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ABSTRACT

An Adaptive Fusion Model For Distributed

Detection Systems With Unequiprobable Sources

by

Yu zheng Zh an g

in a traditional communication system. a single sensor such as a radar or a sonar

is used to detect targets. Since the reliability of a single sensor is limited. distributed

detection systems in which several sensors are employed simultaneously have received

increasing attention in recent years. We consider a distributed detection system

which consists of a number of independent local detectors and a, fusion center. Chair

and Varshney have derived an optimal decision rule for fusing decisions based on the

Bayssian criterion. To implement. such a rule. the probability of detection PD and

the probability of false alarm PF for each local detector must be known. This thesis

introduces an adaptive fusion model using the fusion result as a supervisor to estimate

the PD  and PF . The fusion results are classified as "reliable" and "unreliable."

Reliable results will be used as a reference to update the weights in the fusion center.

Unreliable results will be discarded. The thesis concludes with simulation results

which conform to the analysis.
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CHAPTER 1

INTRODUCTION

1.1 Background

There has been a growing interest in developing efficient and reliable distributed

detection systems (the multiple sensor systems) for target recognition and communi-

cations. There are two major options for data processing in multiple sensor systems.

In the first option, complete sensor observations are transmitted to the central

processor. This requires a large communication bandwidth. The second option

is to have distributed systems. Some or all of the processing results can be done

at. each local sensor system and then transferred to a fusion center. Tenney and

Sandell [1] were one of the first to study the problem of detection with distributed

sensors_ They applied the classical single sensor detection theory to a two-sensor

two-hypothesis test. An optimum local decision rule was established to minimize a.

global cost. Sadjadi [2] generalized the work of [1] to n. detectors and m hypotheses,

and obtained similar conclusions. Chair and Varshney [3] assumed that each local

detector had fixed thresholds and each local decision was independent. With these

assumptions. an optimum fusion model was generated.

Optimal techniques have also been developed for other criterions. When a

priori probabilities were unknown, Thomopoulos [4] used the Neyman-Pearson (NP)

test both at the local detector level as well as the decision fusion level. An optimal

decision scheme was derived. Demirbas [5] applied the maximum a posterior (MAP)

concept for object recognition in multi sensor environment and showed that the

maximum a posterior (MAP) estimation approach minimized mean square error

estimation.

in the distributed system with a data fusion shown in Figure 1.1, some data

processing is done at: each sensor and partial results are transmitted to the data

fusion center for further processing. The final result are then available at the data

1



fusion center. Jr. considering the cost. reliability. survivability. and communication

bandwidth. the option of distributed processing is more attractive for many appli-

cations.

Figure 1.1 Distributed detection system with a data fusion center

We consider the optimal decision rule which was derived by Chair and Varshney

[31. To implement such rule. the probability of detection PD  and the probability of

false alarm PF for each detector must be known. but this information is not always

available in practice. In this thesis. we proposed and developed an adaptive model

which is extended from Chair and Varshney's work 3h and uses the fusion results as

a supervisor to estimate PD  and PF . The model for equiprobable sources has been

presented [6]. Ibis thesis consider the performance and analysis for unequiprohable

sources. Various components of the model will be covered: the fusion rule. classi-

fication of fusion results. updating algorithm for the fusion center. and computer

simulations.

1.2 Preliminaries

Let us consider a binary hypothesis testing problem with the following two hypotheses
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The a priori probabilities of the two hypotheses are denoted by P(H 0 ) = P0

and P(H 1 ) = P1 . As shown in Figure 1.i, we assume that there are n detectors, and

the observations at each detector are denoted by x i , i = 1,...,n . We further assume

that the observations at the individual detectors are statistically independent and

that the conditional probability is denoted by P(xi|Hi), i = 1,...,n , j = 0,1. Each

detector employs a decision rule gi( xi) to make a. decision u , i = 1,..., n, where

The probabilities of false alarm and miss for each detector are denoted by PF, and

PM ,. respectively.

After processing the observations locally, the decisions u i are transmitted to

the data fusion center. This reduces the communication bandwidth required as

compared to what is needed if the complete observations x were transmitted. The

data fusion center determines the overall decision u for the system based on the

individual decisions. i.e..

In the next chapter, an optimum data fusion rule for our model will he derived.



CHAPTER 2

DATA FUSION RULE

2.1 Derivation of The Data Fusion Rule

We assume that each local detector has fixed thresholds and the probabilities of false

alarm and miss for each detector, PF and PM , are known. Each local decision is also

assumed to be independent.

The data fusion problem can be viewed as a binary-hypothesis detection

problem with individual detectors decisions being the observations. We consider

the Bayes decision criterion which employs a systematic procedure of assigning a.

cost to each correct and incorrect decision, and then minimizing the total average

cost. denoted by B. If we let Cjk  be the cost of making decision DjwhenHkis true,

then for binary decision problem there are four possible costs:

C10 = Cost of deciding D1 when H0 is ture

C00 = Cost of deciding D0 when H0 is ture

C01 = Cost of deciding D0 when H1is ture

C11 = Cost of deciding D1 when H1is ture

where D 1 : u  = +1 . Do : u = - 1 . The total average cost. is:

B = 	E[Cjk]

C10P[D1, H0] + C00P[D0. H0] C01P[D0. H1] +	C11P[D1. H1].

To minimize the cost B, The optimum decision rule is given by the following

likelihood ratio test [7] (Bayes decision criterion):

The quantity on the left-hand side is the likelihood ratio, and the Bayes optimum

threshold is on the right-hand side. In our model, we use the minimum probability

of error criterion, that is, C00 = C10 = 0, and C10 = C01  = 1. Therefore,

4
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where u is a vector of observations. Using Bayes rule:

to express the conditional probabilities, we have:

Thus the corresponding log-likelihood ratio test is

Let S + be the set of all local detectors i such that the local decision u i = +1,

and S _ be the set of all local detectors i such that the local decision ui = -1. ASSUME

that ui are independent,

Similarly.

Thus. from Eq.(2.5) and Eq.(2.6):

Define
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or

Eq..(2.7) can he expressed as

Therefore. from Eq.(2.4) and E.q.( 2.10). we have the data fusion rule as

The optimum data fusion rule can be implemented as shown in Fi gure 2.1.

where

Figure 2.1 The fusion center structure



2.2 Properties of The Fusion Rule

There are two interesting properties about the fusion rule. One discribes the

relationship between two conditional probability mass functions: P ( y - w 0 = ζ|H1 )

and P ( y - wo = ζ|H0). described as Lemma I. It is very useful to analyze the

performance. when we use y (see Figure 2.1) as a supervisor to train each weight in

the fusion center. The other describes the conditions, which can make the system

approach optimum. described as Lemma IL

2.2.1 Lemma I:

When each weight in the fusion center is optimum (described in section 2.1). the

conditional probability mass functions P ( y -w0=ζ|H1) andP(y-w0=ζ|H0)

satisfy the following equation:

where ζ is a possible value of y - w0.

Proof:

Consider the structure shown in Figure 2.1. We have:
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Let c: be a possible value of y - w0 and each local decision ui is independent,

where u is a vector of u ,. i = 1,2,...,w is a vector of w i, = 1,2,...,and

By defining S as {{S+ , S- }: a combination of S+  and S - such that

Thus.

From Eq.(2.14) and the following equality

then
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Eq.(2.16) is a very interesting result. The ratio of the conditional probabilities

under H1 and H0 only depends on the value y - w 0 . even the probability mass functions

P(y - w 0=ζ|H1) andP(y - w0=ζ|H1) may not be monotonic withζ. This is

illustrated in Figure 2.2.

Figure 2.2 Relationship between P (y - w0 = ζ/H1 ) and P ( y - w 0 = ζ|H0)

2.2.2 Lemma II

Let the fused results be classified as reliable and unreliable. Denoting the reliable

results by H 1 and H0 and the unreliable results by Hx:
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Let ri = log wi and ri = log wi. we have,

Using the total probability theorem P(BA) = P(B|A)P(A)

and

Similarly.



Using Eq.(2.19) and the above formulas:

11



Thus.

12

Using the following equality

\vhere O[x] is the higher order terms of x.

If α < 1, and β <1. we have

where O [α , ] β is higher order terms of α and β that is close to 0.

Similarly, if u i= -1,



From Eq.(2.19):

13

From Eq.(2.22). Eq.(2.23), Eq.(2.24)



CHAPTER 3

MODEL ANALYSIS

3.1 Classification of Fusion Results

Recall the data fusion center structure shown in Figure 2.1. if the reference signals

are given. they can be used as a -- reference- to train the system such that weights

will converge to the optimal values defined by Eq.(2.S). However, in practice such a

reference is not readily available and at the same time, the PD  and PF  of a detector

may vary with time. Since the fused decisions are usually better than local decisions.

they can be considered as the reference. When the i th local decision ui is equal to

Figure 3.1 Classification of fusion results

the fused decision u. then ui is considered to be correct, otherwise, uiis considered

to be incorrect. Since y=w0-Σi=0wiui. the fused decisionuhas already taken into

account the decision of the i th detector. n. If u is used as a reference for ui . a bias

is established for ui . Thus. in the proposed system, the decision of the i th local

detector u is arbitrated by the fused decision of all the other (n -  local detectors.

Denote this fused decision as u and define

The decision u

i

 in the fusion center for updating w j depends on the value y. The

value y i is divided into reliable and unreliable range. We denote the lower and upper

14
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limit of the unreliable range as τ1 and τ2 shown in Figure 3.1. We call τ1 and τ2 the

reliabilitty thresholds. Only the fused decision ui which satisfy yi <τ 1 or yi > τ2 are

chosen to adapt the weight These. decisions are considered as reliable decisions,

defined by H1 when y i > τ2 , and H0 when y i < τ1 . This type of learning belongs to

the class of reinforcement learning [8][9][10][11].

3,1.1 Lemma III

α = P(H1|H0)/P(H1|H1) is monotonically decreasing with τ2.

proof :

Without lose of generality, assume that ζ1 >  ζ2 > ... > ζn > τ2 are all possible

Note that as τ

2

 becomes larger. n becomes smaller.

From Eq.(2.16)

we have,

JV
Denote A k  =	Σkj=1P(yi = ζj|H1), Bk = Σkj=1P(yi = ζj|H0). and αk = Ak/Bk. The

objective is to show that αk > αk-1 for k = 1,2,...,n. First we need to show α2 > α1



Using the following inequality and Eq.(3.2),

we have:

Next. we shall show that, if α k > αk-1 , then αk+1 > αk,

Since

Using inequality Eq.(3.3) again.

Applying Eq.(3.2) and Eq.(3.6) yields:

Using Eq.(3,3)

16

From Eq.(3.4), Eq.(3.7) and Eq.(3.8), the α  decreases monotonically with τ2

increasing.
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3.1.2 Lemma IV

β = P(H0|H1)/P(H0|H0) 	is monotonically increasing withτ1.

Proof:

It is similar to the proof of Lemma III.

0

3.1.3 Lemma V

If τ1 decreases and τ2 increases, ε = |wi - wi| is decreasing.

Proof:

From Lemma III and Lemma IV as τ1 decreases and τ2 increases. α and β are

decreasing. Thus. From Lemma II. ε = |wi - wi| is decreasing.



18

3.2 Updating

The distributed decision system is assumed to have no knowledge of the probability

mass functions of the observations. Thus. the estimated probability of detection

and false alarm for the ith detector PDi and PFi can be approximated by relative

frequencies. Let m be the number of H1 , n be the number of H0 . Let m iand ni

be respectively, the number of decisions made by the ith detector that conform to

and contradict to the reliable fused decisions. Hence m , n , mi  and ni can simply be

obtained by counting in the simulations. That is,

We shall next develop the updating rule for the fusion center. From Eq.(2.19).

Using the Bayes rule P ( x . y ) = p ( x|y ) P ( y ) ,
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Applying Eq.(3.9) and Eq.(2.19) yields

and

Talking the partial derivative of Eq. (3.11) with respect to mi and ni , respec-

tively.

and

If the current local detector's decision conforms to the reliable fusion, its weight

should be reinforced. In this case,

On other hand. if the current local decision contradicts to the reliable decision, its

weight w

i

 should be reduced. That is,
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and

Thus, we obtain the following updating rule:

where wi+ and wi- represent the weight after and before each update. Since the

steady state wi 's are what we are trying to compute, for actual implementation, we

use the current estimated weight wi- to compute Δwi . That is. to update the weights

according to Eq.(3.18),Δw

i

 is computed according to the following table:

3.2.1 Lemma VI

Using the updating rule according to Eq.(3.18) and the above table, wi- will converge

to the desired steady state estimate weight wi .

Proof:

At steady state.

Using the definition E[X] = Σx i P ( x i ) and the updating rule according to

Eq.(3.18) and table. Eq.(3.19) becomes,
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Using Eq.(3.10) for further simplification yields,

Similarly, if u = -1, we have.

For i = 0. the following condition can similarly be Obtained at. steady state:

Thus.

Hence. wi → wi, for i = 0,l..

0



CHAPTER 4

SIMULATION

Figure 4.1 shows the simulation set up to validate the proposed adaptive fusion

model.

Figure 4.1 Computer simulation diagram

In this simulation. presented here. the source produces binary signal with

P ( H 1 ) 0.3 and P ( H0 ) = 0.7. where H 1: +1 andH0: -1. Eight sensors are

used. The probabilities of false alarm and detection PF and PD  of each sensor are

fixed. but not known to the system. The channel is additive Gaussian noise. The

Gaussian random variables are generated according to the following transformation.

where r 1 and r2 are uniformly distributed on (0,1]. and (x.	becomes a pair of

orthogonal normalized Gaussian random variables. The additive Gaussian variable

for each sensor is zero-mean with standard deviation ranged from 0.5 to 1.2.

22
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4.1 Conditional Probability Mass Function of y

Figure 4.2 shows the histograms of P ( y = ζ|H0) and P (y = ζ|H0) for 8 sensors and

250000 samples. We can see that the waveforms are not monotonic.	Figure 4.3

Figure 4.2 Probability mass functions P ( y / H1) and P ( y /H0 )

Figure 4.3 The kg-ratio of probability mass functions log P ( yIH1 )/ P( y / H0 )

shows in P(y = ζ|H1)/P( y= ζ|H0) . It is almost a straight line which conforms to Lemma I:
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4.2 Convergence of Weights

Figure 4.4 shows average errors of weights | wi-wi| for differentτ,τ=0, 0.5, and

0.75. As shown in the figure. the larger the τ , the smaller the error, which agrees

with Lemma II. As the number of unreliable samples increases, the training time

becomes longer.

Figure 4.4 The error with different reliability threshold



CHAPTER 5

CONCLUSIONS

In the real-world environment, the probability mass functions of the observations at

local detectors may not be known and the performance of the local detectors may not

be consistent. -Under such circumstances, a system which can adapt itself during the

decision making process is needed. The major advantage is that the system can still

have smaller error and does not need a priori knowledge of the probability density

functions of the observations. Simulation results conform to our theoretical analysis.

25



APPENDIX A

SIMULATION PROGRAMS

/*********************************

main.c
**********************************/

/* #define IBM_PC */
/* #define STATISTICS_OF_Y */
/* #define DEBUG w/
/* #define DISPLAY_SOURCE */
#define SHOW_W_ADJ

#define CONVERGE

#define RunTime 350000
*define Sanlntv 1000

#include <stdio.h>
#include <math.h>
#include "main.h"
#include "noise.h"
#include "sensor.h"

double Na[SensorNumj,WC[SensorNum],W1[SensorNumj,Wdc;
double Y,Ym1,Ym0,PH1=0.3;
int i,d,D,u[SensorNumj;
long t,P1,P11[SensorNum],P10[SensorNum],P0I[SensorNum],P00[SensorNumj,Pe=0;

w_adj(T)
double T;

{

int i,j;
double B,s,y;
static double delta=0.0001;

#ifdef SHOW_W_ADJ
double yi[SensorNum];

printf("source: H%d\tfusion decision4d\tyq,4f\ttao -4.4f\nu:\t",
d,D,Y-Wdc,T),

for(i=0; i<SensorNum; i++)
printf("%d\t",uEi]);

printf("\nWO:\t");
for(i=0; i(SensorNum; i++)

26



printf("%.4f\t",W0[i]);
printf(nnW1:\t");
for(i=0; i<SensorNum; i++)
printf("%.4f\t",W1[i]);printf("n\t');

#endif SHOW_W_ADJ

for(i=0; i<SensorNum; i++){
if( u[i] == I ){

/*	y = (Y-Wdc-Wi[i])/(Yml-Wiri3); */
y = (2.*(Y-Wdc-W1[i])-(Yml-Ym0-Wl[i]))/(Yml+Ym0-Wl[i]);
if( y > T ){
Wla] += delta;

#ifdef SHOW_W_ADJ
printf("141++\t");

#endif SHOW_W_ADJ

}
else if( y < -T ){

Wl[i] -= exp(Wl[i]+Wdc)*delta;
#ifdef SHOW_W_ADJ

printf("Wl--\t");
#endif SHOW_W_ADJ

}
#ifdef SHOW_W_ADJ

else
printf("Wl\t");

#endif SHOW_W_ADJ
}
else {

/*	y = (Y-Wde+WO[i])/(YmO-W0Ei]);*/
y = (2.*(Y-Wdc+WO[i])-(Yml-Ym0+W0[i]))/(Yml+Ym0-W0[i]);
if( y < -T ){

W0[i] += delta;
#ifdef SHOW_W_ADJ

printf(N0++\t");
#endif SHOW_W_ADJ

else if( y > T ){
W0[i] -= exp(W0[i]-Wdc)*delta;

#ifdef SHOW_W_ADJ
printf("W0--\t");

#endif SHOW_W_ADJ

}
#ifdef SHOW_W_ADJ

else
printf("Wi\t");

#endif SHOW_W_ADJ
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}

#ifdef SHOW_W_ADJ
yi[i] = y;

#endif SHOW_W_ADJ
/* for i */

#ifdef SHOW_W_ADJ
printf("\nyi:\t"),
for(i=0; i<SensorNum; i++)

printf("%.4f\t",yi[i]);
printf("\n"),

#endif SHOW_W_ADJ

y = (2.*(Y -Wdc) - (Ymi -Ym0))/(Ymi+Ym0);

if( y > T ){
Wdc += delta;

#ifdef SHOW_W_ADJ
printf("Wdc+\n\n");

#endif SHOW_W_ADJ

}

else if( y < -T ){
Wdc -= exp(Wdc) * delta;

#ifdef SHOW_W_ADJ
printf("Wdc+\n\n');

#endif SHOW_W_ADJ

}
#ifdef SHOW_W_ADJ

else
printf("Wdc\n\n");

#endif SHOW_W_ADJ

}

void main(argc,argv)
int argc;
char **argv;
{

double tmp_d,tmp_di,tao=0;
int tmp_i;

#ifdef STATISTICS_OF_Y
long SY0[101],SY1[101];
for(i=0; i<101; i++){

SY0[i] = 0;
SYi[i] = 0;

}
#endif

28



if(argc>1) tao = atof(argv[1]);
if(argc>2) PH1 = atof(argv[2]);

/* initialize each weights */
for(i=0; i<SensorNum; i++){

tmp_d = .4; /* initial probability for every weights */
Na[ij = (double)i*0.1+.5;
W1[i] = W0[i] = log((1.0-tmp_d)/tmp_d);

P11[i] = P10[i] = P01[ij = P00[i] = 0;
}
Wdc = -i;
sensor_init();

printf("RunTime=%ld tao='/,lf PH1=%lf\n",(long)RunTime,tao,PH1);

#ifdef CONVERGE
printf("CONVERGE\n%ld %ld\n",(long)RunTime,(long)SanIntv);

#endif

for(t=1; t<=RunTime; t++){

if((d = Data(PH1))==1) P1++;

#ifdef DISPLAY_SOURCE
printf("%d",d);
if(t%50 == 0) printf("\n");

#endif DISPLAY_SOURCE

#ifdef DEBUG
printf("	 d=%d 	\nu=\t",d);

#endif DEBUG

/* local decision */
for(i=0; i<SensorNum; i++){
urn = sensor( gausNoise(Na[i]) + d*2-1,i);

#ifdef DEBUG
printf("%d\t",u[i]);

#endif DEBUG

}

#ifdef DEBUG
/* diplay weights */
printf("\nW0=\t");
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for(i=0; i<SensorNum; i++)

printf("%.4f\t",W0[i]);
printf("\nW1=\t");

for(i=0; i<SensorNum; i++)

printf(1.4f\t",W1[i]);
printf("\n");

#endif DEBUG

/* fusion */
for(i=0, Y=Wdc, Ym0=0, Ym1=0; i<SensorNum; i++){

Ym1 += W1[i]; Ym0 += W0[i];
if( u[i] == 1 ) Y += Wi[i];
else Y -= W0[i];

}

#ifdef STATISTICS_OF_Y
tmp_i = ((Y-Wdc)/Ym1+1.)*50;
if( (tmp_i >=0) && (tmp_i<=100) ){
if( d == 0 ) SY0[tmp_i]++;
else	SY1[tmp_i]++;

#endif

D = (Y>0)?1:0;

#ifdef DEBUG

printf("Y=%..4f\t D=%d",Y,D);
#endif DEBUG

w_adj(tao);

#ifdef DEBUG
/* diplay weights */
printf("\nW0=\t");
for(i=0; i<SensorNum; i++)
printf("%.4f\t",W0[i]);

printf("\nW1=\t");
for(i=0; i<SensorNum; i++)

printf("%.4f\t",W1[i]);
printf("\n\n");

#endif DEBUG

if( D != d ) Pe++;
for(i=0; i<SensorNum; i++ )

if	((u[i] == 1) && (d == 1)) P11[i]++;
else if((u[i] == 0) 8c& (d == 0)) P00[i]++;
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else if((u[i] == 1) && (d == 0)) P10[i]++;
else	 P01[i]++;

#ifdef CONVERGE

if( t%SanIntv == 0){
printf("t=%ld\nWdc=%.4f\nW0:\t",t,Wdc.);

for(i=0; i<SensorNum; i++)
printf("%.4f\t",W0[i]);

printf("\nW1:\t");
for(i=0; i<SensorNum; i++)

printf("%.4f\t",W1[i]);
tmp_d1 = (double)P1/(double)t;

printf("\n	\nWdc=%.4f\nW0:\t",log(tmp_di/(1-tmp_d1)));
for( i=0; i<SensorNum; l++){

tmp_d =log((double)P00[i]/(double)P01[ij*tmp_d1/(1-tmp_di));
printf("%.4f\t",tmp_d);

}

printf("\nW1:\t");
for( 1=0; i<SensorNum; i++){

tmp_d =log((double)P11[i]/(double)P10[i]*(1-tmp_d1)/tmp,di);
printf("%.4f\t",tmp_d);

}
printf("\n\n");

#endif
}

printf("\nPE_DATA\n");

printf("\nPe=%e\n",(double)Pe/RunTime);

#ifdef STATISTICS_OF_Y
printf("\nSTAT_Y\n");
for(i=0; i<101; i++)

printf("/,e %e %e %e\n",(float)(i-50)/50,(double)SY0[i]/RunTime,
(float)(1-50)/50,(double)SY1[i]/RunTime );

#endif

#ifdef IBM_PC
getch();

#endif

}
/****************************************************

noise.h
****************************************************/

*include <stdlib.h>
#ifndef _noise
*define _noise
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#ifdef IBM_PC
#define RND (((double)rand()+1.)/32768.)
#else
#define RND (((double)rand()+1.)/2147483600.)
#endif

/* Data will generate 1 bit data. P(H1) = prob */
#define Data(prob) ((RND<prob)? 1:0)
double gausNoise(double sigma);/* gausNoise */

#endif _noise
/****************************************************

noise.h
****************************************************/

#include <stdlib.h>
#ifndef _noise
#define _noise

#ifdef IBM_PC
#define RND (((double)rand()+1.)/32768.)
#else
#define RND (((double)rand()+1.)/2147483600.)
#endif

/* Data will generate 1 bit data. P(H1) = prob */
#define Data(prob) ((RND<prob)? 1:0)
double gausNoise(double sigma);/* gausNoise */

#endif _noise
/***************************

sensor.c
****************************/

#include "main.h"
double T[SensorNum];

int sensor(double s,int no){

if( s>T[no] ) return 1;
else	return 0;

}

sensor_init(){
int i;
for(i=0; i<SensorNum; i++)

T[i] = 0;
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# *********************************

# makefile
***********************************

CC=gcc
CFLAGS=-g

SECS= main.c noise.c sensor.c

HDRS= main.h noise.h sensor.h

OBJS= main.o noise.o sensor.o

LIB= -lm

all: main

clean:
rm -f $(TESTS) *.o *.ln *-

main: $(OBJS) $(HDRS)
$(CC) $(CFLAGS) -o $@ $(OBJS) $(LIB)

bk:
zip bk *.c *.h makefile
tar:
tar cvf	makefile *.c *.h ( compress > bk.tar.Z
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