E02-013: Measurements of the Electric Form Factor of the Neutron in Hall A

Seamus Riordan spr4y@virginia.edu

University of Virginia

June 9, 2009

Outline

- Nucleon Form Factor Overview
 - Form Factor Models
 - Form Factor Interpretations
- E02-013
- 12 GeV Plans

Early Efforts

- 1910s Rutherford discovers positively charged core of atoms
- 1932 Neutron discovered by James Chadwick
- 1933 Stern observes anomalous magnetic moment of proton deflection of a beam of hydrogen molecules in an inhomogeneous magnetic field
- 1955 Hofstadter *et al.* at Stanford discovers protons have size through *e* scattering - quotes RMS charge radius of 0.74 ± 0.24 fm

Motivation

- Form factors are a fundamental property of the nucleon
- Provide excellent testing ground for QCD and QCD-inspired models
- Are not yet calculable from first principles

Form Factor Introduction

Nucleon Currents

Scattering matrix element, $M \sim \frac{j_{\mu} J^{\mu}}{Q^2}$ Generalizing to spin 1/2 with arbitrary structure, one-photon exchange, using parity conservation, current conservation the current parameterized by two form factors

$$J^{\mu} = e\bar{u}(p') \big[F_{1}(q^{2})\gamma^{\nu} + i \frac{\kappa}{2M} q_{\nu} \sigma^{\mu\nu} F_{2}(q^{2}) \big] u(p)$$

Form Factors

- Dirac, Chirality Conserving F₁
- Pauli, Chirality Flip F₂

E02-013

12 GeV Gⁿ_E

Form Factor Measurements

Sachs Form Factors

Replace with Sachs Form Factors

$$G_E = F_1 - \kappa \tau F_2$$

$$G_M = F_1 + \kappa F_2, \tau = \frac{Q^2}{4M}$$

Rosenbluth Formula

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \bigg|_{\text{Mott}} \frac{E'}{E} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2} \right]$$

$\lim_{Q^2 \to 0}$

$$\begin{aligned} G_E^p(0) &= 1, & G_M^p(0) = \mu_p = 2.79 \\ G_E^n(0) &= 0, & G_M^n(0) = \mu_n = -1.91 \end{aligned}$$

E02-013: Gⁿ_E 6/37

Form Factor Measurements

Sachs Form Factors

Sachs form factors carry more intuitive interpretation by relating Fourier transforms of electric charge and magnetic moment distributions in "Briet frame" where v = 0, $\vec{P} = -\vec{P'}$

$$egin{array}{rcl} J^0 &=& e 2 M \chi'^\dagger \chi { extsf{G}}_E \ ec{J} &=& i e \chi'^\dagger (ec{\sigma} imes ec{q}) \chi { extsf{G}}_M \end{array}$$

E02-013

12 GeV Gⁿ

For $\lim_{Q^2 \to 0}$, first derivative related to mean squared-radius of the distribution of charge and magnetic moments

$$\langle r_{\rm charge}^2 \rangle = -6 \frac{dG_E}{dQ^2} \Big|_{Q^2=0}$$

12 GeV Gⁿ_E

Form Factor Measurements

Measurement through Spin Observables

- Akhiezer and Rekalo (1968) Polarization experiments offer a better way to obtain G_E
- Polarization observable measurements generally have fewer systematic contributions from nuclear structure and radiative effects

Form Factor Measurements

E02-013

12 GeV Gⁿ_E 000

Proton Polarization Results

• JLab, Gao *et al.*, G_E^p found to be very different from Rosenbluth using this method

- Discrepancy partially explained by hard two-photon exchange
- New form has implications for interpretation

E02-013

12 GeV Gⁿ_E

Form Factor Measurements

Polarized Target Measurements

Long. polarized beam/polarized target transverse to \vec{q} in scattering plane

Helicity-dependent asymmetry roughly proportional to G_E/G_M

$$\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}} = A_{\perp} = -\frac{2\sqrt{\tau(\tau+1)}\tan(\theta/2)\mathbf{G}_{E}/\mathbf{G}_{M}\hat{n}\cdot(\hat{q}\times\hat{T})}{(\mathbf{G}_{E}/\mathbf{G}_{M})^{2} + (\tau+2\tau(1+\tau)\tan^{2}(\theta/2))}$$

12 GeV Gⁿ_E

Form Factor Measurements

Neutron Electric Form Factor

Polarization measurements allow for precise G_F^n

E02-013

12 GeV Gⁿ_E

Form Factor Models and Interpretations

Constituent Quark Light-Front Cloudy Bag Model

• Results match present G^p_E at higher Q²!

 Suppression at higher Q² due to inclusion of quark orbital angular momentum

cleon Form Factors	E02-013	12 GeV G ⁿ _F
0000000000		
rm Factor Models and Interpretations		

QCD

Λ

- Can treat with pQCD for large Q²
- Log order calculations for F_1 , F_2 by Belitsky et al. (including hadron helicity non-conservation through quark OAM) makes prediction that as $Q^2 \rightarrow \infty$

$$\frac{Q^2}{\log^2(Q^2/\Lambda^2)} \frac{F_2}{F_1} = \text{const}$$

$$\int_{Q_2}^{\frac{1}{\sqrt{N}}} \frac{F_2}{F_1} = \text{const}$$

$$\int_{Q_2}^{\frac{1}{\sqrt{N}}} \frac{F_2}{F_1} = \text{const}$$

$$\int_{Q_2}^{\frac{1}{\sqrt{N}}} \frac{1}{\sqrt{N}} \frac{1}$$

Proton data fits very well, more hints at guark orbital angular momentum

E02-013

12 GeV Gⁿ_E

Form Factor Models and Interpretations

Form Factor Models and Interpretations

- Impact parameter densities in infinite momentum frame
- $\sum_i \vec{b}_i x_i = 0$

Unpolarized and Polarized:

$$\begin{split} \rho_0^N(b) &= \int_0^\infty \frac{dQ}{2\pi} Q J_0(bQ) \mathcal{F}_1(Q^2) \\ \rho_T^N(b) &= \rho_0^N(b) - \sin(\phi_b - \phi_S) \\ &\times \int_0^\infty \frac{dQ}{2\pi} \frac{Q^2}{2M_N} J_1(bQ) \mathcal{F}_2(Q^2) \end{split}$$

Carlson and Vanderhaeghen, Phys. Rev. Lett. 100, 032004, (2008)

G. Miller, Phys. Rev. C 78, 032201(R) (2008)

00000000000

E02-013

12 GeV Gⁿ_E

Form Factor Models and Interpretations

Unpolarized

Transversely Polarized Neutron 1.5 0.5 Spin More hints at orbital Orientation -0.5 angular momentum? -1.5 b_x [fm] -1.5 -1 -0.5 0 0.5 Momentum Direction E02-013: Gⁿ_F Seamus Riordan 15/37

 12 GeV Gⁿ_E

E02-013

G_E^n Measurements at JLab

- Gⁿ_E least well measured range of Q²
- More difficult to measure relative to other FFs since
 - Gⁿ_E is intrinsically small compared to Gⁿ_M
 - Neutron is not stable outside nucleus, use targets ²H and ³He
- Three experiments done at JLab:
 - E93-026 Warren *et al.* $\vec{d}(\vec{e}, e'n)p$
 - E93-038 Madey et al. d(e, e'n)p
 - E02-013 ³He⁽e['], e[']n)pp

E02-013 Collaborators

Spokespeople:

- Bogdan Wojtsekhowski Jefferson Lab
- Gordon Cates University of Virginia
- Nilanga Liyanage University of Virginia

Analysis Coordinator:

- Seamus Riordan Carnegie Mellon University (graduated 2008), UVA
- Ph.D. Students:
 - Sergey Abrahamyan Yerevan, Armenia
 - Brandon Craver University of Virginia
 - Aidan Kelleher College of William and Mary
 - Ameya Kolarkar University of Kentucky (graduated 2007), Boston University
 - Jonathan Miller University of Maryland, College Park

Masters Students:

• Tim Ngo - California State University, Los Angeles (graduated 2007) Postdocs:

Rob Feuerbach - JLab, College of William and Mary (-2007)

Over 100 collaborators

Nuc	leon	Form	Factors
0000000000			

E02-013

12 GeV Gⁿ_E

Hall A, E02-013

• Most recent measurement in Hall A, E02-013 through ${}^{3}\overrightarrow{\mathrm{He}}(\vec{e},e'n)pp$

				0.10
Q ² [GeV ²]	E _{beam} [GeV]	Avg. θ _e [deg]	Q _{beam} [C]	VMD - Lomon (2002) Passchier, NIKHEF
1.2	1.519	56.26	1.2	0.06 Gaister III (1971) • Warren, JLab Meyerhoff, MANI
1.7	2.079	51.59	2.2	V Rohe, MAMI
2.5	2.640	51.59	5.5	E02-613, Iaken
3.5	3.291	51.59	11.4	0.02

Q² [GeV²]

Nucleon	Form	Factors	
00000000000			

12 GeV Gⁿ_E

E02-013

Experimental Setup

- Polarized ³He target acts as effective free neutron source
- Two arms to measure coincidence e' and n, allow for cuts on $p_{\text{miss},\perp}$ to suppress FSI

- BigBite large acceptance spectrometer, measures $\vec{e'}$
- Neutron arm matches BB acceptance, measures neutron momentum through ToF, performs nucleon charge ID

E02-013

E02-013

12 GeV Gⁿ_E

Polarized ³He Target

• ³He is spin 1/2, 3 body calculations describe polarization as

• SEOP polarization transfer: $\vec{\gamma} \rightarrow Rb \rightarrow K \rightarrow {}^{3}He$

E02-013 00000●00000000000000 12 GeV Gⁿ_E

E02-013

Polarized ³He Target

- Measure polarization through NMR/EPR
- Achieved polarization of about 45~50%
- Luminosity of $L \sim 10^{36} {\rm Hz/cm^2}$

BigBite Spectrometer

- Non-focusing large angular and momentum acceptance spectrometer
- Approximately 76 msr solid angle for 40 cm target
- $\bullet\,$ Single dipole magnet of field integral approximately 1.0 $T\cdot m$
 - Momentum resolution of $\sigma_{\rho}/\rho \approx 1\%$ for accepted electrons
- Accepting electrons between 0.6~1.5 GeV/c
- Specially constructed detector package first used for E02-013

E02-013

12 GeV Gⁿ_E

E02-013

BigBite Detector Set

Nuc	leon	Form	Factors
00000000000			

12 GeV Gⁿ_E

E02-013

Drift Chamber Optics and Performance

- Wire positions and TDC offsets calculated and optimized $\sigma\sim$ 200 μm resolution per plane
- Using optics model treating interaction at effective bend plane with first order corrections

Neutron Arm

- Neutron arm detects recoiling proton/neutron
- Measures momentum through ToF, charge through veto layers
- Optimized to have neutron/proton momentum resolution $\sigma_p \approx 300 \ MeV$ for $Q^2 = 3.5 \ GeV^2$ point
- Covers 5m × 1.6m about about 10m away - Matches BigBite acceptance for QE protons/neutrons

EU2-U13 00000000000000000000000

E02-013

12 GeV Gⁿ_E 000

E02-013

12 GeV Gⁿ_E

E02-013

Quasielastic Selection

Need to reliably separate neutral QE events

- Invariant mass assuming free stationary nucleon target
- Missing mass of ³He(*e*, *e*'*n*)X

E02-013

E02-013

12 GeV Gⁿ_E 000

$Q^2 = 1.7 \text{ GeV}^2$ Quasielastic Selection

E02-013

E02-013

12 GeV Gⁿ_E

$Q^2 = 3.5 \text{ GeV}^2$ Quasielastic Selection

12 GeV Gⁿ_E

E02-013

Asymmetry Dilutions and Corrections

Asymmetry is corrected for:

- N₂ in target
- Target polarization
- Beam polarization

Accidental Background

Proton Contamination

• Evaluated through uncharged/charged ratios of H₂, ³He, N₂

• e.g.
$$\frac{N_{p \rightarrow n}}{N_{p \rightarrow p}} = \frac{\textit{N}_{un}}{\textit{N}_{ch}}\big|_{H_2}$$

$$D_p = rac{1}{1+rac{N_{p
ightarrow n}}{N_{n
ightarrow n}}}$$

- Monte Carlo simulations generally in agreement
- Evaluated to be 10-25% with systematic error of few percent
- Small proton asymmetry contributions are taken into account

Inelastic Contributions

- π electroproduction contributions evaluated using MC with MAID data
- Allows us to evaluate cross sections and production asymmetry

E02-013

12 GeV Gⁿ_E

E02-013

Inelastic Contributions

FSI Contributions

Final state interactions modify final asymmetry

- Charge exchange can drive measured asymmetry down
- Narrow missing momentum can drive asymmetry up

Preliminary GEA calculations show decrease of A by $\sim 5-10\%$

Nucleon	Form	Fact	tors
00000	0000	00	

E02-013

12 GeV Gⁿ_E

12 GeV Plans

- Polarized 12 GeV beam offers new opportunities to go to higher Q²
- Two experiments at PAC34 approved
 - E12-09-006, B. D. Anderson, J. Arrington, S. Kowalski, R. Madey, B. Plaster, A.Yu. Semenov
 - Hall C, similar concept as earlier Madey experiment, E93-038
 - ²H(*e*,*e*′*n*)*p*
 - $Q^2 = 2.2, 4.0, 5.2, 6.9 \, \text{GeV}^2$
 - E12-09-016, B. Wojtsekhowski, G. Cates, S. Riordan
 - Super-BigBite Family (see G. Cates, 2:30 today)
 - ${}^{3}\overrightarrow{\text{He}}(\vec{e}, e'n)pp$
 - $Q^2 = 5.0, 6.8, 10.2 \text{ GeV}^2$

Nucleon	Form	Factors
	0000	00

12 GeV Gⁿ_F

Brings GEn up to similar range as other form factors

- Electromagnetic form factors provide a fundamental way to measure nucleon structure
- Measurements at Jefferson Lab have more than double the measured Q² range of Gⁿ_F up to Q² = 3.5 GeV²
- Experiments approved for the 12 GeV upgrade will push measurements of G_E^n further to $Q^2 = 10 \text{ GeV}^2$