
213

Formant Estim
11. Formant Estimation and Tracking

D. O’Shaughnessy

This chapter deals with the estimation and
tracking of the movements of the spectral res-
onances of human vocal tracts, also known
as formants. The representation or model-
ing of speech in terms of formants is useful
in several areas of speech processing: coding,
recognition, synthesis, and enhancement, as
formants efficiently describe essential aspects
of speech using a very limited set of param-
eters. However, estimating formants is more
difficult than simply searching for peaks in
an amplitude spectrum, as the spectral peaks
of vocal-tract output depend upon a vari-
ety for factors in complicated ways: vocal-tract
shape, excitation, and periodicity. We de-
scribe in detail the formal task of formant
tracking, and explore its successes and diffi-
culties, as well as giving reasons for the various
approaches.
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11.1 Historical

In this chapter, we deal with a focused problem of

speech analysis – trying to identify some very spe-

cific aspects of speech that have been found to be

of great use in a wide variety of speech applica-

tions. These parameters of speech are called formants.

They are generally viewed to be the resonances of

the vocal tract (VT), which often appear in spectral

displays (such as spectrograms) as regions of high en-

ergy, slowly varying in time as the vocal tract moves

(Fig. 11.1).

Formants are useful in the coding, recognition, syn-

thesis, and enhancement of speech, as they efficiently

describe essential aspects of speech using a very limited

set of parameters. For coding, if speech can be reduced

to formant parameters to represent the VT shape (and

a few other parameters to represent VT excitation), then

very efficient coding is possible [e.g., 2.4 kbps linear

predictive coding (LPC)]. Standard coders (e.g., in cell-

phone technology) use LPC with 10 or so coefficients

to characterize the VT; it is feasible instead to repre-

sent the VT with even fewer parameters if formants are

properly employed.
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Fig. 11.1 Wideband spectrogram of an adult male speaker saying

‘Say newsreel instead’. Light vertical lines (added manually) denote

phoneme boundaries
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214 Part B Signal Processing for Speech

In the 1970s, formants were the primary focus of

automatic speech recognizers (ASRs), as it is necessary

in ASR (as in coding) to greatly reduce the information

present in a speech signal (e.g., 64 kbps for toll-quality

speech in the basic telephone network), without sac-

rificing useful information about VT shape [11.1]. As

many studies of human speech production and percep-

tion have identified formants as prime candidates to

represent the VT spectrum efficiently, they were pop-

ular parameters to try to estimate from speech signals.

It was found, however, that tracking formants reliably

was not an easy task. Since the mid-1980s, ASR has

primarily relied on the mel-frequency cepstral coeffi-

cients (MFCCs) instead of formant-based parameters to

represent VT information. The advantage of the MFCC

approach has been an automatic way to reduce the

amount of information in a Fourier transform (FT) of

a frame of speech (which is always assumed to reason-

ably capture the essential information about VT shape

at any specific point in time; a frame is a short section

of speech, e.g., 20 ms) to a small set of parameters, e.g.,

10–16. The data reduction factor is about the same as

for LPC, except that the MFCC is able to utilize some

auditory factors in warping frequency scales to model

the human ear better than LPC can (i. e., a mel or bark

scale: linear up to 1 kHz, and logarithmic thereafter).

Nonetheless, there still remains interest in formants for

ASR purposes, as MFCC and LPC tend to suffer signif-

icantly when increasing amounts of noise are present

in the received speech signal. Both MFCC and LPC

take global approaches to speech analysis, which makes

it difficult to separate noise from speech in corrupted

signals.

The MFCC and LPC have been so popular for

speech recognition and coding, respectively, because

they are parameters that are obtained by simple math-

ematical rules (algorithmic transformations not subject

to discrete, and hence nonlinear, decisions). Such trans-

formations reduce the size of speech representations.

A Fourier display does little data reduction as it oc-

cupies about as much data space as the untransformed

speech. The MFCC and LPC are more compressed,

but still leave room for further compression, as is pos-

sible with formants. Features such as formants must

be estimated using error-prone methods, as they can

only be obtained by applying (possibly faulty) deci-

sions in the data reduction process. They achieve greater

data reduction, at the cost of making errors. Given the

widespread use of MFCC for ASR, some formant track-

ers employ the MFCC as the spectral input to their

algorithms [11.2, 3], even though the MFCC tend to

smooth spectra in ways that may obscure complicated

formant structure. (Because ASRs using MFCCs rarely

track formants, any formant tracking errors that might

result from such an approach would not be pertinent

for ASR, but it is nonetheless useful to see how well

one can track formants using such a popular spectral

estimation method.)

If instead we return to an original (possibly noisy)

spectrum and properly examine the short-time Fourier

transform (STFT) to find formants amid any interfer-

ing noise, there is still potential to carry out better

ASR with formants [11.4]. Recently, formants have

seen increasing use in text-to-speech (TTS) synthesis

applications [11.5], as the trend has been to employ very

large databases of small speech units (extracted from

the speech of a single professional training speaker). In

TTS, given a text to pronounce, a phonetic sequence

is automatically determined, allowing access to these

units. A major issue in recent research has been the

efficient determination of which units to use, which re-

quires searching a large space of alternatives (typically,

through a Viterbi search) making many cost estimations

about the spectral similarity between units. If these units

are characterized via formants, these costs are often eas-

ier to compute than if other parameters are used.

Finally, aids for people with speech difficulties are

often designed around the essential aspects or features

of speech such as formants. In some speech aids, infor-

mation additional to the normal speech input may be

available to assist in the formant tracking task. Attach-

ing a laryngeal sensor to a speaker’s throat can provide

detailed information about the VT excitation in a rela-

tively unobtrusive fashion, and appears to assist in some

formant tracking methods [11.6].

Certainly, a visual display capturing the mouth of

the speaker corresponding to the input speech can help

both ASR and formant tracking, as such imagery yields

important information about (at least) mouth opening.

As most speech applications do not have access to im-

agery, but only to the speech itself, we will not assume

image assistance in this section. There are several for-

mant trackers in commercial applications; a common

one freeware package is Wavesurfer [11.7].
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Formant Estimation and Tracking 11.2 Vocal Tract Resonances 215

11.2 Vocal Tract Resonances

While formants are commonly viewed as peaks in the

speech spectrum, we must be more rigorous in defining

them, as spectral displays of speech vary greatly in the

number and types of peaks seen (Fig. 11.2). Formants

are usually understood to be broad spectral peaks in an

STFT of speech, corresponding to the underlying vo-

cal tract resonances (VTRs). Such basic resonances can

often be calculated from VT area functions, if available,

e.g., via X-rays or electromyography. Few speech ap-

plications have access to such data, however, and thus

resonance estimations must usually be based on ana-

lysis of the speech coming from the mouth. However,

such resonances are only present in output speech en-

ergy to the extent that the VT system is excited with

sufficient energy at those frequencies. We must recall

that speech output is the convolution of the VT excita-

tion waveform and the impulse response of the VT (or,

equivalently, the speech spectrum is the product of these

two spectral representations), and thus the nature of the

VT excitation is a major factor in whether VTRs form

visible peaks in the output speech STFT.

As we are primarily interested in formant estimation

during strong sonorants, we first look at VT excita-

tion for vowels, where the excitation consists of glottal

puffs of air modulated by the vocal folds with a low-

pass nature (about −12 dB/octave fall-off). As a result,

the first formant (F1) normally has the highest inten-

sity, and the amplitude decreases at about −6 dB/octave

for formants at higher frequencies (−6 is the net re-

sult, after including the +6 dB/octave radiation effect

at the lips). Spectrograms often show clear bands of for-

mant energy for the first 3–5 formants in vowels, but

this situation varies greatly depending on the spectrum

of each vowel [e.g., /u/ has a greater fall-off, with lit-

tle energy above F2 (second formant), as its F1 and F2

are quite low in frequency, whereas /i/, with a much

higher frequency F2, has much more energy in the F3–

F4 region]. The style of speech also has effects: breathy

voice has a greater rate of fall-off, and hence weaker for-

mants at high frequencies, than a shouting voice. Few

speech applications have shown interest in the estima-

tion of formants above F4, as higher formants are quite

weak (especially relative to any background noise) and

have much less perceptual relevance than F1–F4. In-

deed, estimations of F3 and F4 are often difficult owing

to the low energy in their frequency ranges (e.g., for

back vowels such as /u/).

Issues of weak formants are not limited to high fre-

quencies. Nonvowel phonemes, such as nasals and

obstruents, partly owing to the presence of zeros in their

spectra, have varied spectral displays in terms of which

resonances are visible. In the case of obstruents, a ma-

jor additional factor is the different nature and location

of the noise excitation, which is much higher in the

VT, hence exciting only higher resonances, as will be
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Fig. 11.2a–d Time signals and spectra of a vowel. (a) Speech sig-

nal weighted by a 50 ms Hamming window, (b) the corresponding

spectrum, (c) speech signal weighted by a 5 ms Hamming window,

and (d) the corresponding spectrum
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Fig. 11.3 Wideband spectrogram of the same speaker saying ‘Say

driveway instead’

discussed later. Thus, the varying display of bands of

energy that we wish to associate with VTRs is a major

factor in the difficulty of formant tracking, and not just

for a minority of speech sounds.

Part of the difficulty of formant estimation and

tracking has been not properly exploiting much of what

is known about human speech production and percep-

tion. This failing has occurred too often in the speech

research field (e.g., for many years, ASR ignored the

fact that speech had an underlying message compo-

nent; it was only in the 1980s that language models

were commonly used for ASR). A major difficulty of

tracking formants is their tendency in spectral displays

to weaken, disappear, and/or merge (Figs. 11.1–11.3),

as the VT undergoes changes in shape or as the VT

excitation changes. As speech is inherently dynamic

(e.g., 12 phonemes/second on average), the ability to

track temporal changes in any parametric representa-

tion (e.g., formants) is essential. While such changes

(e.g., abrupt appearance or disappearance of formants,

as well as formants approaching each other so closely

as to appear as one band of energy in time displays)

are readily apparent, the underlying resonances of the

VT are much more well behaved, albeit harder to ob-

serve. VTRs derive directly from VT shape, and are

the poles of the VT transfer function. As the VT

moves smoothly from one position to another, the VTRs

smoothly change values [11.8]. Even when occlusions

are made or released (as in stop consonants), the po-

sitions of the VTRs change smoothly. As such, VTRs

would be much easier to track than formants (whose

appearance on spectrograms is more varied). However,

lacking visual displays of the VT (e.g., a camera fo-

cused on the speaker’s mouth, or a radiographic image

of the inside of the mouth), which is normally the case

in almost all speech applications, we must rely on for-

mant rather than VTR tracking. We can, nonetheless,

exploit presumed knowledge about VTRs when estimat-

ing formants.

11.3 Speech Production

To better understand the foundation for formants, let

us examine some aspects of human speech production.

In any estimation task, it is often useful to examine

important properties of the data source, rather than at-

tack a problem with few assumptions. Too often in

the past, research on formant estimation simply viewed

STFTs, looked for bands of energy, and applied ba-

sic peak-picking approaches (with some constraints on

continuity), without further regard for the nature or ori-

gin of the speech signal. It is true that the essential

information about formants (for most speech applica-

tions) is readily available in such displays, but such

an approach is like doing ASR without a language

model. An essential step of any pattern recognition task,

whether complete ASR or simpler formant tracking, is

to reduce the input data while minimizing loss of use-

ful information; this preprocessing step not only makes

the process more efficient (as subsequent recognition

steps treat smaller amounts of data), but also allows

more-accurate estimation decisions, by focussing more

closely on aspects of the data that are crucial (for the

task at hand). In many cases of pattern recognition, an

underlying source undergoes several (often nonlinear)

mappings before a data acquisition device can cap-

ture a readily observable signal. A better understanding

of these mappings can aid the parameter estimation

process. In our case, the basic underlying source is

a message in a speaker’s brain. ASR attempts to recover

that message (e.g., a text), given the observed speech

signal. More specifically here we are concerned with

identifying certain intermediate parameters – the for-

mants – in this process. In any event, better knowledge

about where formants originate is useful.

In human speech production, the lungs (as a pres-

sure source) push air past the vocal folds, which often

modulate the airflow to create the excitation sound for

P
a
rt

B
1
1
.3

Springer Handbook of Speech Processing
Benesty, Sondhi, Huang (Eds.) • ! Springer 20081



Formant Estimation and Tracking 11.3 Speech Production 217

the VT, which in turn acts as a filter to amplify cer-

tain frequencies while attenuating others. The VT is

the most important component in speech production,

as it controls the formants and its variation leads di-

rectly to the perception (by listeners) of the individual

phonemes (sounds) of speech. A tubular passageway

composed of muscular and bony tissues, the VT, via

its shape, modifies the spectral distribution of energy

in glottal sound waves. Different sounds of speech are

primarily distinguished by their periodicity (voiced or

unvoiced), spectral shape (which frequencies have the

most energy), and duration. The vocal folds specify the

voicing feature, but the major partitioning of speech into

sounds is accomplished by the VT via spectral filtering.

The VT is often modeled as an acoustic tube with res-

onances called formants, but it can have antiresonances

as well. In z-transform terminology, each resonance cor-

responds to a complex conjugate pair of poles, whose

angular position corresponds to the center frequency of

the resonance (usually, we refer to this as the formant

value) and whose radial position corresponds to the res-

onance bandwidth. (In formant tracking, the amplitudes

of the resonance peaks are usually of considerably less

interest than the center frequencies and bandwidths, as

amplitudes are greatly influenced by the spectral tilt of

the glottal excitation, as well as by the proximity of

nearby formants; listeners seem to take account of this

by utilizing rather little relative peak amplitude infor-

mation in speech perception.) The formants are often

abbreviated as Fi , e.g., F1 is the formant with the low-

est frequency. (F0 is associated with the fundamental

frequency of the vocal folds during voiced speech, and

is not a resonance. F0 is quite visible in narrowband

spectrograms, as speech consists of F0 and its many har-

monics, modulated by the VT transfer function, i. e., the

spectral envelope.)

Figure 11.2 shows displays of the amplitude of

an STFT for a typical vowel. If, as is usual, we use

a time window (i. e., the length of the STFT) of about

20–25 ms, perhaps shaped by a Hamming window to

reduce edge effects [11.1], the display will show a large

amount of detail, corresponding to many aspects of the

windowed speech signal. (Typical FFT lengths are 256,

512, or 1024 samples, which correspond to common

frame durations at sampling rates around 16 kHz; as

a result, sample points in the STFT are about 30 Hz

apart, which means that each harmonic has a few values,

and the STFT is highly variable in frequency.) Most

notable are the harmonics, peaks spaced every F0 Hz

(Fig. 11.2b), which correspond to multiples of the vocal

fold vibration rate. (These equally spaced peaks have fi-

nite width, corresponding to the inverse of the window

duration; if one were to theoretically reiterate a vow-

el’s pitch period indefinitely, we would see an actual

line spectrum.) Superimposed on this base periodic set

of spectral lines is the VT transfer function or spectral

envelope, as the STFT is the product of the excitation

spectrum (F0 lines) and the VT filter response. It is

this spectral envelope, and more particularly its formant

peaks, that interest us the most in this Section. Note,

however, that the formants are not immediately accessi-

ble in the FT, as the spectral envelope is essentially only

specified at multiples of F0. Typically, one may smooth

the STFT to render the formants more evident.

Another way to suppress the spectral effects of the

(interfering) harmonics is to use an STFT with a shorter

time window (i. e., one shorter than the pitch period)

(Fig. 11.2d). A disadvantage of this approach is that the

shorter window needs to be placed synchronously with

the pitch period for optimal formant estimation, and any

corrupting noise in the speech signal has greater nega-

tive effects on formant estimation, as a much shorter set

of speech data is used (owing to the shorter window).

Antiresonances correspond to zeros in the output

speech, and occur owing to aspects of glottal excita-

tion or to the existence of side-branches in the airflow

path in the VT. This section examines formants, which

correspond to the resonances. As such, we will not ex-

plicitly try to track the zeros, which are considerably

more difficult to locate reliably (very recently, particle

filtering has been used to track the poles and zeros of

the VT [11.9]). Luckily, zeros are much less relevant

for most speech applications.

Figures 11.1 and 11.3 show typical wideband spec-

trograms. Many speech applications make reference to

such spectrograms, although few actually include these

three-dimensional displays explicitly in their speech

analysis (e.g., LPC and the MFCC are much more

commonly used in coding and in ASR, respectively).

They clearly show the formant bands of energy (where

darkness indicates intensity) as a function of both

time and frequency. In wideband spectrograms, use of

a short time window yields much better time resolution

(e.g., about 3 ms, making the vocal fold closure exci-

tations readily visible as increases in energy every pitch

period). As a result, frequency is typically smoothed au-

tomatically over a range of 300 Hz (roughly the inverse

of 3 ms, and chosen to exceed most people’s F0, and

hence include two or more harmonics within the win-

dow’s low-pass filter range of smoothing). In such a dis-
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218 Part B Signal Processing for Speech

play, the time signal is covered roughly continuously,

thus obviating the need for pitch-synchronous analysis;

a frame-based analysis method, as in ASR applications,

would, on the other hand, need to address that issue.

11.4 Acoustics of the Vocal Tract

Speech is produced when air passes through the VT,

which can be modeled as an acoustic tube of variable

cross-sectional area A(x, t), approximately closed at the

glottal end and roughly open at the lips [A varies in

space (x = 0 at the glottis and x = L at the lips; L will

be assumed to be 17 cm) and in time t]. VT length varies

greatly among speakers (about 13 cm for women, and

less for children); we choose 17 cm as the nominal value

here as this is an average value for men, and yields sim-

ple values for the average positions of the formants:

500 Hz, 1500 Hz, 2500 Hz, 3500 Hz, . . . etc. (as we will

see later). Glottal area is small relative to typical A

values, although the glottal end of the VT is truly closed

only during glottal stops and during the closed phases

of voicing. Lip rounding or closure often narrows the

acoustic tube at the lips. A tube (e.g., the VT) closed at

one end and open at the other resembles an organ pipe

and is called a quarter-wavelength resonator, as the fre-

quencies at which the tube resonates are those where

sound waves traveling up and down the tube reflect and

coincide at the ends of the tube. VTRs can be heuris-

tically computed using only the boundary conditions

of the VT, along with the phase relationship between

the pressure and volume velocity in the traveling sound

waves. Formant frequencies match the boundary condi-

tions for pressure P (relative to atmospheric pressure)

and volume velocity U: a closed end of the tube makes

U = 0, whereas P ≈ 0 at an open end. P is 90◦ out

of phase with U , owing to the inductance and capaci-

tance of the VT. Resonances occur at frequencies Fi ,

i = 1, 2, 3, . . . , where |U| is maximum at the open end

of the VT and |P| is maximum at the closed end. Such

frequencies have wavelengths where the VT length l

is an odd multiple of a quarter-wavelength; hence, at

500 Hz, 1500 Hz, 2500 Hz, . . . etc..

A uniform VT is only a good model for a schwa

vowel /@/. With other sounds, A(x) is a complicated

function of space along the VT, and as a result, the

formants move to other frequencies. Normally, the de-

viations are within a range of a few (or several) hundred

Hz. Thus, for a 17 cm VT, F1 is usually in the range

300–800 Hz; F1 tends to be low when the VT is rela-

tively closed (e.g., for most consonants, and for vowels

with a raised tongue – high vowels), and high for low

vowels. F2 is usually in the range 700–2200 Hz; F2

tends to be high when the tongue is relatively forward,

and low when the tongue is more to the rear. In general,

the range of F2 is greater than for the other formants.

F3 is usually in the range 1800–2800 Hz; F3 tends to

be high when the tongue is relatively forward and high,

and low when the tongue is retroflexed (as in /r/). Higher

formants are usually progressively weaker in intensity,

and less relevant for most applications. (Synthesizers

that use formants often fix F4 near 3500 Hz and F5 near

4500 Hz; variations in these numbers appear to have lit-

tle useful perceptual effect.) Thus, formant estimators

focus on tracking F1–F3.

Almost all languages employ the cardinal vowels

of /i/, /a/, /u/, and these three often represent VT shapes

that are far from a neutral schwa (uniform VT) shape,

i. e., other vowels (if present for a given language) have

more intermediate shapes, and therefore formant fre-

quencies that are closer to the neutral values (500, 1500,

2500 Hz). Tracking formants is typically more diffi-

cult for more extreme VT shapes, as some formants

often appear to merge in such cases. (Examples are

seen in Figs. 11.1 and 11.3, where formants change in-

tensity suddenly and make apparent jumps, usually at

phoneme boundaries, but certainly not at all phoneme

boundaries.) Thus, let us examine further how VT shape

relates to such vowels. The vowel /a/ can be roughly

modeled by a (lower) narrow tube (representing the

pharynx) opening relatively abruptly into a wide (upper)

tube (the oral cavity). Assuming a 17 cm VT, for sim-

plicity suppose that each tube has a length of 8.5 cm;

then, each tube would produce the same set of reso-

nances, at odd multiples of 1 kHz (1000, 3000, 5000 Hz,

. . . ). Each tube is a quarter-wavelength resonator, since

its back end is relatively closed and its front end is rel-

atively open (i. e., the two tubes are half-versions of the

full schwa VT, and thus have formants at twice the orig-

inal values). As with all 17 cm models of the VT, this

two-tube model has the same number (one) of formants

per kHz, on average, but each one is moved by 500 Hz.

11.4.1 Two-Tube Models for Vowels

At any boundary between sections of the VT, whenever

the change in areas is sufficiently abrupt (as with /a/,

near the velum), the acoustic coupling between cavities
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Formant Estimation and Tracking 11.4 Acoustics of the Vocal Tract 219

is small and the interaction between cavity resonances

will be slight; each section then controls its own number

of the overall set of formants. Due to some acoustic cou-

pling, formants never approach each other by less than

about 200 Hz; thus, e.g., F1 and F2 for /a/ are not both

at 1000 Hz, but rather near these values: F1 = 900 Hz,

F2 = 1100 Hz, F3 = 2900 Hz, and F4 = 3100 Hz. The

reverse holds for /i/: a wide pharyngeal tube narrow-

ing abruptly into the oral cavity tube. Theory would

have F1 = 100 Hz, F2 = 1900 Hz, F3 = 2100 Hz, and

F4 = 3900 Hz, but in practice, F1 is closer to 280 Hz,

and F4 often approaches F3 (making a group of 2–3

formants around 2 kHz). Actual observed values for

real versions of /a/ and /i/ will show deviations from

these model numbers due to modeling inaccuracies;

nonetheless, these simple models give reasonably accu-

rate results and are easy to interpret physically.

The third cardinal vowel /u/ has a more-complicated

analysis: anytime that the lips are rounded (as in /u/),

all formants lower in frequency. This can be roughly

seen by considering a VT mostly closed at both ends;

the VT then becomes a half-wavelength resonator, as

its boundary conditions are the opposite of the nor-

mal open-mouth model (e.g., the volume velocity is

minimized at both (closed) ends of the VT, whereas

it is maximized at the mouth in the open-mouth ver-

sion). The theoretical locations for such a VT model

are F1 = 0, F2 = 1000 Hz, F3 = 2000 Hz, etc. Again, in

practice, F1 rarely goes so low, and approaches 200 Hz

as the lips are almost closed. Examining such an ana-

lysis, one may be tempted to conclude that formants do

not deviate more than about 400 Hz from the nominal

neutral values of 500, 1500, 2500 Hz. Empirical evi-

dence, however, shows that F2, in particular, has a rather

wider range (and F3 goes as low as 1900 Hz). Again, all

values given here assume a typical man’s VT; for peo-

ple of other sizes, one generally scales frequency values

by the average length of the VT, relative to 17 cm; as

VTs are not linear versions of each other, there may be

significant deviations from such simple modeling.

11.4.2 Three-Tube Models
for Nasals and Fricatives

We cannot easily extend the simple results of the two-

tube VT model to more-complicated VT shapes for

other phonemes. Nonetheless, some approximate exten-

sions are feasible, and help understanding of the task

of formant estimation. Nasal consonants require ana-

lysis of a three-tube VT model, as the nasal cavity is

involved when the velum is lowered for such conso-

nants. The entire system can be modeled as three tubes

(pharyngeal, nasal, and oral) joined at one point (the

velum), with acoustic circuits for the three in paral-

lel. The poles of such a model are specified by [11.1]:

1/Zp +1/Zm +1/Zn = 0, where Zp = −iZ0pcot(βlp),

Zm = −iZ0mcot(βlm), and Zn = iZ0ntan(βln). Zp, Zm,

and Zn refer to the acoustic impedance seen in the

velar region of the VT, in the direction of the phar-

ynx, nasal passages, and mouth, respectively, while Z0p,

Z0m, and Z0n are the characteristic impedances of these

respective cavities. The mouth and pharyngeal tubes

have closed acoustic terminations, while the nasal tube

is open (at the nostrils). Dimensional similarity of the

pharyngeal and nasal tubes allows a simplification: if

lp = ln = 10.5 cm, each of 1/Zp and 1/Zn has periods of

about 1.6 kHz and the function 1/Zp +1/Zn has infinite

values about every 800 Hz.

The mouth tube for nasal consonants is often signif-

icantly shorter than the other tubes (e.g., 3–7 cm). As

a result, nasal consonants are characterized by: (a) for-

mants every 800 Hz (due to the longer pharynx+nasal

tube than the normal pharynx+mouth tube), (b) wider

formant bandwidths, and (c) zeros in the spectrum.

When airflow from the lungs reaches the velum junc-

tion, it divides according to the impedances of the

mouth and nasal tubes. Spectral zeros occur at frequen-

cies where Zm = 0, which results in no airflow into the

nasal tube and thus no nasal speech output. Solving

Zm = −iZ0mcot(2πFilm/c) = 0 for Fi yields zeros at

odd multiples of c/4lm. The mouth tube for /m/ is about

7 cm, which gives zeros at 1.2, 3.6, 6.0 kHz, . . . Shorter

tubes for /n/ and /η/, about 5 and 3 cm, respectively,

mean fewer zeros below 5 kHz: only one each at 1.7 and

2.8 kHz, respectively. Besides the poles due to the phar-

ynx and nasal cavities, which occur every 800 Hz, nasal

spectra have pole–zero pairs due to the mouth cavity;

i. e., each zero is close in frequency to a mouth cavity

pole. In spectra, nasal consonants appear as sounds with

relatively steady formants, weaker than for vowels and

with less coarticulation, as movements within the VT

are muffled by oral tract closure.

Unlike the sonorants, all obstruents (except the glot-

tal /h/) have an excitation source in the (upper) oral

cavity. Air passing through a narrow constriction there

creates frication noise just in front of the opening, which

excites the remainder of the oral cavity in front of the

constriction. This is usually modeled as random (Gaus-

sian) noise with an approximately flat spectrum. For

voiced obstruents (e.g., /v/ and /z/), the noise is mod-

ulated to be pulse-like, as the vocal folds vibrate; in

spectrograms, this adds a voice bar at very low fre-
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220 Part B Signal Processing for Speech

quencies (0–150 Hz). This bar is weak enough not to

be confused with formants, as well as being outside the

range of F1.

11.4.3 Obstruents

As noted above, formants are dynamic, varying greatly

in time and intensity. They often come close together,

and at other times fade in or out. Such changes are

due to VT movements, and to the nature of VT exci-

tation. Voiced excitation is glottal and usually relatively

strong, but its intensity decreases with increasing fre-

quency, owing to the low-pass nature of glottal puffs

of air. As a result, a voiced speech spectrum falls off

with frequency at about -6 dB/octave, which leads to

weaker high-frequency formants. For most obstruent

sounds (i. e., stops and fricatives) the VT excitation oc-

curs much higher in the VT than at the glottis (except

for the fricative /h/), and as a result, a much shorter

VT is excited. This (often much) shorter VT leads to

much higher resonances appearing in speech spectra,

or more precisely, to the lower-frequency resonances

being canceled by antiresonances of the back cavity

of the VT. Many researchers do not refer to details

of obstruent spectra as formants (i. e., they reserve the

term formants for spectra of sonorant phonemes); to de-

scribe obstruents, they instead note general details such

as the approximate cutoff frequency below which little

energy occurs. The justification for this is that listen-

ers pay much less attention to detailed aspects of the

spectra in obstruents, and speakers appear to exercise

less control over the positioning of resonances there.

Hence, we focus our attention on formant estimation for

sonorants.

11.4.4 Coarticulation

The motion of the VT during speech causes very dy-

namic patterns in formants, i. e., we often see rapid

movements of formants. This phenomenon is called

coarticulation, because the articulatory configurations

of neighboring phonemes affect the articulation of each

phoneme. Even though text is written with discrete

letters, and phoneticians note that speech consists of

a sequence of individual phonemes, the actual speech

signal is without obvious phoneme boundaries, owing

to coarticulation. Speakers smoothly move their VT

from positions appropriate for each phoneme in turn,

spending as much time on each phoneme as is deemed

appropriate. As a result, it is often hard to segment

speech into discrete units for analysis, as would be very

useful in ASR. In some cases, such a division is easy, as

when excitation changes abruptly with the start or end

of vocal fold vibration (i. e., a voiced–unvoiced transi-

tion), or when the oral portion of the VT closes or opens

(e.g., lip closure). More often, the transition between

phonemes is more subtle, as the tongue and lips move

between positions appropriate for successive phonemes.

Each phoneme has a nominal or target VT shape

that a speaker would more or less assume if the sound

were to be produced in isolation. In context, however,

the speaker thinks ahead, and is continually moving

various parts of the VT to accomplish the dynamic se-

quence of phonemes. Thus, coarticulation effects can

extend over several phonemes; e.g., in the word ‘strew’

(/stru/, phonetically), the lips round in anticipation of

the /u/ during the earlier /s/.

In many applications, it is useful to divide speech

into segments of linguistic relevance, e.g., words,

syllables, or phonemes. For example, for speech

synthesis-by-rule (TTS), continuously spoken speech

from a training speaker must be segmented into such

units for storage (for later concatenation, as needed

for a specified input text). As manual segmentation

is tedious, forced alignment is often imposed on such

training speech, given the assumed corresponding text.

As a result, we have applications where formant track-

ing is simplified by having a priori knowledge of what

phoneme sequence was actually spoken [11.10]. Such

studies report quite high accuracy of forced alignment

to phonemic boundaries in speech of a known text, to

within about 40 ms [11.11]. In more-general ASR ap-

plications, of course, we do not know beforehand what

was said, and formant estimation must rely on general

principles.

During slow speech, the VT shape and type of ex-

citation may not alter for periods of up to 200 ms. In

these sections of speech, formant tracking is usually

much easier, as the formants vary little in either po-

sition or amplitude. Most of the time, however, the

VT changes more rapidly, as phonemes last, on aver-

age, about 80 ms. Coarticulation and changing F0 can

render each pitch period different from its neighbor.

Nonetheless, a basic assumption of speech analysis is

that the signal properties change relatively slowly with

time. This allows examination of a short time win-

dow of speech (e.g., multiplying the speech signal by

a Hamming window) to extract parameters presumed to

remain fixed for the duration of the window. Most tech-

niques thus yield parameters averaged over the course

of the time window. To model dynamic parameters,

we divide the signal into successive windows (ana-
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lysis frames). Slowly changing formants in long vowels

could allow windows as large as 100 ms without ob-

scuring the desired parameters via averaging, but rapid

events (e.g., stop releases) need short windows of about

5–10 ms to avoid averaging spectral transitions with the

steadier spectra of adjacent sounds.

11.5 Short-Time Speech Analysis

A basic tool for spectral analysis is the spectrogram,

which converts a two-dimensional speech waveform

(amplitude versus time) into a three-dimensional pattern

(amplitude/frequency/time). With time and frequency

on the horizontal and vertical axes, respectively, ampli-

tude is noted by the darkness of the display (Fig. 11.1).

Peaks in the spectrum appear as dark horizontal bands.

The center frequencies of these bands are generally con-

sidered to be the formant frequencies (subject to the

discussion below of how to handle merged formants,

i. e., single, wider bands that display two or more res-

onances that have come close for certain periods of

time; e.g., in the middle of Fig. 11.3, F1 and F2 com-

bine at very low frequencies in /w/). Voiced sounds

cause vertical marks in the spectrogram due to an in-

crease in the speech amplitude each time the vocal folds

close. The noise in unvoiced sounds causes rectangu-

lar dark patterns, randomly punctuated with light spots

due to instantaneous variations in energy. Spectrograms

portray only spectral amplitude, ignoring phase infor-

mation, on the assumption that phase is less important

for most speech applications. We will thus ignore phase

in our discussion of formants.

In the spectrogram, the amplitude of the STFT

|Sn(eiω)| is plotted with time n on the horizontal axis,

frequency ω (from 0 to π) on the vertical axis (i. e.,

0 to Fs/2 in Hz, Fs being the sampling frequency),

and with magnitude indicated as darkness, typically on

a logarithmic scale (e.g., decibels). Two different dis-

play styles are typical: wideband and narrowband, with

wideband displays used mostly for formant tracking.

Wideband spectrograms display individual pitch

periods as vertical striations corresponding to the large

speech amplitude each time the vocal cords close.

Voicing is readily seen in the presence of these pe-

riodically spaced striations. Fine time resolution here

permits accurate temporal location of spectral changes

corresponding to VT movements. A wide filter band-

width smooths the harmonic amplitudes under each

formant across a range of (typically) 300 Hz, display-

ing a band of darkness (of width proportional to the

formant’s bandwidth) for each formant. The center of

each band is a good estimate of formant frequency.

Formant detectors generally prefer spectral representa-

tions that smooth the fine structure of the harmonics

while preserving formant structure. Traditional wide-

band spectrograms use a window of about 3 ms, which

corresponds to a bandwidth of 300 Hz and smooths har-

monic structure (unless F0 > 300 Hz, which occurs with

children’s voices). Narrowband spectrograms, on the

other hand, generally use a window with a bandwidth

of approximately 45 Hz and thus a duration of about

20 ms, which allows resolution of individual harmon-

ics (since F0 > 45 Hz) but smooths speech in time over

a few pitch periods.

11.5.1 Vowels

Vowels are voiced and have the greatest intensity of all

phonemes. They normally range in duration from 50

to 400 ms [11.1]. Vowel energy is mostly concentrated

below 1 kHz and falls off at about −6 dB/oct with fre-

quency. Spectral displays thus often use pre-emphasis to

boost higher frequencies to facilitate formant tracking;

e.g., LPC treats all frequencies the same, so LPC ana-

lysis without pre-emphasis would tend to have poorer

spectral estimates at higher frequencies. Other formant

methods that rely on peak-picking of spectra would

likely have similar difficulties without pre-emphasis. As

such boosting also raises the level of any background

noise, it should be noted that formant estimation for

high frequencies where noise dominates will necessar-

ily be less accurate. Because of the −6 dB/oct fall-off,

few formants above F4 are reliable in many formant

estimation methods. Pre-emphasizing the speech is usu-

ally done by differencing in discrete time:

y(n) = s(n)−as(n −1) ,

where a is typically 0.9–1.0. While this may greatly at-

tenuate frequencies below 200 Hz, such low frequencies

are rarely of interest in most speech applications. Vow-

els are distinguished primarily by the locations of their

first three formant frequencies (F1, F2, and F3).

11.5.2 Nasals

In nasal consonants, F1 near 250 Hz dominates the

spectrum, F2 is usually very weak, and F3 near 2200 Hz
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has the second-highest formant peak. A spectral zero,

whose frequency is inversely proportional to the length

of the oral cavity behind the constriction, occurs near

1 kHz for /m/, near 2 kHz for /n/, and above 3 kHz

for the velar nasal. Spectral jumps in both formant

amplitudes and frequencies coincide with the occlu-

sion and opening of the oral tract for nasals. These

abrupt changes cause difficulties for the continuity con-

straints for formant trackers, as the usual trend toward

smooth formant movements is invalid at nasal bound-

aries. VTRs change abruptly when the oral cavity opens

or closes. The lowering of the velum is not the principal

factor in the spectral change here; it often lowers dur-

ing a vowel preceding a nasal consonant, which causes

nasalization of the vowel, widening the formants and

introducing zeros into the spectrum. Vowel nasalization

primarily affects spectra in the F1 region.

11.5.3 Fricatives and Stops

As obstruents, fricatives and stops are very different

from sonorants: aperiodic, much less intense, and often

with most energy at high frequencies. Obstruents may

be either voiced or unvoiced. Unvoiced fricatives have

a high-pass spectrum, with a cutoff frequency approxi-

mately inversely proportional to the length of the front

cavity of the VT. Thus the palatal fricatives are most

intense, with energy above about 2.5 kHz; they have

a large front cavity. The alveolar fricatives (e.g., /s/) lack

significant energy below about 3.2 kHz and are thus less

intense. The labial and dental fricatives are very weak,

with little energy below 8 kHz, due to a very small front

cavity. The glottal fricative /h/, despite exciting the full

VT, also has relatively low intensity as its noise source

at the glottis (effectively a whisper) is usually weaker

than noise from oral tract constrictions.

It is not obvious how to handle formant tracking

for obstruents. Traditionally, formants are well defined

only for sonorant sounds, where the general rules of

strong resonances, spaced roughly every 1000 Hz, ap-

ply. Except for /h/, obstruents have little energy in the

low-frequency range of 0–2 kHz, where strong F1 and

F2 (for sonorants) have most energy. Depending on

the length of the VT in front of the constriction noise

source, there may be little energy in most of the use-

ful auditory range. As noted above, VTRs are always

present, no matter where the excitation is; however, low-

frequency VTRs are not excited in most obstruents, and

thus are not accessible in speech analysis.

In a transition from a sonorant to an obstruent (the

observations that follow here also apply, in reverse, for

a transition from an obstruent to a sonorant), the vis-

ible formants usually show movements from spectral

positions pertinent for the sonorant toward targets for

the ensuing obstruent (e.g., a decrease in F1 as the VT

closes; F2 falling for a labial obstruent or rising for

an alveolar; F3 rising for an alveolar and falling for

a velar). In some cases, for a given formant, a smooth

formant transition (obeying continuity) is clearly seen;

when this happens, it is usually for F3 or F4, as these

tend to be in the frequency range of overlap between

sonorants and obstruents. Thus continuity constraints

should vary with context, and not be applied across all

frequencies equally.

Tracking formants at stop transitions is particularly

interesting and difficult. It is important because cru-

cial phonetic information is present during these brief

periods, which are major factors in informing listen-

ers of the articulation point of the stop. Other major

phonetic cues are much more prominent in the speech

signal, e.g., over longer durations and with greater in-

tensity. Stops, on the other hand, do not cue their place

during most of their duration, as the VT closure at that

time means the only audible energy is the voice bar (if

voiced).

The release of the VT occlusion at the end of a stop

creates a brief (few ms) explosion of noise, which tends

to excite all frequencies. Then, turbulent noise (frica-

tion) continues as the constriction opens for 10–40 ms,

exciting the front cavities (usually F2–F4), as the VT

moves toward the position for an ensuing sonorant.

A velar constriction provides a long front cavity, with

a low resonance near 2 kHz (F2 or F3). Velar resonances

are higher due to a shorter front cavity. The spectrum of

a labial burst is relatively flat and weak since there is

essentially no front cavity to excite.

Most formant estimators either do poorly during ob-

struents, or simply claim that such regions do not need

formant estimation. A statement such as the latter is rel-

atively true, as many speech applications have a primary

need for spectral estimation during the strong sections

of speech; weaker sounds may often be modeled more

simply, and their perception by listeners may be less

critical to the communication task at hand. Nonethe-

less, knowing some details about what happens during

the weaker sounds is of interest. Identifying the articu-

lation point is mostly done via the formant transitions

in adjacent sonorants, and the formant behavior at the

stop release (normally considered to be part of the

obstruent, and not part of the ensuing sonorant) is rel-

evant. Furthermore, weak fricatives such as /v/ require

attention.
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11.6 Formant Estimation

Typical methods to estimate formants involve search-

ing for peaks in spectral representations, usually from

an STFT or LPC analysis [11.12, 13]. As LPC imposes

an assumed simplified structure on the speech spectrum,

it appears to have been employed most often in recent

methods. In most LPC applications, one uses two poles

per kilohertz of bandwidth (plus 2–4 additional poles

to model other factors, such as the spectral tilt, which

is due to glottal effects), on the assumption that speech

contains one such formant in that range. A spectrum de-

rived from an LPC model of N=10–16 poles is much

more limited in variation (across frequency) than an

STFT, which thus simplifies peak-picking. A disadvan-

tage of using LPC is that its all-pole modeling is not

perfect [11.14]; it chooses its pole positions to mini-

mize mean-square error (MSE) for a fit of the speech

to an N-pole spectral envelope. If the number of poles

is not well chosen (e.g., to match the number of reso-

nances clearly present in the speech), then the model

spectrum is not as accurate as desired. For example,

if there are too few poles in the model, the poles (se-

lected via automatic analysis) have to place themselves

in compromise locations between actual formants, and

significant errors in formant tracking will result. Thus,

it is rare that too few poles are used in LP analysis. Use

of too many poles is a more likely risk; it is standard

to follow the rule of thumb given above (2 poles/kHz),

yet a given speech spectrum will often display fewer

resonances than other phonemes (e.g., /u/ vowels and

nasals often only show 2–3 formants, even in wideband

applications, as higher formants tend to be very weak

and thus poorly modeled via LPC, which focuses on

peak energy). In this case, the extra poles (i. e., those

not needed to directly model the actual resonances) lo-

cate themselves at non-formant frequencies to reduce

the MSE further. Sometimes, if there are only, say, two

extra poles, the additional poles will be real or have very

wide bandwidth (to model the speech better via some

broad spectral tilt effect). As LPC formant trackers usu-

ally examine the bandwidths of the LPC poles and reject

(as potential formants) poles with wide bandwidth, such

an effect is not a major problem. More-serious errors

can arise when the additional poles model individual

harmonics, e.g., in the strong F1 region, as may happen

in cases where individual formants have few harmonics;

if F1 has two dominant harmonics (e.g., the F1 center

frequency is located between two harmonics and the F1

bandwidth is similar to F0), then LPC may well assign

four poles to model the two harmonics of F1; this would

lead to two formant candidates in the F1 region, and re-

quire postprocessing to decide whether these candidates

need to be merged into a single formant value.

Use of an STFT instead of an LPC spectrum

avoids this latter problem, as it does not impose a spe-

cific (e.g., all-pole) model on the speech spectrum.

Nonetheless, the issue of data reduction remains when

using the STFT, as a typical STFT has 256–512 sam-

ples, corresponding to common FFT duration choices,

for windows approximately 20–25 ms in length. One

normally needs to smooth the STFT, and then do peak-

picking. One can pad with zeros, i. e., select a much

shorter range of speech samples than the FFT length

(i. e., fewer samples than an estimated pitch period),

to eliminate the harmonics from the spectral display,

which effectively smooths the spectrum. In such a case,

one normally needs to do pitch-synchronous analysis to

choose at least the initial strong samples of each pitch

period. Alternatively, one can smooth the FT of a full

window with a low-pass filter operating in the frequency

domain.

11.6.1 Continuity Constraints

It has generally been found that peak-picking methods

need to be subject to continuity constraints so as to se-

lect from among multiple formant candidates, as there

are often more candidates (i. e., spectral peaks) than

formants [11.15]. One normally prunes away any candi-

date whose bandwidth is beyond the range of formants,

i.e., a candidate whose bandwidth is less than 50 Hz,

which is likely to be an interfering tone or an indi-

vidual harmonic rather than a formant, or more than,

say, 300 Hz, as formant bandwidths increase with cen-

ter frequency, e.g., a roughly constant Q of around 5–6,

so this upper threshold should increase with frequency.

In sections of speech that appear to be sonorants, i. e.,

strong, voiced speech, a tracker aims to assign one for-

mant to each possible range, i. e., roughly one formant

per 1000 Hz. We need to allow for many individual

cases where there are two formants below 1000 Hz (e.g.,

/o/ and /u/) and F2 above 2 kHz (e.g., /i/), but within,

say, the typical range of 0–4 kHz, there should be four

formants (assuming a man’s voice). If the signal has

passed along a telephone line, then we should not expect

to see more than three formants, as F4 is often lost to the

upper frequency cutoff of the phone lines (which pre-

serve only the range of approximately 300–3200 Hz).

Similarly, if the dynamic range of the spectral ampli-
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tude obtained is limited, then F4 may in general be

too weak to be clearly observed, especially if the back-

ground noise level is high enough to obscure the weaker

formants, which often include F4.

The most difficult area for designing good continu-

ity constraints is in the temporal dynamics. Automatic

tracking of formants is difficult mostly owing to rapid

changes in the formant patterns when a VT closure oc-

curs or when the VT excitation changes state (between

voiced and unvoiced); such changes often occur sev-

eral times per second in speech. From frame to frame,

in most speech, the formants generally change slowly.

Other than the abrupt formant changes (which are due

to major VT changes), the most rapid formant changes

are normally seen in F2 when the tongue moves quickly

in lateral motion (e.g., /ai/ and /oi/) or when the lips

round/unround. The maximum rate of change for a for-

mant is approximately 20 Hz/ms (e.g., a change of

1200 Hz over 60 ms); so any proposed formant changes

exceeding this threshold should be limited to major

phoneme boundaries, where all the formants change and

the overall intensity level also changes abruptly.

The apparent merging of formants has been noted

as a major problem for formant trackers, i. e., when two

or more formants are sufficiently close to each other

to present an almost solid band of energy in a given

spectral display. Many sounds have two formants close

enough that they may potentially appear as one spec-

tral peak (e.g., F1–F2 in /a/, /o/, and /u/, and F2–F3

in /i/ and /r/). One should not normally rely on small

rises and falls (across frequency) in a spectrum to de-

lineate individual formants, as such small changes can

easily be due to window or harmonic effects. (An LPC

spectrum, of course, normally does not have such rapid,

small changes, but close formants also cause difficulties

with LPC as well [11.14].) Thus, a spectral peak nor-

mally requires a significant rise in spectral amplitude

over a frequency range on the order of a typical for-

mant bandwidth, in order to be declared a good formant

candidate.

It is generally by applying continuity constraints

that one can resolve formant merges. While formants

may be quite close during the steady state of a vowel,

coarticulation with adjacent phonemes generally causes

sufficient formant motion of all formants that nearby

frames of speech clearly show separating tracks of spec-

tral peaks. When a formant tracker is in doubt about

a wide band of speech energy in a given section of

speech, it can scan left and right (i. e., before and after)

to look for a possible peak that may be moving away

from the main band of energy. Often, this is a case of

a weaker, rising F3 or F4 that was temporarily merged

with F2 or F3, respectively; in recent papers on formant

tracking, one often sees examples of the tracker incor-

rectly choosing a stronger and higher-frequency spectral

peak as a formant, while ignoring a weaker track (a true

formant) moving away from a wide band of speech en-

ergy (in which case all of these are formants).

A number of formant trackers focus on precise es-

timates of the center frequencies of resonances within

frequency bands that are assumed to contain a single

formant [11.16]. For each frame, they divide up the

spectrum into such estimated bands in an initial ana-

lysis step, then use simpler estimation methods within

each band. If indeed each band has a single resonance,

the precise location of its center frequency and band-

width is simpler through the use of adaptive bandpass

filters that seek to isolate individual formants, thus

allowing a more-precise focus on details of the (pre-

sumed single) resonance within each chosen band of

frequency [11.16]. At first glance, this might seem to

beg the question of formant tracking, as we have al-

ready identified the issue of separating formants that

may closely approach each other as potentially difficult.

Yet reasonable results appear possible with appropri-

ate filtering, even in noisy conditions [11.17, 18]. One

approach uses a parallel formant synthesizer, as was

common in older TTS systems to generate a hypothe-

sized synthetic speech spectrum (and thus with specific,

known formants), and compares that spectrum to the

actual speech spectrum, minimizing a spectral distance

measure (often a quadratic cost function relating the two

speech spectra, and also aiming for temporal continu-

ity) via dynamic programming (DP, often via hidden

Markov models) [11.19]. While DP is popular in for-

mant trackers [11.11], some recent versions of such an

approach seem not to need DP [11.20].

11.6.2 Use of Phase Shift

A common way to track formants is to estimate speech

S(z) in terms of a ratio of z-polynomials (e.g., an all-

pole LPC spectrum), solve directly for the roots of the

denominator, and identify each root as a formant if

it has a narrow bandwidth at a reasonable frequency

location [11.14]). Other approaches use related phase

information [from S(z)] to decide whether a spectral

peak is a formant. When one evaluates S(z) along the

unit circle z = exp(iω), a large negative phase shift oc-

curs when ω passes a pole close to the unit circle.

As formants correspond to complex-conjugate pairs of

poles with relatively narrow bandwidths (i. e., near the
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unit circle), each spectral peak having such a phase

shift is normally a formant. The phase shift approaches

−180◦ for small formant bandwidths.

In cases where two formants appear as one broad

spectral peak, a modified discrete Fourier transform

DFT can resolve the ambiguity. The chirp z-transform

(CZT) calculates the z-transform of the windowed

speech on a contour inside the unit circle. Whereas

the DFT samples S(z) at uniform intervals on the

unit circle, the CZT may take a spiral contour any-

where in the z-plane. It may be located near poles

corresponding to a spectral peak of interest and thus

need to be evaluated only for a small range of fre-

quency samples in pertinent cases. As a contour can

be much closer to the formant poles than for the

DFT, the CZT can resolve two poles (for two closely

spaced formants) into two spectral peaks. Since formant

bandwidths tend to increase with frequency, the spiral

contour often starts near z = α, just inside the unit cir-

cle (e.g., α = 0.9), and gradually spirals inward with

increasing frequency ωk = 2πk/N (zk = αβk exp(iωk),

with β just less than 1). This contour would thus

follow the expected path of the formant poles and

can eliminate problems of merged peaks in DFT

displays.

Other recent formant tracking methods are also

based on phase in related ways [11.21]. Formant track-

ers experience increased difficulty when F0 exceeds

formant bandwidths, e.g., F0 > 250 Hz, as in children’s

voices. Harmonics in such speech are so widely sepa-

rated that only one or two appear in each formant. As

a result, spectral analyzers have a tendency to label the

prominent harmonics as formants, which is generally

wrong, as the center frequency of a formant is rarely

an exact multiple of F0.

11.6.3 Smoothing

Many pattern estimation algorithms, including formant

estimators, need to do postprocessing on the raw data

that comes out of the main estimation processing step.

Usually, such schemes produce estimated values once

per frame (e.g., every 5–10 ms in many speech appli-

cations); this applies to ASR and to speech coders, as

well as to F0 trackers. In ASR, estimated values for

VT representations are modeled by probability distri-

butions, and decisions are made on global probabilities

combining hundreds (or more) of computations; a small

deviation in any one parameter has little effect, so

smoothing of individual parameters in a frame is rarely

needed for ASR. Here, we assume that estimated for-

mants may be used for a variety of applications, and

thus we judge performance on how well each output

value matches the actual speech, and thus are less tol-

erant of even small errors.

While formant decisions involve continuity con-

straints, these constraints normally do not greatly affect

localized estimations; they are instead mostly used to

avoid large errors (such as missing a formant entirely).

The decision in each frame is usually based on the im-

mediate speech window, whose placement and duration

are rarely synchronized for optimal estimation results.

As a result, estimated formant values are often noisy,

in the sense that they err slightly above or below their

actual values, owing to suboptimal calculations. The es-

timations are usually within perceivable ranges (i. e., if

we were to synthesize speech with the estimated for-

mant values, and compare this with synthesis based on

the true values, listeners would hear no difference), but

it is usually preferred to smooth such noisy formant

signals to present a final formant contour that is both

accurate and tidy.

One initial idea here would be simply to pass any

noisy formant contour, as a time signal, through a low-

pass filter, choosing the cutoff frequency of the filter so

as to smooth the small random deviations and not the

useful formant movements related to VT movements.

However, as when smoothing the output of F0 detectors,

formant estimations sometimes change rapidly between

individual frames, and applying a linear low-pass filter

would produce a poor result when formants do actually

change abruptly; instead of a true abrupt formant jump

for a nasal, the smoothed pattern would show a gradual

rise or fall.

Another difficulty with linear filtering is its behavior

when mistakes occur in parameter extraction. Formant

and F0 estimators sometimes produce erroneous iso-

lated estimates (i. e., for individual frame outputs) called

outliers, which deviate greatly from the rest of the pa-

rameter contour. Such mistakes must be corrected in

postprocessing. As linear filters give equal weight to all

signal samples, they would propagate the effect of such

a mistake into adjacent sections of the smoothed output

formant contour.

Thus, a common alternative to linear filtering is me-

dian smoothing [11.1], which preserves sharp signal

discontinuities while eliminating fine errors and gross

outliers. Most smoothers (linear and nonlinear) oper-

ate on a finite time window of the input signal, but

linear smoothers combine the windowed samples lin-

early to produce the smoothed output sample, whereas

median smoothing chooses a single value from among
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the window samples. In each data window, the sam-

ples are ordered in amplitude with no regard for timing

within the window. The output sample is the median,

i. e., the [(N +1)/2]th of N ordered samples (for odd

N). Sudden discontinuities are preserved because no

averaging occurs. Up to (N −1)/2 outlier samples,

above or below the main contour, do not affect the

output.

Median smoothers do well in eliminating outliers

and in global smoothing, but do not provide very

smooth outputs when dealing with noisy signals. Thus

they are often combined with linear smoothers to yield

a compromise smoothed output, whose sharp transitions

are better preserved than with only linear filtering but

with a smoother output signal than would be possible

using only median smoothing.

11.7 Summary

This chapter has presented an introduction to for-

mant tracking methods for speech. We have concen-

trated on the major approaches to formant tracking,

generally using Fourier or LPC displays, and ei-

ther peak-picking or solving for the roots in the

LPC all-pole polynomial. There are also other pro-

posed methods, such as a bank of inverse filters

[11.22].
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