988

8. William D. Glass, "DSP quashes echoes in V.32 modems." Electronic
Design, Vol. 37, No. 8, pp.137-142, 1989

9. Jack Douglas, "V.32 modems are breaking the echo barrier," Data Comnmu-
nications. Vol. 17, No. 4. pp. 187-194, 1988

10. Leon W. Couch, Digital and Analog Communication Systems, Macmillan
Publishing Co., New York, 1987

11. Robert Daniel Childs. "High speed output interface for a multifrequency
quaternary phase shift keying signal generated on an industry standard
computer," Master's Thesis, Naval Postgraduate School, Monterey,
California. December 1988

12. National Semiconductor Corp., Linear Databook, 1982

13. Paul H. Moose. "A progress report on communications digital signal proc-
essing: theory and performance of frequency domain differentially encoded

93

multi-frequency modulation," Technical Report No. NPS-62-90-012, Naval

Postgraduate School, Monterey, California, June 1990

14. Robert W. Ives, "Error control coding for multi-frequency modulation,"

Master's Thesis, Naval Postgraduate School, Monterey, California, June

1990

94

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library. Code 0142 2
NaN a! Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor P.H. Moose, Code ECiMe 6
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey. CA 93943-5000

5. Professor J.H. Miller, Code EC.'Mr
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

6. Commander 3
Naval Ocean Systems Center
Attn: Mr. Darrell Marsh (Code 624)
San DiegoCA 92151

7. Commanding Officer 3
USS Juneau (LPD-10)
Attn: Lcdr Charles P. Salsman
FPO San Francisco, CA 96669-1713

95

