
Discrete Optimization

ATM VP-based network design

Jangha Kang a, Kyungchul Park b, Sungsoo Park a,*

a Department of Industrial Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu,

Taejon 305-701, South Korea
b Telecommunication Network Lab, Korea Telecom, Taejon 305-390, South Korea

Received 24 October 2001; accepted 16 January 2003

Available online 12 August 2003

Abstract

We consider the problem of designing an ATM VP-based leased line backbone network. Given point-to-point

communication demands having predefined sizes in a network, the problem is to find configurations of demand routes

and link facilities installed on each edge satisfying all demands at minimum cost under some constraints. One of the

most important constraints is that a single demand cannot be split over multiple link facilities. This is a sort of bin

packing constraint. We propose an integer programming formulation of the problem and an algorithm to solve it. An

efficient column generation technique to solve the linear programming relaxation is proposed, and a valid inequality is

used to strengthen the integer programming formulation. The algorithm incorporates the column generation technique

and the cutting plane approach into a branch-and-bound scheme.

We test the proposed algorithm on some real problems. The results show that the algorithm can be used to solve the

problems within reasonably small computing times.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Integer programming; Column generation; Cutting plane; Bin packing; Routing; Telecommunications

1. Introduction

The emerging information networking services

demand a large bandwidth from telecommunica-

tion networks for large volumes of data to be ex-

changed within a very short time interval.

Transport technologies to meet these broadband

communications needs include asynchronous

transfer mode (ATM). ATM is a high-speed, in-

tegrated multiplexing and switching technology

that transmits information across telecommunica-

tions and computer networks using the data

transmission rate required by the customer

through fixed-length cells that are connection-ori-

ented [14].

The ATM is capable of supporting a wide va-

riety of connections with different bandwidth re-

quirements and traffic characteristics by means of

resource management control. As an effective way

to facilitate the coexistence of traffic with diverse

traffic characteristics and different quality of ser-

vice (QOS) requirements in ATM networks, a

*Corresponding author. Tel.: +82-428693121; fax: +82-

428693110.

E-mail address: sspark@kaist.ac.kr (S. Park).

0377-2217/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0377-2217(03)00372-2

European Journal of Operational Research 158 (2004) 555–569

www.elsevier.com/locate/dsw

virtual path (VP) concept has been proposed. A

VP is defined as a direct logical connection be-

tween two end nodes to accommodate multiple

virtual channels (VCs) simultaneously. VPs are

multiplexed on the physical transmission link in a

cell-multiplexing manner. When a VP is estab-

lished between two nodes, all VCs on that VP are

also multiplexed and routed via an identical pre-

defined path [13]. A VP has a predefined capacity,

referred to as a bandwidth. Especially, a VP, in

some leased line networks, has a bi-directional

bandwidth selected from a small set of alterna-

tives. For example, there are seven alternatives,

namely 64 Kbps, 128 Kbps, 256 Kbps, 512 Kbps,

1.024 Mbps, 2.048 Mbps and 45.056 Mbps in a

network based on synchronous digital hierarchy

(SDH) transmission system. Note that the smaller

bandwidths, in the previous example, divide the

larger ones exactly. Bandwidths are called divisible

in this case.

ATM usually consists of two hierarchical net-

work layers: the higher backbone network layer

and the lower local network layer. The backbone

network is composed of edge nodes and core

nodes. Each edge node is a hub of a cluster which

includes several access nodes, where a cluster is a

collection of access nodes that are served by the

same edge node. On each edge node, VPs of inter

cluster and intra cluster traffic are cross-connected.

On a core node, just the VPs of inter cluster traffic

are cross-connected. Due to the high traffic re-

quirements and reliability requirements in the

backbone network, connectivity between nodes is

usually high, that is, mesh topology is usually used

for the backbone network. The local network is

composed of an edge node and access nodes in a

cluster. Access nodes accommodate subscriber�s

demand (VPs). In a local network, several topol-

ogies can be used: tree, star, ring, etc. When the

tree topology is used, multiplexers (MUX) are in-

stalled on some of the access nodes to switch the

VPs of descendant access nodes in the tree.

On the edge node and core node, virtual path

cross-connect systems (VPXs) are installed. VPXs

are connected by link facilities, each of which

forms a transmission path. The link facilities are

selected from a small set of alternatives. For ex-

ample, in synchronous digital hierarchy (SDH)

networks, there are the following high-speed

transmission rates of link facilities, referred to as

link capacities: STM-1 (155.52 Mbps), STM-4

(622.08 Mbps), STM-16 (2488.32 Mbps) and

STM-64 (9953.28 Mbps), where STM means syn-

chronous transfer module [14]. Note that the

smaller transmission rates divide the larger ones

exactly. In this case, we say that the rates or the

link capacities are divisible. These transmission

rates are bi-directional, i.e. a link facility of STM-1

can accommodate 155.52 Mbps in both directions

simultaneously. An example of an ATM network

is illustrated in Fig. 1.

A VPX has a given number of ports on which a

link facility is installed. A link facility uses a pre-

defined number of ports exclusively. For example,

a link facility of STM-1 uses one port and a link

facility of STM-4 uses four ports. Hence, if a set of

link facilities requires more than the available

number of ports on each VPX, they cannot be

installed on it simultaneously. We call this ‘‘port

constraint’’.

A number of VPs established between a pair of

VPXs may be divided and loaded on different

paths. However, a single VP cannot be split and

pass through different physical link facilities, that

is, a single VP should be loaded on a single link

facility between two adjacent VPXs. This comes

from an ITU-T (Telecommunication Standard-

ization Sector of International Telecommunication

Union) recommendation saying that ‘‘a VP link

must be within a single transmission path (TP),

and thus cannot be split over multiple TPs’’ [5].

We call this ‘‘bin packing constraint’’.

One fundamental problem arises in designing

an ATM VP-based leased line backbone network.

We are given a graph G ¼ ðV ;EÞ, where node set V
is the set of VPXs and edge set E is the set of

possible connections between VPXs, the number

of available ports for each VPX, a set of link fa-

cilities with installation costs for each edge, and a

set of demands whose bandwidths are selected

from a small set of alternatives. The problem is to

find a configuration of VP routes and link facilities

to be installed on each edge to carry the demands

at minimum cost under the constraints that the

number of ports used should be less than or equal

to the given number for each node (the port con-

556 J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569

straint) and that a single VP cannot be split (the

bin packing constraint). We refer to the problem

as the ATM VP-based network design problem

(VPNDP).

Theorem 1. VPNDP is NP-hard.

Proof. See Appendix A.1. �

There are two related problems that have been

studied in the literature: the bandwidth packing

problem and the capacitated network design

problem. Both of them are NP-hard. Given edge

capacities and edge costs, the bandwidth packing

problem is to find a configuration of demand

routing at minimum cost. In this problem, the

capacities of edges are fixed and each demand

cannot be split. Laguna and Glover [7] used the

Tabu search method, and Park et al. [12] used

some integer programming approaches to solve it.

The capacitated network design problem is to

find a configuration of demand routing and facil-

ities installed on each edge at minimum facility

cost. In this problem, the capacity of an edge is

equal to the sum of the transmission rates of the

link facilities installed on the edge such that the

demands are allowed to be split by fractional

values. To solve this problem, Magnanti et al. [8]

used integer programming approaches assuming

that only two types of link facilities are available.

In this paper, we propose an integer program-

ming formulation of VPNDP and an algorithm to

solve it. An efficient column generation technique

to solve the linear programming (LP) relaxation is

proposed, and a class of valid inequalities is

characterized, so that the inequalities are ap-

pended to the integer model to strengthen the LP

relaxation. The column generation technique and

the cutting plane approach are embedded in a

branch-and-bound scheme. For details of integer

programming and column generation techniques,

refer to [1,11,12].

VPNDP is more difficult to solve than the ca-

pacitated network design problem due to the bin

packing constraint. We first give an efficient rep-

resentation of the bin packing constraint by a

system of linear inequalities and integrality re-

strictions.

The paper is organized as follows. In the fol-

lowing section, we give the details of the repre-

sentations of the bin packing constraint. Section 3

presents the formulation of VPNDP. Section 4

gives the column generation procedure to solve the

LP relaxation. In Section 5, a valid inequality is

routing table

routing table

routing table

routing table

VPX #3

VPX #2

VPX #4

VPX #1

STM-4 (622.08 Mbps)

STM-1 (155.52 Mbps)

Reserved

for Local
Network

Fig. 1. An example of an ATM network.

J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569 557

introduced to strengthen the initial formulation.

Section 6 describes the basic steps of the proposed

algorithm. Computational results are reported in

Section 7. Finally, Section 8 concludes.

2. Bin packing constraint

Before presenting the representations of the bin

packing constraint, let us introduce the bin packing

problem. It is, in general, a combinatorial optimi-

zation problem involving the partition of a set of

items into subsets. Given a set of bins with size b

and a set of items T ¼ f1; 2; . . . ; ngwith a size at for

t 2 T , the problem is to assign each item to one bin

so that the total size of the items in each bin does

not exceed b and the number of used bins is mini-

mized. Since the problem is NP-hard in the strong

sense [4] (it contains 3-PARTITION as a special

case), a number of simple approximation algo-

rithms for the problem have been found. One of the

approximation algorithms which is well known is

the ‘‘first-fit decreasing’’ (FFD) algorithm. When

the items are sorted as a1P a2P � � � P an, FFD

considers them according to their order. In the first

step, the algorithm initializes a bin with index 1.

Then it assigns each item to the lowest indexed

initialized bin into which it fits; only when the

current item cannot fit into any initialized bin, a

new bin is introduced with index jþ 1, where j is

the number of initialized bins at hand. It is worth

to note that FFD gives an optimal solution when

atþ1jat for each t ¼ 1; . . . ; n� 1, that is, atþ1 exactly

divides at for t ¼ 1; . . . ; n� 1 [2].

A generalization of the bin packing problem is

the ‘‘variable sized bin packing problem’’. It con-

siders a set of bins F with size bf and cost cf for

f 2 F ¼ f1; 2; . . . ; jF jg. The objective is to mini-

mize the total cost of the bins to use. Elsewhere [6],

we have proposed two approximation algorithms,

namely, ‘‘iterative first-fit decreasing’’ (IFFD) and

‘‘iterative best-fit decreasing’’ (IBFD) and shown

that they give optimal solutions when anj � � � ja1,
bjF jj � � � jb1, and c1=b1 6 c2=b2 6 � � � 6 cjF j=bjF j. In

this paper, the problem will be called ‘‘bin packing

problem’’, in short.

In the remainder of the section, two models of

the bin packing problem are given via systems of

linear inequalities and integrality restrictions that

consider multiple items for each type, say, nt items

of size at for each t 2 T .

2.1. Modeling the bin packing problem

The following is a ‘‘natural representation’’ of

the solution set for the bin packing problem for the

case with two bin types, i.e. jF j ¼ 2:

P¼ ðx;yÞ 2Z2nm
þ

(

�B2m
:

X

t2T

atx
f
it6bf y

f
i ;

i¼ 1; . . . ;m;f ¼ 1;2;
X

m

i¼1

x1it þ
X

m

i¼1

x2it ¼ nt; t 2 T

)

;

where the 0–1 variable y
f
i takes the value 1 if bin i

of type f is used, and, otherwise its value is 0, and

the integer variable x
f
it gives the number of items of

type t assigned to the bin i of type f . On the other

hand, m is a large enough upper bound on the

number of used bins of each type.

Under the assumption that b2jb1 and atþ1jat for
all t ¼ 1; . . . ; n� 1, an equivalent representation

with fewer variables is as follows:

D ¼ y 2 Z2
þ :

X

t2T

at

ak

� �

nt

(

6
b1

ak

� �

y1

þ
b2

ak

� �

y2; k 2 T

)

;

where the integer variable yf gives the number of

used bins of type f , and bwc denotes the largest

integer smaller than or equal to a real value w.

The assignment of each item is not explicitly

considered while defining the set D. However, we

can easily check whether a set of items can be

packed into a set of bins or not. The validity of the

representation will be shown in Theorem 3.

Before showing the validity, let us recall a

known result for the representation of the convex

hull of solutions to the knapsack problem.

Theorem 2 [9]. With atþ1jat for all t ¼ 1; . . . ; n� 1,

the convex hull of fx 2 Zn
þ :
P

t2T atxt 6 bg is de-

scribed by the nonnegativity constraints on the

variables and the n following inequalities:

558 J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569

X

t2T

at

ak

� �

xt 6
b

ak

� �

; k 2 T :

Theorem 3. Suppose b2jb1 and atþ1jat for all

t ¼ 1; . . . ; n� 1. Considering a number nt of items

for each t 2 T , there exists an integer vector y 2 D if

and only if there exists an integer vector ð~x; ~yÞ 2 P

such that yf ¼
Pm

i¼1 ~y
f
i for f ¼ 1; 2.

Proof. See Appendix A.2. �

An important implication from Theorem 3 is

that it can be checked whether a set of items can be

packed into a set of bins without needing to know

the explicit assignment of items but by using the

following inequalities:

X

t2T

at

ak

� �

xt 6
b1

ak

� �

y1 þ
b2

ak

� �

y2; k 2 T ; ð1Þ

where xt denotes the number of items of size at,

t 2 T and yf denotes the number of used bins of

size bf , f ¼ 1; 2, when b2jb1 and atþ1jat for all

t ¼ 1; . . . ; n� 1. If an integral vector ðx; yÞ satisfies
the inequalities (1), we can always get an explicit

assignment by using the modified FFD algorithm.

Notice that we can generalize the inequalities (1)

for a set of bins F ¼ f1; . . . ; jF jg such that jF j > 2

and bfþ1jbf , for all f ¼ 1; . . . ; jF j � 1, as follows:

X

t2T

at

ak

� �

xt 6
X

f2F

bf

ak

� �

yf ; k 2 T : ð2Þ

3. Modeling the ATM VP-based network design

problem

In this section, we present the formulation of

the ATM VP-based network design problem

(VPNDP), which determines the number of link

facilities to be installed on each edge and the

routing of the virtual paths. For this purpose, in

this paper it is assumed that only two types of link

facilities are available (as Magnanti et al. [8]). The

two facilities may correspond to STM-4 and STM-

1, STM-64 and STM-16, or any typical case in

which the smaller transmission rate exactly divides

the larger one. In the network of interest, the fol-

lowing predefined VP bandwidths are considered:

45.056 Mbps, 2.048 Mbps, 1.024 Mbps, 512 Kbps,

256 Kbps, 128 Kbps and 64 Kbps. These band-

widths are divisible, so we assume that the demand

sizes are divisible. Note that, even under these

assumptions, the problem is still NP-hard (see

Appendix A.1 for details).

First, let us introduce some notation to be used

in the formulation.

G ¼ ðV ;EÞ undirected graph, where V is the set of

vertices representing the VPXs and E is

the set of edges representing the potential

connections between VPXs.

dðvÞ set of edges incident to node v for v 2 V .

T set of demand types.

P set of node pairs where demands are de-

fined.

Rt
p set of VP routes where the demand of type

t between the node pair p may be loaded

for t 2 T , p 2 P . Note that two VP routes,

say, r1 2 Rt1
p and r2 2 Rt2

p , t1 6¼ t2, can use

the same physical path.

Rt
pðeÞ set of VP routes in Rt

p that include edge e

for e 2 E.

cef installation cost of link facility type f on

edge e for f ¼ 1; 2, e 2 E.

bf size (capacity) of link facility f for

f ¼ 1; 2, where b1P b2 and b2jb1.
at size (bandwidth) of demand type t

for t 2 T , where a1P a2P � � � P ajT j and

ajT jj � � � ja1.
sf number of ports that are required by link

facility f for f ¼ 1; 2.
dv number of available ports for node v for

v 2 V .

ntp number of demands (VPs) of type t be-

tween the node pair p for t 2 T , p 2 P .

The variables of the problem are as follows:

yef integer variable that gives the number of

link facilities of type f installed on edge e

for f ¼ 1; 2, e 2 E.

xr integer variable that gives the num-

ber of the loaded demands on the route r,

where r is a VP route to load the demands

J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569 559

of type t between a node pair p for r 2 Rt
p,

t 2 T , p 2 P .

The pure integer programming model is as fol-

lows:

ðMPÞ min
X

e2E

X

2

f¼1

cef y
e
f ð3Þ

s:t:
X

r2Rt
p

xrP ntp 8t 2 T ; p 2 P ; ð4Þ

X

e2dðvÞ

X

2

f¼1

sf y
e
f 6 dv 8v 2 V ; ð5Þ

X

2

f¼1

bf

ak

� �

yef

�
X

t2T

X

p2P

X

r2Rt
pðeÞ

at

ak

� �

xrP 0

8e 2 E; k 2 T ; ð6Þ

xr 2 Zþ 8r 2
[

t2T

[

p2P

Rt
p and

yef 2 Zþ 8e 2 E; f ¼ 1; 2: ð7Þ

Without loss of generality, we can assume that all

data are integers. Constraints (4) ensure that the

demand should be satisfied. Constraints (5) bound

the number of ports to be used at each node. The

constraints (6) jointly with the integrality con-

straints (7) ensure that each VP will not be split

over multiple link facilities, notice that it is the bin

packing constraint.

It is easy to see that the validity of MP requires

that the bandwidths of VPs and the capacities of

the link facilities are divisible, i.e. b2jb1 and

anj � � � ja1.
A solution to MP gives the VPs of each type t

passing through an edge e, which is equal to
P

p2P

P

r2Rt
pðeÞ

xr, and the number of link facilities of

each type f installed on edge e, which is equal to yef .

A configuration of VPs loaded on each link

facilities can be found by using the modified FFD

for each edge e where the number of items nt is
P

p2P

P

r2Rt
pðeÞ

xr for each type t and the number of

installed bins yf is y
e
f for each type f . For details of

the algorithm, see Appendix A.2. The algorithm

will be introduced in the proof of Theorem 3.

Anyway, we can see that MP has exponentially

many variables. However, we can solve the LP

relaxation efficiently by the (delayed) column

generation technique. It has been successfully used

for solving the bandwidth packing problem and

many other hard combinatorial optimization

problems, see [1,12].

4. Column generation to MP

Let (LP) be the LP relaxation of MP. Now we

will describe the column generation procedure to

solve LP. In the procedure, we construct a re-

stricted LP relaxation, referred to as RLP, which

has all the y-variables and a subset of VP routes at

the beginning of the procedure and other VP

routes are appended when they are needed. Let apt
be the dual variable associated with the constraint

(4) for node pair p 2 P and demand type t 2 T , cek
be the dual variable associated with the constraint

(6) for edge e 2 E and demand type k 2 T , and a�pt
and c�ek be the values of the optimal dual solution

of the current RLP. Finally, let Lr be the set of

edges that belong to the VP route r. Then, the

optimal solution of current RLP is optimal to LP,

provided that

X

e2Lr

X

k2T

c�ek
at

ak

� �

 !

P a�pt

8r 2 Rt
p; t 2 T ; and p 2 P ;

and the corresponding reduced cost for yef is non-

negative for each e 2 E and f ¼ 1; 2. So, the col-

umn generation problem associated with node pair

p 2 P and demand type t 2 T can be expressed as

follows:

ðSPðp; tÞÞ min
X

e2Lr

X

k2T

c�ek
at

ak

� �

 !

s:t: r 2 Rt
p;

where SPðp; tÞ is the problem that finds the short-

est path between node pair p with edge weight
P

k2T c
�
ekbat=akc for each edge e. Since the edge

weights are nonnegative, SPðp; tÞ can be solved

efficiently by the Dijkstra�s algorithm [11]. If the

length of the shortest path is less than a�pt, the path

560 J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569

can be appended to the current formulation.

Otherwise, no column is generated with respect to

node pair p and demand type t. If the length of the

shortest paths are greater than or equal to a�pt for

all p 2 P and t 2 T , then the current solution is

optimal to LP.

5. Cutting planes

Consider the following notation that is required

for presenting a valid inequality that can be used to

cut off fractional solutions in LP. The node set V is

partitioned into the two node sets S and S,

EðS; SÞ ¼ fði; jÞ 2 E : i 2 S; j 2 S or i 2 S; j 2 Sg,
and P ðS;SÞ ¼ fðs; tÞ 2 P : s2 S; t 2 S or s2 S; t 2 Sg.
Let also yf ðSÞ ¼

P

e2EðS;SÞ y
e
f for each f 2 F , and

ntðSÞ ¼
P

p2PðS;SÞ n
t
p for each t 2 T . So, it is easy to

see that the following two inequalities are valid for

MP:

b1y1ðSÞ þ b2y2ðSÞP
X

t2T

atntðSÞ

and

b1

b2
y1ðSÞ þ y2ðSÞP

P

t2T atntðSÞ

b2

� �

: ð8Þ

By letting C ¼ b1=b2 and DðSÞ ¼ d
P

t2T atntðSÞ=
b2e, we can rewrite (8) as follows:

Cy1ðSÞ þ y2ðSÞPDðSÞ:

By using (8), Magnanti et al. [8] proposed the

following inequality:

ry1ðSÞ þ y2ðSÞP r
DðSÞ

C

� �

; ð9Þ

where r � DðSÞmodðCÞ. It is valid for the two fa-

cility-loading problem (TFLP). In fact, it defines a

facet of the convex hull of the solutions to TFLP if

and only if DðSÞ > 0 and the both sub-graphs de-

fined by S and S are connected. Note that (9) is

also valid for VPNDP.

A column generation approach embedded in

the branch-and-bound procedure has been applied

successfully to solve many large-scale mixed inte-

ger programming problems. The approach is re-

ferred to as the branch-and-price approach. The

branch-and-price approach, if combined with

strong cutting planes, can become more efficient.

Within our knowledge there exist very few papers

addressing this approach, because it is hard to

design a column generation scheme if a cutting

plane has variables that need to be generated by a

column generation procedure. Some applications

can be found in [10,12].

However, in our case, there is no path variable

in the inequality (9). And so, the column genera-

tion procedure is not affected even after some

cutting planes are appended to LP.

6. Algorithmic framework

6.1. Overview

In this section, we give a brief presentation of

the proposed algorithm for solving the network

design problem. To start the column generation

procedure, an initial RLP must be provided. This

initial RLP should be feasible to ensure that the

proper dual information is passed to the column

generation problem. With the columns related to

the link facilities (y�s), a dummy column consisting

of 1�s in the rows corresponding the inequalities

(4),)1�s in the rows corresponding to the in-

equalities (5), 0�s in the other rows and a large cost

in the objective function, the initial RLP can be

constructed by using the shortest path for each

node pair p 2 P and demand type t 2 T . The

shortest paths are generated by the Dijkstra�s al-

gorithm, considering ce1 as the cost of each edge e.

The dummy column ensures that a feasible solu-

tion to the RLP exists. This dummy column will be

kept in RLP at each node of the branch-and-

bound tree for the same reason.

If the optimal solution to the initial RLP is not

dual feasible, then new columns are generated and

appended to RLP. Otherwise, no more columns

need to be appended to RLP. And so, the proce-

dure for identifying cutting planes violated by the

current solution is invoked such that the inequal-

ities are appended to RLP.

After appending the inequalities, we go through

the same procedure as we do after the initial RLP

is constructed. If the solution of RLP is dual in-

feasible, the required columns are generated and

J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569 561

appended to RLP until it is optimally solved.

When no more cutting planes can be found and,

hence, no more columns can be generated, if the

solution obtained by solving the last RLP is inte-

ger, it is an optimal solution to MP. Otherwise, an

optimal integer solution is obtained by using a

branch-and-cut procedure that includes the cutting

plane approach with column generation. The

overall algorithm is presented in Fig. 2.

6.2. Cutting plane identification

The cutting planes to identify are from the type

of valid inequality (9). It is hard to find an in-

equality (9) that is violated by the current optimal

solution to RLP due to the structure of the in-

equality; we simply use a total enumeration

scheme. Since each inequality (9) is defined for a

node partition, we generate all node partitions to

check whether any violated inequality exists. Our

preliminary experience has generated a few vio-

lated inequalities. So, we only append the first

generated inequality per iteration. Magnanti et al.

[8] present a heuristic for identifying violated in-

equalities which is based on a partial enumeration

scheme, because the networks that are considered

are larger than ours.

6.3. Branch-and-cut

To force the integrality of variables, we perform

the branch-and-cut procedure by solving RLP at

each node of the branch-and-bound tree such that

the cutting plane and column generation schemes

are used.

Given an optimal solution ð~y;~xÞ to RLP at a

node of the branch-and-bound tree, the branching

variable selection rule is as follows: y-variables

have priority over the x-variables; the y-variable

whose current value, say, ~yei is closest to b~yei c þ 0:5
is branched first; the x-variables have the same

branching rule as the y-variables.

For speeding up the branch-and-cut process, a

heuristic is executed at each branch-and-bound

node where the y-variables take integer values in

Start

Construct initial RLP

Solve RLP

Generate columns

Any column

generated?

Find cutting planes

Any inequality

generated?

Branch-and-Cut

Stop

Append columns

to RLP

Append inequality

to RLP

Yes

Yes

No

No

Integer solution?

Yes

No

Fig. 2. Diagram of the algorithm.

0

1

4

6

2

3

5

62

61

15

61

66

15

42

Fig. 3. Network 1 ðjV j ¼ 7; jEj ¼ 19Þ.

562 J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569

the optimal solution to the RLP. The heuristic

fixes the y-variables to its integer value (~y) and

solves the reduced problem by using the branch-

and-bound method up to optimality such that the

optimal solution, if any, is feasible for the original

problem and can replace the incumbent solution,

in case. In our computational study, we observed

that this procedure dramatically reduces the com-

putation time in all cases.

Before the branch-and-bound procedure is

used, finding shortest paths is sufficient for column

generation. However, the shortest path column

generation for some branch-and-bound node can

make again the columns related to a path variable

once it has been bounded above. To overcome this

difficulty, the k-shortest path algorithm due to Yen

[15] is used instead of the shortest path algorithm,

such that in case the generated column already

1

0

2

3

8

9

6

7

5

4

21

42
35

70

15

62

46

28

20

86

Fig. 4. Network 2 ðjV j ¼ 10; jEj ¼ 35Þ.

Table 1

Installation costs for network 1 ðjV j ¼ 7; jEj ¼ 19Þ

e From To ce1 ce2

0 0 1 150 59

1 0 2 300 127

2 0 3 300 127

3 0 4 450 205

4 0 5 250 115

5 0 6 600 267

6 1 2 250 105

7 1 3 250 105

8 1 4 350 155

9 1 6 500 223

10 2 3 50 20

11 2 4 400 178

12 2 5 150 72

13 2 6 300 146

14 3 4 400 178

15 3 5 150 72

16 3 6 300 146

17 4 6 150 70

18 5 6 450 211

Table 2

Installation costs for network 2 ðjV j ¼ 10; jEj ¼ 35Þ

e From To ce1 ce2

0 0 1 250 100

1 0 2 400 159

2 0 3 400 159

3 0 4 570 227

4 0 5 570 227

5 0 6 700 305

6 0 8 500 215

7 0 9 800 367

8 1 2 350 159

9 1 3 350 159

10 1 4 500 227

11 1 5 500 227

12 1 6 750 305

13 1 8 500 215

14 1 9 800 367

15 2 3 250 100

16 2 4 450 205

17 2 5 450 205

18 2 6 550 255

19 2 9 700 323

20 3 4 450 205

21 3 5 450 205

22 3 6 550 255

23 3 9 700 323

24 4 5 250 100

25 4 6 600 278

26 4 8 350 172

27 4 9 650 246

28 5 6 650 278

29 5 8 350 172

30 5 9 550 246

31 6 7 400 176

32 6 9 400 170

33 7 9 500 208

34 8 9 650 311

J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569 563

exists, a new one in the shortest path ordering is

checked. If it does not exist, the column is gener-

ated, see also Park et al. [12].

7. Computational results

The proposed approach has been tested by us-

ing the networks shown in Figs. 3 and 4, where the

numbers of available ports at the nodes are shown

beside the circles. Tables 1 and 2 show the instal-

lation costs of link facilities for each network.

Tables 3 and 4 give the corresponding flow de-

mand. The networks are real ATM networks un-

der consideration in Korea, but data has been

perturbed to preserve confidentiality. Two types of

link facilities are considered, say, 622.08 and

155.52 Mbps; therefore, 4 ports and 1 port are

required, respectively.

The obtained optimal solutions for the two

networks are given in Tables 5 and 6 and their

total installation costs are 5120 and 7664, respec-

tively. Both tables only show the numbers of in-

stalled link facilities on the edges (y�s).

For enlarging the computational experimenta-

tion, new instances for each network topology

were created by modifying the real cases.

The problem dimensions are shown in Tables 7

and 8. In both tables, the instances 10 are the real

cases. The headings are as follows: Set of VPs,

where B1: 45.056 Mbps, 2.048 Mbps, 1.024 Mbps,

512 Kbps, 256 Kbps, 128 Kbps and 64 Kbps, and

B2: 45.056 Mbps, 2.048 Mbps and 1.024 Mbps;

nVPs, the total number of VPs; TB: the total

bandwidth of the demand in Giga-bits.

The algorithm was coded in C, and the CPLEX

7.0 callable library routines were used as LP sol-

ver. The computational experimentation was per-

formed on a Pentium 500 MHz PC with 256 MB

RAM. Tables 9 and 10 summarize the computa-

tional results. The headings are as follows: ZLP0,

the optimal value of LP relaxation without the

inequalities (9); ZLP, the optimal value of LP re-

laxation with the inequalities (9); ZIP, the value of

the optimal integer solution; Gap0 ¼ ðZIP � ZLP0Þ=
ZIP � 100; Gap ¼ ðZIP � ZLPÞ=ZIP � 100; m, the

number of constraints in the initial RLP; n,

the number of variables in the initial RLP; nCuts,

Table 3

Flow demands for network 1 ðjV j ¼ 7; jEj ¼ 19Þ

No. From To Bandwidth (Kbps)

45,056 2048 1024 512 256 128 64

0 0 1 6 290 287 26 50 189 826

1 0 2 2 29 21 2 10 30 139

2 0 3 3 95 171 22 36 184 569

3 0 4 13 308 124 5 39 102 477

4 0 5 1 7 76 1 12 161 117

5 0 6 1 26 15 5 4 3 49

6 1 2 2 25 32 5 16 41 201

7 1 3 8 125 275 57 77 184 940

8 1 4 1 282 208 25 71 195 977

9 1 5 0 23 32 4 9 122 177

10 1 6 7 21 33 1 10 16 151

11 2 3 0 116 51 18 24 95 329

12 2 4 0 158 69 9 20 51 162

13 2 5 0 28 10 2 3 30 90

14 2 6 0 36 11 0 2 80 42

15 3 4 0 257 84 49 83 264 749

16 3 5 0 71 35 5 12 138 219

17 3 6 5 91 12 6 10 149 102

18 4 5 0 110 24 1 13 154 164

19 4 6 0 138 85 7 10 54 121

20 5 6 0 39 4 0 4 63 19

564 J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569

the number of appended cuts (9); tc, total number

of columns in the model at the end of the algo-

rithms execution; nit, the number of calls to LP

solver; nn, the number of the branch-and-bound

nodes; time, total CPU time (second).

We can see in both tables the LP bound is

dramatically improved by appending the inequal-

ities (9). On the other hand, as jEj, jT j and jP j
increase, the algorithm usually takes more time.

The Gap is relatively small (within 10%) and an

optimal solution is obtained within 4 hours for any

instance. Since the network 2 is a large real net-

work, we can say that the algorithm performs well

for real data.

8. Concluding remarks

In this paper, we have proposed the integer

programming formulation of the ATM VP-based

Table 5

The obtained solution for network 1 ðjV j ¼ 7; jEj ¼ 19Þ

e From To ye1 ye2

0 0 1 3 0

1 0 2 0 0

2 0 3 1 0

3 0 4 2 0

4 0 5 1 0

5 0 6 0 0

6 1 2 1 0

7 1 3 2 0

8 1 4 2 0

9 1 6 0 0

10 2 3 1 1

11 2 4 1 0

12 2 5 0 0

13 2 6 0 0

14 3 4 1 0

15 3 5 1 0

16 3 6 2 0

17 4 6 1 0

18 5 6 0 0

Table 4

Flow demands for network 2 ðjV j ¼ 10; jEj ¼ 35Þ

No. From To Bandwidth (Kbps)

45,056 2048 1024 512 256 128 64

0 0 3 1 74 102 0 9 39 247

1 0 5 1 7 8 0 4 19 46

2 0 6 2 5 19 0 3 16 33

3 0 9 0 70 0 0 2 2 10

4 1 3 0 14 21 0 1 6 30

5 1 4 0 2 21 0 0 2 18

6 1 5 0 1 60 0 2 10 24

7 1 9 0 35 6 0 0 0 12

8 2 3 0 105 147 16 29 109 558

9 2 5 9 67 168 30 47 187 716

10 2 6 0 28 63 9 42 106 304

11 2 8 0 10 17 2 6 112 109

12 2 9 3 172 17 0 3 16 159

13 3 4 3 69 67 10 27 53 362

14 3 5 3 107 167 29 50 167 688

15 3 6 1 26 132 8 43 108 677

16 3 8 0 10 16 2 12 129 143

17 3 9 4 198 44 10 23 35 239

18 4 5 0 100 72 39 38 140 434

19 4 6 2 13 35 11 34 62 119

20 5 6 0 83 37 33 54 165 603

21 5 8 0 61 19 6 7 129 207

22 5 9 5 315 60 6 17 240 204

23 6 9 0 117 64 2 19 54 187

24 8 9 0 136 1 0 5 109 37

J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569 565

network design problem (VPNDP) so-called MP

and an efficient algorithm for problem solving. In

the formulation MP, the inequalities (6) ensure

that each VP is not split over multiple link facilities

without actually knowing how many demands of

each type are loaded on each link facility. The

divisibility of the bandwidths of demands and the

capacities of link facilities is assumed. If the di-

visibility property does not hold, the problem will

become even more difficult to solve. The algorithm

combines a column generation scheme with the

strong cutting plane approach. The column gen-

eration scheme is used to solve the LP relaxation

of the problem efficiently. Moreover, the valid in-

equalities are appended to strengthen the formu-

lation. Although more computational testing is

required, the first computational results show that

the proposed algorithm can solve the problem in a

reasonable time and, hence, it can be used for

practical purposes.

Appendix A

A.1. Proof of Theorem 1

Proof. We give a proof by showing that VPNDP

has a NP-hard problem as a special case. Let us

define a special case (1-VPNDP) of VPNDP by

considering only one type of demand. We show the

NP-hardness of 1-VPNDP by showing that the

corresponding feasibility problem F1-VPNDP

is NP-complete. Notice that the NP-hardness of

1-VPNDP implies the NP-hardness of VPNDP.

F1-VPNDP can be stated as follows:

Table 6

The obtained solution for network 2 ðjV j ¼ 10; jEj ¼ 35Þ

e From To ye1 ye2

0 0 1 0 1

1 0 2 0 1

2 0 3 1 0

3 0 4 0 0

4 0 5 0 0

5 0 6 0 0

6 0 8 0 0

7 0 9 0 0

8 1 2 0 0

9 1 3 0 0

10 1 4 0 0

11 1 5 0 0

12 1 6 0 1

13 1 8 0 0

14 1 9 0 0

15 2 3 0 2

16 2 4 0 0

17 2 5 2

18 2 6 0 0

19 2 9 1 0

20 3 4 1 0

21 3 5 1 0

22 3 6 1 0

23 3 9 1 0

24 4 5 1 0

25 4 6 0 0

26 4 8 0 0

27 4 9 0 0

28 5 6 1 0

29 5 8 1 0

30 5 9 2 0

31 6 7 0 0

32 6 9 1 0

33 7 9 0 0

34 8 9 0 0

Table 7

Problem instances for network 1 ðjV j ¼ 7; jEj ¼ 19Þ

Instance jP j Set of VPs nVPs TB

1 10 B2 3002 6.384640

2 13 B2 3561 7.435264

3 16 B2 3758 8.135680

4 19 B2 3898 8.413184

5 21 B2 3983 8.565760

6 10 B1 10,596 7.152320

7 13 B1 11,893 8.277504

8 16 B1 12,740 9.040704

9 19 B1 13,339 9.366912

10 21 B1 13,673 9.544320

Table 8

Problem instances for network 2 ðjV j ¼ 10; jEj ¼ 35Þ

Instance jP j Set of VPs nVPs TB

1 15 B2 2707 5.830656

2 18 B2 3002 6.339584

3 21 B2 3142 6.537216

4 23 B2 3059 6.348800

5 25 B2 3222 6.665216

6 15 B1 8437 6.401920

7 18 B1 10,492 7.079936

8 21 B1 11,184 7.336960

9 23 B1 11,493 7.185152

10 25 B1 12,093 7.548928

566 J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569

Instance An undirected graph G ¼ ðV ;EÞ, a set of

node pairs P ¼ fp1; p2; . . .g, only one

type of demand, i.e. jT j ¼ 1, a set of link

facility types F , a size at of demand type

t 2 T , a number ntp of demand for each

t 2 T and p 2 P , a capacity bf of link fa-

cility f 2 F , a number sf of ports needed

for a link facility f 2 F , a number dv of

available ports for each v 2 V , an instal-

lation cost cef for each e 2 E and f 2 F ,

and a nonnegative integer C. All data

are nonnegative integer.

Question Is there a solution of VPNDP with total

installation cost at most C?

F1-VPNDP is in NP since we can check the

feasibility of any guessed solution in polynomial

time. Note that, if multiple item sizes are consid-

ered, we need to solve the variable sized bin

packing problem in the checking-stage, which is

known to be NP-complete. Therefore, the feasi-

bility problem of VPNDP will not be in NP if

multiple item sizes are considered.

Next, we transform an arbitrary instance of the

simple two-commodity integer flow problem in

undirected graphs (referred to as the simple

U2CIF), which is NP-complete [3], into an in-

stance of F1-VPNDP.

The simple U2CIF can be stated as follows:

Instance A graph G ¼ ðV ;EÞ, specified vertices s1,

s2, t1 and t2, and requirements R1;R2 2
Zþ.

Question Are there two flow functions f1; f2 :
fðu; vÞ; ðv; uÞ : ðu; vÞ 2 Eg ! f0; 1g such

that:

1. either fiððu; vÞÞ ¼ 0 or fiððv; uÞÞ ¼ 0 for all

ðu; vÞ 2 E and i 2 f1; 2g,
2. maxff1ððu; vÞÞ; f1ððv; uÞÞg þ maxff2ððu; vÞÞ;

f2ððv; uÞÞg 6 1 for each ðu; vÞ 2 E,

Table 9

Results for problem set 1 ðjV j ¼ 7; jEj ¼ 19Þ

Instance ZLP0 ZLP ZIP Gap0 Gap m n nCuts tc nit nn Time

1 3048.43 3303.25 3474 12.25 4.92 94 69 77 406 664 476 7.8

2 3627.27 3862.33 3975 8.75 2.83 103 78 70 340 435 294 7.68

3 4080.48 4315.72 4392 7.09 1.74 112 87 76 329 354 238 14.17

4 4302.39 4541.81 4664 7.75 2.62 121 96 88 496 2799 1532 66.35

5 4359.72 4714.83 4816 9.47 2.10 127 102 91 450 882 734 20.52

6 3393.18 3643.54 3768 9.95 3.30 210 109 75 722 314 148 9.67

7 4021.00 4224.00 4288 6.23 1.49 231 130 46 688 158 84 6.96

8 4506.32 4782.38 4946 8.89 3.31 252 151 92 1040 2752 1756 181.1

9 4762.48 4976.67 5080 6.25 2.03 273 172 77 1086 872 608 54.42

10 4828.99 4986.81 5120 5.68 2.60 287 186 83 1121 990 682 78.01

Table 10

Results for problem set 2 ðjV j ¼ 10; jEj ¼ 35Þ

Instance ZLP0 ZLP ZIP Gap0 Gap m n nCuts tc nit nn Time

1 4801.67 5349.13 5850 17.92 8.56 160 116 197 1191 2223 1164 142.18

2 5287.62 5816.12 6264 15.59 7.15 169 125 188 958 1220 814 75.14

3 5459.79 5981.04 6592 17.18 9.27 178 134 254 1270 6870 3474 582.4

4 5290.98 5979.18 6614 20.00 9.60 184 140 412 1742 9232 6874 1767.58

5 5630.77 6235.13 6948 18.96 10.26 190 146 442 1679 11,080 9882 2271.77

6 5202.09 5773.74 6214 16.28 7.08 360 176 198 2692 1466 962 299.67

7 5851.88 6355.85 6868 14.80 7.46 381 197 215 2465 2341 1156 584.59

8 6075.55 6647.61 7150 15.03 7.03 402 218 213 2334 2248 1112 574.25

9 5936.17 6699.01 7385 19.62 9.29 416 232 450 3846 22,536 15,910 14,036.08

10 6332.34 6947.42 7664 17.38 9.35 430 246 451 3521 14,814 13,538 10,941.29

J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569 567

3. flow fi is conserved at v for each v 2 V�
fsi; tig, i 2 f1; 2g, and

4. the net flow into ti under flow fi is at least

Ri for i 2 f1; 2g?

For details, refer to Garey and Johnson [4] and

Even et al. [3].

Given an arbitrary instance of the simple

U2CIF, we can construct an instance of F1-

VPNDP in polynomial number of steps as follows.

Consider an arbitrary instance of the simple

U2CIF given by a graph G ¼ ðV ;EÞ, the four

vertices s1, t1, s2 and t2, and the requirements R1,

R2.

As shown in Fig. 5, we create a node vðeÞ for

each edge e 2 E and construct a graph

G0 ¼ ðV 0;E0Þ, where V 0 ¼ V
S

fvðeÞ : e 2 Eg and

E0 ¼ fðs1; t1Þ; ðs2; t2Þg
S

fðv; vðeÞÞ : v 2 V ; e 2 E; e
meets v in graph Gg. Then, consider the follow-

ing instance of F1-VPNDP:

G0 ¼ ðV 0;E0Þ;

P ¼ fp1; p2g;

where p1 ¼ ðs1; t1Þ and p2 ¼ ðs2; t2Þ;

T ¼ f1g; a1 ¼ 1; n11 ¼ R1; n12 ¼ R2;

F ¼ f1g; b1 ¼ 1; s1 ¼ 1;

dv ¼
1 if v 2 V ;
2 if v 2 V 0 � V ;

�

ce1 ¼
0 if e 2 E0 � fðs1; t1Þ; ðs2; t2Þg;
1 if e 2 fðs1; t1Þ; ðs2; t2Þg;

�

C ¼ 0:

In the graph G0, no more than one demand can be

loaded on any edge e 2 E0 � fðs1; t1Þ; ðs2; t2Þg.
Moreover, if the installation cost is 0, all demands

should be loaded only on the edges in E0�
fðs1; t1Þ; ðs2; t2Þg. Therefore, there are two flow

functions for graph G satisfying the constraints of

the simple U2CIF if and only if we can create a

network on graph G0 carrying the demands at in-

stallation cost 0.

The theorem follows this. �

Note that we consider F and T such that

jF j ¼ jT j ¼ 1 in the proof. It is easy to see that

VPNDP is still NP-hard for F ¼ f1; 2g and

T ¼ f1; . . . ; ng such that b2jb1 and atþ1jat; t ¼
1; . . . ; n� 1.

A.2. Proof of Theorem 3

Proof. Suppose there exists a vector ð~x; ~yÞ 2 P.

Then we have
P

t2T at~x
f
it 6 bf ~y

f
i for all i ¼ 1; . . . ;m

and f ¼ 1; 2. Since ~y
f
i is a 0–1 variable, from

Theorem 2 we have

X

t2T

at

ak

� �

~x
f
it 6

bf

ak

� �

~y
f
i for f ¼ 1; 2; i ¼ 1; . . . ;m

and k 2 T :

By summing up the above inequalities, we get the

following:

X

t2T

at

ak

� �

X

m

i¼1

~x1it

þ
X

m

i¼1

~x2it

!

6
b1

ak

� �

X

m

i¼1

~y1i þ
b2

ak

� �

X

m

i¼1

~y2i for k 2 T :

1s 1t

2s 2t

1v

2v

1e

2e

3e

4e

5e

G

1s
1t

2s

2t

1v

2v

)(1ev

)(3ev

)(2ev

)(4ev

)(5ev

G′

Fig. 5. Graph construction.

568 J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569

Therefore, there exists an integer vector y 2 D such

that nt ¼
Pm

i¼1 ~x
1
it þ

Pm

i¼1 ~x
2
it for t 2 T and yf ¼

Pm

i¼1 ~y
f
i for f ¼ 1; 2.

Conversely suppose there exists an integer vec-

tor y 2 D. Then, there exists an integer vector

ð~x; ~yÞ 2 P such that nt ¼
Pm

i¼1 ~x
1
it þ

Pm

i¼1 ~x
2
it for

t 2 T and yf ¼
Pm

i¼1 ~y
f
i for f ¼ 1; 2. We can show

this by generating such a vector using a modified

first-fit decreasing algorithm. Let us index the bins

as 1; . . . ; y1; y1 þ 1; . . . ; y1 þ y2, where the size of the

bin indexed by j is b1 if j6 y1, otherwise, its size is

b2. Note that y1 and y2 are fixed here. Then, we can

pack n1 items of size a1 assigning each of them to

the lowest indexed bin in which it fits. The algo-

rithm ends in failure if any of the items of size a1
cannot be assigned. Otherwise, the above proce-

dure is recursively executed for the remaining

items of sizes a2; a3; . . . ; an.
We can show by contradiction that the algo-

rithm always succeeds for b2jb1 and atþ1jat,
t ¼ 1; . . . ; n� 1. Assume that the algorithm ends in

failure while packing the items of size ak0 . Then, for

each bin j ¼ 1; . . . ; y1 þ y2, the remaining capacity

is less than ak0 and only the items of size a1; . . . ; ak0
are packed. Hence, the capacity used by the items

for each bin j can be expressed as follows:

b1=ak0b cak0 for j ¼ 1; . . . ; y1;
b2=ak0b cak0 for j ¼ y1 þ 1; . . . ; y1 þ y2;

�

since ak0 j � � � ja1. Then, the total capacity occupied

by the items is equal to

b1

ak0

� �

ak0y1 þ
b2

ak0

� �

ak0y2:

However, there exists an unpacked item of size ak0 .

Therefore we have that

X

k0

t¼1

atnt >
b1

ak0

� �

ak0y1 þ
b2

ak0

� �

ak0y2:

However, this contradicts the assumption that

y 2 D, that is,

X

t2T

at

ak

� �

nt 6
b1

ak

� �

y1 þ
b2

ak

� �

y2 8k 2 T :

The theorem directly follows. �

References

[1] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P.

Savelsbergh, P.H. Vance, Branch-and-price: Column gen-

eration for solving huge integer programs, Operations

Research 46 (1998) 316–329.

[2] E.G. Coffman, M.R. Garey, D.S. Johnson, Bin packing

with divisible item sizes, Journal of Complexity 3 (1987)

406–428.

[3] S. Even, A. Itai, A. Shamir, On the complexity of timetable

and multicommodity flow problems, SIAM Journal on

Computing 5 (1976) 691–703.

[4] M.R. Garey, D.S. Johnson, Computers and Intractability:

A guide to the Theory of NP-Completeness, W.H. Free-

man and Company, 1979.

[5] ITU-T recommendation E.735, Framework for traffic

control and dimensioning in B-ISDN, 1997.

[6] J. Kang, S. Park, Algorithms for the variable sized bin

packing problem, European Journal of Operational Re-

search 147 (2003) 365–372.

[7] M. Laguna, F. Glover, A tabu search approach, Manage-

ment Science 39 (1993) 492–500.

[8] T.L. Magnanti, P. Mirchandani, R. Vachani, Modeling

and solving the two-facility capacitated network loading

problem, Operations Research 43 (1995) 142–157.

[9] O. Marcotte, The cutting stock problem and integer

rounding, Mathematical Programming 33 (1985) 82–92.

[10] G.L. Nemhauser, S. Park, A polyhedral approach to edge

coloring, Operations Research Letters 10 (1991) 315–322.

[11] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial

Optimization, John Wiley & Sons, 1988.

[12] K. Park, S. Kang, S. Park, An integer programming

approach to the bandwidth packing problem, Management

Science 42 (1996) 1277–1291.

[13] B.H. Ryu, H. Ohsaki, M. Murata, H. Miyahara, Design

algorithm for virtual path based ATM networks, IEICE

Transactions on Communications E79-B (1996) 97–107.

[14] T. Wu, N. Yoshikai, ATM Transport and Network

Integrity, Academic Press, 1997.

[15] J.Y. Yen, Finding the K shortest loopless paths in a

network, Management Science 17 (1971) 712–716.

J. Kang et al. / European Journal of Operational Research 158 (2004) 555–569 569

