Chemical Equilibrium
by
Professor Bice Martincigh

Equilibrium

- involves reversible reactions
- Some reactions appear to go only in one direction - are said to go to completion.
- indicated by \rightleftharpoons
- All reactions are theoretically reversible but in some cases the reverse reaction is so slight or takes place so slowly that the reaction is considered irreversible.

Homogeneous Equilibria

At equilibrium:

- rate (forward reaction) = rate (reverse reaction)
- overall composition of reaction mixture does not change
- individual molecules go on reacting dynamic equilibrium
As long as the temperature and pressure remain constant and nothing is added to or taken from the mixture, the equilibrium state remains unchanged.

Reaction goes to \qquad .

$\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$

concentration

time
reactant molecules > product molecules

$\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

$\mathrm{K}_{\mathrm{c}} \equiv$ equilibrium constant
[] = molarity at equilibrium
K does vary with temperature
K > 1 \qquad favoured, \qquad reaction favoured
K < 1 \qquad favoured, \qquad reaction favoured

Interpreting the equilibrium constant

If K_{c} for a reaction,

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

is large, the equilibrium mixture is mostly
\qquad . If K_{c} is small, the equilibrium mixture is mostly \qquad . When K_{c} is around 1 , the equilibrium mixture contains appreciable amounts of both reactants and products.

Example

For the reaction

$$
\begin{gathered}
\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}=25.0 \text { at } 600^{\circ} \mathrm{C}
\end{gathered}
$$

Calculate the value of K_{c} for each of the following reactions, at the same temperature:

- $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
- $\mathrm{SO}_{3}(\mathrm{~g})=\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& K_{c}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}} \\
& \text { Conc. Conc. } \\
& \text { Exp I } \\
& 0.1000 \mathrm{M} \mathrm{CO} \\
& 0.0613 \mathrm{M} \mathrm{CO} \\
& 0.3000 \mathrm{M} \mathrm{H}_{2} \\
& 0.1839 \mathrm{M} \mathrm{H}_{2} \quad 3.93 \\
& 0.0387 \mathrm{M} \mathrm{CH}_{4} \\
& 0.0387 \mathrm{M} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& K_{c}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
K_{c}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}
\end{gathered}
$$

Starting Equil. K_{c}
$\begin{array}{lll}\text { Exp III } & 0.1000 \mathrm{M} \mathrm{CH}_{4} \quad 0.0613 \mathrm{M} \mathrm{CO}\end{array}$
$0.1000 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$
$0.1839 \mathrm{M} \mathrm{H}_{2} \quad 3.93$
$0.0387 \mathrm{M} \mathrm{CH}_{4}$
$0.0387 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

When 1.000 mol CO and $3.000 \mathrm{~mol} \mathrm{H}_{2}$ are placed in a $10.00 \mathrm{dm}^{3}$ vessel at 1200 K and allowed to come to equilibrium, the mixture is found to contain $0.387 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$.

What is the molar composition of the equilibrium mixture? That is, how many moles of each substance are present?

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Starting
Change
Equil.
$\mathrm{CO}=$
$\mathrm{H}_{2}=$
$\mathrm{CH}_{4}=$

Reaction Quotient, Q_{c}

$$
Q_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{2}[B]^{d}}
$$

Takes the same form as K_{c} but is written for reactions not at equilibrium.

Predicting the direction of reaction

- $\mathrm{Q}>\mathrm{K}$ to establish equilibrium \qquad reaction is favoured
- $\mathrm{Q}<\mathrm{K}$ to establish equilibrium \qquad reaction is favoured
- $Q=K$ \qquad

Example

A $50.0 \mathrm{dm}^{3}$ reaction vessel contains 1.00 $\mathrm{mol} \mathrm{N}_{2}, 3.00 \mathrm{~mol} \mathrm{H}_{2}$, and $0.500 \mathrm{~mol} \mathrm{NH}_{3}$. Will more ammonia, NH_{3}, be formed or will it dissociate when the mixture goes to equilibrium at $400^{\circ} \mathrm{C}$? The equation is

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) .
$$

K_{c} is 0.500 at $400^{\circ} \mathrm{C}$.

Equilibrium constant, K_{p}
 $$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})
$$

- This is a gas phase reaction and we can use partial pressures instead of concentration, i.e. K_{p}.

$$
\begin{aligned}
& \text { partial pressure } \propto[\text {] } \\
& \qquad \begin{aligned}
P_{A} & =\frac{n_{A}}{V_{A}} R T \\
& =[A] R T
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{5}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}=9.7 \times 10^{-4} \\
\mathrm{~K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{PCl}_{5}}}{\mathrm{P}_{\mathrm{PCl}_{3}} \mathrm{PCl}_{2}}=1.2 \times 10^{-5} \\
\mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}
\end{gathered}
$$

$\Delta \mathrm{n}=$ (moles of gaseous products) - (moles of gaseous reactants)

Heterogeneous Equilibria

$$
\begin{gathered}
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=-\quad \text { or } \quad \mathrm{K}_{\mathrm{p}}=-
\end{gathered}
$$

- As long as some solid is present (no matter how much), equilibrium is reached in the same way.
- The equilibrium law for a heterogeneous reaction is written without concentration terms for pure solids or liquids.

```
Homogeneous Equilibria in Solution
    alcohol + acid \rightleftharpoons ester + water
C}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{5}{}\textrm{OH}+\mp@subsup{\textrm{CH}}{3}{}\textrm{COOH}\rightleftharpoons\mp@subsup{\textrm{CH}}{3}{}\mp@subsup{\textrm{COOC}}{2}{}\mp@subsup{\textrm{H}}{5}{}+\mp@subsup{\textrm{H}}{2}{}\textrm{O
    K
```

When water is a reactant or product but is not present in excess as the solvent, its concentration must be included in the equilibrium constant expression.

Reactions in dilute aqueous solution

Here water is the solvent and is in great excess:
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{c}}=-
$$

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{c}}=-
$$

Factors that influence equilibria

- Le Chatelier's Principle

If a system at equilibrium is subjected to a stress, the system will react in a way that tends to relieve the stress.

- Two factors cause the equilibrium to shift:
- concentration
- temperature

Changing the amounts of products or reactants

- Can be changed either by changing the amount of a particular substance or the volume that it is contained in.
- Changing the volume causes a change in pressure.

Adding or removing a reactant or product

The reaction shifts in a direction that will partially remove a substance that has been added or partially replace a substance that has been removed.

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Remove water?

Original equi.	0.613	1.839	0.387	0.387
Remove $\mathrm{H}_{2} \mathrm{O}$	0.613	1.839	0.387	0
New Equil.	0.491	1.473	0.509	0.122

Equilibrium shifts to the \qquad (direction). K_{c} does not change.

Changing the volume

Reducing the volume of a gaseous reaction mixture shifts the equilibrium in whichever direction will, if possible, decrease the number of molecules of gas.

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Reduce the volume at constant T
- Equilibrium shifts to the to decrease the moles of gas and reduce the pressure.

$\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$

- Increase the pressure by decreasing the volume
- Shifts to the \qquad (\qquad reaction)
- Solids and liquids are incompressible and not much affected by pressure changes.

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

- Does not respond to pressure changes.

Changing the temperature

- Increasing the temperature shifts an equilibrium in a direction that produces an endothermic change (which absorbs heat).

Increasing temperature

- Exothermic reaction

$$
A+B \rightleftharpoons C+D+\text { heat }
$$

- Endothermic reaction

$$
\mathrm{A}+\mathrm{B}+\text { heat } \rightleftharpoons \mathrm{C}+\mathrm{D}
$$

K changes with temperature

- If the forward reaction in an equilibrium is exothermic, raising the temperature causes the equilibrium constant to become smaller.
- The opposite change in K occurs if the forward reaction is endothermic.

Agents that do not affect the position of equilibrium

- catalyst
- affects both the forward and reverse reactions equally and does not affect the position of the equilibrium
- causes no change in the value of K or in the concentrations at equilibrium
- adding an inert gas at constant volume

Example

Consider the reaction:

$$
\begin{aligned}
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) ; \\
\Delta \mathrm{H} & =28 \mathrm{~kJ}
\end{aligned}
$$

Describe what happens to the composition of the equilibrium mixture and to K_{c} with each of the following changes to the system at equilibrium:
(a) Addition of oxygen gas
(b) An increase in temperature
(c) Reduction of the volume of the reaction container
(d) Addition of a catalyst
(e) Removal of $\mathrm{HCl}(\mathrm{g})$ from the reaction vessel.

Calculating equilibrium concentrations

- Consider the reaction

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) .
$$

Suppose you start with 1.00 mol each of carbon monoxide and water in a $50.0 \mathrm{dm}^{3}$ vessel. How many moles of each substance are in the equilibrium mixture at $1000{ }^{\circ} \mathrm{C}$? The equilibrium constant K_{c} at this temperature is 0.58 .

Example

- Suppose that in the preceding example 0.060 mol each of CO and $\mathrm{H}_{2} \mathrm{O}$ are mixed with 0.100 mol each of CO_{2} and H_{2}. What will the concentrations of all the substances be when the mixture reaches equilibrium at the same temperature?

Example

- Consider the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) .
$$

Suppose $1.00 \mathrm{~mol} \mathrm{H}_{2}$ and $2.00 \mathrm{~mol} \mathrm{I}_{2}$ are placed in a $1.00 \mathrm{dm}^{3}$ vessel. How many moles of substances are in the gaseous mixture when it comes to equilibrium at $458{ }^{\circ} \mathrm{C}$? The equilibrium constant K_{c} at this temperature is 49.7.

