DLO

Bell?

• Be able to describe periodic trends

• Why do ions form?

Periodic Trends

Charge of Ions, Ionization Energy Electronegativity, Atomic Radius

Periodic Trends

- The periodic table is not arranged randomly
- Mendeleev was able to organize the periodic table in such a way that the properties of missing elements could be predicted.
- This arrangement we now know follows trends that are based on the number and arrangement of electrons in an atom.

Electron Configuration

- Electron configurations tell you the energy level and sub shells where electrons can be found.
- As you write the electron configuration you notice a pattern
- Write the electron configuration for the following:
 - o Sodium- 1s²2s²2p⁶3s¹
 - o Aluminum- 1s²2s²2p⁶3s²3p¹
 - o Iron- 1s²2s²2p⁶3s²3p⁶4s²3d⁶
 - o Bromine- 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁵

Valence Electrons

- Those electrons in the highest energy level or the outer most shell are called valence electrons
- These electrons are the ones that atoms lose, gain, or share to form bonds.
- These electrons also determine the stability of the atom.
- The closer the atom is to having a full outer shell of 8 the more stable it becomes. This is called the Octet rule.

Charge of Ions

- Elements as they appear on the periodic table are neutral in charge
 - ${}_{\mbox{O}}$ Why? Because the number of protons and electrons are equal
- When an atoms gains or loses electrons what happens? A charged atom, called an ion, is formed.
- Looking at the electron configuration for the elements a pattern appears with the s and p orbitals
 - What is the trend across a period? group?
 - What does this mean for the total number of electrons for the outer most shell?

Electron Configuration Short hand

- Who likes having to write those long electron configurations?
- Now you can learn the shortcut, using Noble Gases
- What is special about the Noble Gases?
- They have a full outer shell of electrons.
- They're all in the p block, so they have a full outer p shell

Steps for Shorthand Electron configuration

- Determine the closest noble gas that comes before the element you need (the atomic number is less for the noble gas)
- Write the symbol for the noble gas and put brackets around it
- 3. Remaining electrons put into electron configuration

Shorthand Example

- Shorthand for Calcium:
- 1. Nearest Noble Gas before Calcium? Argon
- 2. Symbol for that Noble Gas? Put it in brackets [Ar]
- 3. Remaining Electrons? 2
- Calcium: [Ar] 4s²
- Calcium full configuration:
- 1s² 2s²2p⁶ 3s² 3p⁶4s²

Atomic Radius

INCREASING ATOMIC RADIUS

1 H 1(100794		2															2 He 4003
	4 Be											5 B	6 C	7 N National	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl Olane	18 Ar
19 K	20 Ca 60.078	21 Sc scarbon at avion	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn 255	31 Ga	32 Ge	33 As Magazina	34 Se Sciences 78.95	35 Br	36 Kr Sopo STA
37 Rb #abstain 85.4678	38 Sr 87.62	39 Y ^Y NNH 55 90585	40 Zr 91,224	41 Nb Notion 92,99638	42 Mo	43 Tc Totherien	44 Ru Rutanava 191.07	45 Rh Stochan 162,00550	46 Pd Poliadicat 106,42	47 Ag 38-4 107,8682	48 Cd	49 In 114.818	50 Sn 18,710	51 5b	52 Te	53 I 125.9041	54 Xe Xee
55 Cs 132 90545	56 Ba Harner 137,327	57 La	72 Hf 10.6000 178.49	73 Ta (accabae (80,3479	74 W	75 Re 186.267	76 Os 190.23	77 Ir 192.217	78 Pt Ptrays 195,078	79 Au 196.95655	80 Hg	81 Tl 1646400 204.3833	82 Pb 1stat 207.2	83 Bi 101 101 101 101 101 101 101 101 101 101	84 Po	85 At	86 Ri 8140 (222
87 Fr	88 Ra Raduat	89 Ac	104 Rf	105 Db	106 Sg	107 Bh _{Bkaces}	108 Hs	109 Mt	110	111	112	113	114	\$204934	200-2009	-0,000	00000

Atomic radius is the measure of half the distance of two like atoms bonded together

What is the trend: across a period? across a group?
Why is this occurring?

Ionization Energy

- Ionization energy is theenergy required to removethe outer most electrons
 - Why would atoms want other another atom's electrons?
 - What is the trend across a period? group?
- The octet rule plays a part in determining the ionization energy
 - What does Octet mean?

in orthe torrest the tribert at the tor	INCREASING	IONIZATION	ENERGY
---	------------	------------	--------

1 H 19-8-905 1.00794														_		-	2 He 4003
3	4	1										5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012152	2										10,811	12,0107	14,00674	15,9994	18.9984632	20.1397
11	12	1										13	14	15	16	17	18
Na Solan 22.0003710	Mg 24,3050											AI 26.981538	Si 54-m 28:0855	P Photobase 30.973761	S	CI (M.e.s. 15.4527	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Manual W Manual M	Ca falcant 40.078	Sc Souther 41.955010	Ti Tarsan 47.867	V Vanadum 50.9413	Cr Character 51,996)	Mn Statutor	Fe	C0 58,933200	Ni Ssaud Ssaudsa	Cu Capar 63.546	Zn 255 65 39	Ga dabati 60.723	Ge Connerton 72,61	As Mone 24.92100	Setoment 78.96	Br tromai 79.004	Kr stypes 33.80
37	38	39	40	41	42	43	-44	45	- 46	47	48	49	50	51	52	53	54
Rb Materian 85.4078	Strandian 87.62	Y	Zr 2000000	Nb Notion 92,99638	Mo Mostalian	Tc Tocharian (36)	Ru katanan 191.07	Rh Studian 102,90550	Pd Instadicat 105,42	Ag 50-0 107,8682	Cd	In Infan	Sn 118,710	Sb	Te	I Islaw 126.90437	Xe Xieca (31.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La Latherary	Hf	Ta testation (SO-9479	W tuque 181.54	Re Hayasan 186,207	Os Osman 190.23	Ir tatan 192.211	Pt		Hg	TI Italian 104 3333	Pb 1.64 267.2	Bi Itemati Jus pants	Po	At Ambre 12100	Rn Radon 19225
87	88	89	104	105	106	107	108	109	110	111	112	113	114	800.0027	30250N	- 200	oscue.x
Fr	Ra Radiant (226)	Ac Activation (227)	Rf	Db Datasan (262)	Sg	Bh Bodesen (2021	Hs Harring (265)	Mt Staturum (266)	(269)	(272)	(277)		10.200				

Electron Affinity

What does affinity mean?Ability to attract electrons

INCREASING ELECTRON AFFINITY

H H 100794																	He hitom 4.003
3	4	-										5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012192	2										10.811	12,0107	14/00674	15,9994	18.9984632	20.1397
11	12											13	14	15	16	17	18
Na solari 22.999770	Mg											AI 26:981538	Si 34cm 28.0855	P	Salter 32.000	Cl (Morec 15.4527	Ar 30,918
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Manual M	Ca talcam 43.078	Sc Scatter 44.955010	Ti Taraati 47,867	V Vanadum 50.040.5	Cr Character 51,996)	Mn Maquitos 54.938049	Fe	C0 DANA 55,933230	Ni SSAU	Cu Capper 63.546	Zn 255	Ga datati 69,723	Ge Contactum 72,81	As Anow 14.92160	Setemani 78.96	Br	Kr Shipon 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Adodum 85.4678	Streeting 87.62	Y	Zr 20000000	Nb Notion 92.99638	Mo Mostdame	Tc Technology (36)	Ru Ratazano 101.07	Rh Studian 162 90550	Pd boliadeast 106,42	Ag 5864 107,5682	Cd	In Islan 114,818	Sn Tat 138,710	Sb 121,760	Te	I Islow 126.90447	Xee
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba Itana 137.327	La Latheran 138 9055	Hf Hafesen 178.49	Ta tenatus (\$0,9479	W tangatan 183.64	Re House	Os	Ir techen (92.217	Pt Pharment 195.078	Au 196,95655	Hg Maxan 280.59	TI ibahan 204.3833	Pb 1.sel 207.2	Bi Disside 208.98038	Po	At	Rn Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	\$2042.0	2025001		es coarx
Fr forcess (22.5)	Ra Radian (226)	Ac Actinum (227)	Rf Rotterferdeare (261)	Db Datasan (262)	Sg (203)	Bh Bolances (202)	Hs Hassian (208)	Mt Mitaine (266)	(28%)	(272)	(277)						

Electronegativity

- Electronegativity is the desire for atoms to grab electrons
 - What is the trend across a period? group?
- This again is related to
 the Octet rule and the
 goal of filling the outer
 most energy level with
 electrons to have a
 complete outer shell.

INCREASING ELECTRONEGATIVITY

Exceptions

- Are there any exceptions to the trends?
- Why do you think this occurs?
- How do the exceptions relate to the s and p orbitals?