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ABSTRACT 

 The increasing of the population and development of the different countries converts 

the energy topic in one of the most important aspects of our times. The main target due to the 

limited life of conventional energy sources is the achievement of a sustainable energy mix 

where thermo solar energy plays an important role. One of the disadvantages of this 

renewable energy is the fact that energy is not available all the time: the need of heat storage 

systems appear. In this Master Thesis, a review on the work done until the moment in the 

frame of latent heat and thermochemical storage systems is presented in the temperature 

range from 200 to 700 ºC. Finally a design and the first calculations for the modeling of a latent 

heat storage system for a laboratory device are shown. 
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1. Introduction 

The increasing on the prices of the conventional energy sources and the environmental 

awareness have leaded to increase the use of renewable energies and the energy efficiency . In 

this scene, storing thermal energy plays a really important role as it allows to improve the 

dispatchability and the efficiency of different applications such as thermosolar power plants, 

greenhouses and buildings heating systems. 

There are three methods used and still being investigated in order to store thermal 

energy. One is the sensible heat storage (SHS), the other one is the latent heat storage (LHS) 

and the last one is the thermo-chemical storage. In the present work the last two ones will be 

presented in the following sections focusing on the high temperature storage between 200 

and 700 ºC. 

 The first method (SHS) is based on raising the temperature of a solid or liquid to store 

heat and releasing it with the decrease of temperature when it is necessary. The volumes 

needed to store energy in the scale that world needs are extremely large. That is why the 

other two methods are being developed. The LHS  method is a medium term method and the 

thermo-chemical storage is a long term method as there have not been so many research work 

and experiments as with the other two methods. 

1.1. LATENT HEAT STORAGE 

 As it has been said in the introduction, an option to store thermal energy is the latent 

heat storage. This method is based on the utilization of phase change materials (PCM). These 

materials store heat when they go from solid to liquid, from liquid to gas or from solid to solid 

(change of one crystalline form into another without a physical phase change). Then they 

release energy when they have the reverse phase change. It must be mentioned that until 

now, the PCM studies and applications have been mainly focused on the solid-liquid phase 

change.  

 The storage capacity of a LHS system in the concrete case of solid-liquid 

transformation is given by equation 1, 

� = � � · ��
�	

�

· �� + � · �� · �ℎ� + � � · ��

��

�	
· �� 

Equation 1. Storage capacity of a LHS system 

where Ti is the initial temperature, Tm is the melting temperature, m is the mass of heat 

storage medium, Cp is the specific heat,  �� is the fraction melted and �ℎ� is the heat of 

fusion per unit mass (J/kg). 

 The heat of fusion or the heat of evaporation is much greater than the specific heat. 

Thanks to that, latent storage materials has got a larger volumetric energy storage capacity 

than sensible storage materials. Another advantage is the fact that the absorption and release 

of the energy stored takes place at a constant temperature which makes easier the choice of 

the material to use in the different applications. 
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1.1.1. Materials to be used as PCM 

1.1.1.1. Properties required 

 It is possible to find materials with a heat of fusion and melting temperature inside the 

desired range but a material has to exhibit certain properties to become a feasible PCM. These 

properties can be classified in 5 groups: thermal properties, physical properties, kinetic 

properties, chemical properties and economical properties [1] [5].  

The thermal properties the material must have: 

•  Suitable phase-transition temperature for the specific application. 

•  High latent heat of transition in order to occupy the minimum possible volume. 

•  High thermal conductivity in order to provide the minimum temperature gradients 

and facilitate the charges and discharges of heat.  

The physical properties are: 

•  Favorable phase equilibrium to facilitate the heat storage. 

•  High density to also occupy the minimum possible volume. 

•  Small volume change to facilitate the construction of the different needed containers 

and heat exchangers. 

•  Low vapor pressure in order to avoid stresses and problems with the containers and 

heat exchangers needed. 

 The kinetic properties are: 

•  Sufficient crystallization rate in order to avoid supercooling. 

•  No supercooling as it makes difficult to control the heat transfer and the truth melting 

temperature that is in principle given. 

 The chemical properties are 

•  Long-term chemical stability and complete reversible melt/freeze cycle as it is needed 

to work during the most cycles possible. 

•  Compatibility with materials of construction as it is also needed to work the most 

possible time. 

•  No toxicity because of safety reasons. 

•  No fire hazard also because of safety reasons.  

•  Non-explosive also because of safety reasons. 

 Finally, from the point of view of economics, the material must be abundant, available 

and cost effective to help into the feasibility of the use of the storage system. 

1.1.1.2. Classification of the PCM 

The different materials which have the properties mentioned before are classified in 

different groups. One possible classification is the one shown in figure 1. There are three main 

groups: organic materials, inorganic materials and eutectics. It must be mentioned that 

generally the materials do not respect all the properties listed in the previous section and it 
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has to be compensated with the system design and different enhancement methods such the 

use of fins or composite materials in the form of matrixes. 

 

Figure 1. Classification of PCM [1] 

Inside the organic materials group there are paraffin compounds and non-paraffin 

compounds. The paraffin compounds are formed by saturated hydrocarbons which correspond 

to the general formula CnH2n+2.  Paraffin wax is the most  PCM material used in this group and it 

consists in a combination of different hydrocarbons obtained from the petroleum distillation. 

The properties of the different paraffin compounds are quite similar and that makes easier its 

study. 

The non-paraffin group contains different esters, fatty acids, alcohols and glycols. Each 

of the materials have different properties and they can be found in the literature in case it is 

necessary to use one of them. 

Inside the inorganic group there are also two main groups: salt hydrate and metallics. 

Salt hydrates are alloys of inorganic salts and water forming a typical crystalline solid of 

general formula AB·nH2O. The metallics group include low melting metals and metal eutectics 

but it must be mentioned that they have not been really considered as PCM because of their 

large weight. In spite of this, there are some interesting points to remark: they have got high 

thermal conductivity, relatively low vapor pressure and high heat of fusion per unit volume. 

 There are some thermophysical properties from different metal alloys that have been 

studied as possible PCM in tables 17 to 22 from reference [3]. 

 Finally there is the eutectics group. An eutectic is a minimum-melting composition of 

two or more components, each of which melts and freezes congruently forming a mixture of 

the component crystals during crystallization [4]. This group contains also three different 
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groups: organic-organic, inorganic-inorganic and inorganic-organic, depending on the nature of 

the components of the composition. 

More detailed information about the different groups, its advantages and 

disadvantages and some tables with materials of each group, melting temperature and heat of 

fusion can be found in [1]. 

As the present work is focused on high temperature storage systems between 200 and 

700 ºC, as it is shown in figure 2 it is not possible to use all the materials groups as PCM. Only 

inorganic salts, their eutectic mixtures and if it is possible metallics are going to be considered 

in the next sections. 

 

Figure 2. PCM groups with their heat of fusion and melting temperature range [2] 

 Another possible classification similar to the one mentioned before and with some 

examples for each group is shown in figure 3. There can be observed the groups of most 

interest for the high temperatures applications as well.  
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Figure 3. Classification of PCM with examples of materials used [3] 

1.1.1.2.1. Inorganic salts and their eutectic mixtures 

 As given in reference [3] the inorganic salts have a melting temperature that goes from 

250 to 1680 ºC and a heat of fusion from 68 to 1041 J/g. The most perspective compositions 

are double and ternary eutectics, especially the ones on the basis of fluorides and chlorides. 

Some of them are presented in table 2 and table 3 from reference [3]. Besides the fluorides 

and chlorides, compositions on the basis hydroxides, nitrates, carbonates and other salts are of 

considerable interest and some of them can also be observed in tables 4 and 5 from the 

reference [3]. 

 Although it has been mentioned that the most perspective compositions are eutectics 

on the basis of fluorides and chlorides from reference [27] and from the applications which will 

be presented in the next chapters the alkali metal nitrates and nitrites, potassium and sodium 

nitrate and binary mixtures of the two are very suitable, covering the temperature range of 

140 °C - 330 °C. In the next figure some of these mixtures with their respective melting 

temperature and heat of fusion are shown.  
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Figure 4. Selected alkali nitrates/nitrites as PCM [27] 

 It must be mentioned that there are also studies in quaternary and quinary 

compositions on a basis molybdates, vanadates and sulphates which are also promising. In 

reference [3] some other tables with salts compositions and different thermophysical 

properties are given: melting point, heat of fusion and in some cases the thermal capacity, the 

thermal conductivity and the thermal diffusivity.  

 Besides the thermophysical properties which must be measured on the compositions 

of interest, as mentioned in section 1.1.1.1. there are other material properties required.  

Some aspects of these properties in the specific case of inorganic salts and eutectic mixtures 

must be considered. 

 In practice, when a substance solidifies it is possible that it gets to a lower temperature 

than the melting temperature caused by not having enough crystallization rate and nucleating 

properties that causes at the same time a lack of crystal nucleus to solidify. That is known as 

supercooling and there are some possible solutions as mentioned in reference [1]. It is possible 

to add a nucleating agent facilitating the formation of the crystals nucleus needed to solidify. 

Another possibility is to retain some crystals, in a small cold region, to serve as nucleus.  

 As mentioned in reference [3] one of the most challenging features from inorganic 

salts from the point of view of the design is the change of volume at phase transition. A 

difficulty added to this area is the lack of information on the temperature dependences of 

density. Some studies mentioned in reference [3] show some results and there is a change of 

volume that can exceed the 10% in some cases. There is the need to study this property 

accurately when it is wanted to use any salt or eutectic composition. 

 Another important feature is the long-term characteristics of the material as longest 

possible life-time is desired. Also the life-time of the material depends on the application as 

told in reference [3]. In space applications the life-time can be about months and years but in 

power plants 20 to 30 years of life-time must be expected. The studies made in some 

particular materials show that the melting temperature and the heat of fusion do not change 

appreciably, but the chemical stability and the amount of thermal cycling which is possible to 

perform must always be tested. 
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 The last property that must be tested is the compatibility between the salt and the 

constructional materials. No chemical interaction must happen as the life-time of the design 

must be guaranteed also in this aspect and corrosions tests must be run. As mentioned in 

reference [3] the constructional material should have comprehensible mechanical and 

metallurgical properties. The alloy for the container should be easily processed, be accessible 

and cheap. 

 Finally the last feature of salts that must be taken into consideration is their low heat 

conductivity (nearby 1 W/m) as told in [3] and [7]. This is the biggest technological problem in 

the use of PCM faced right now.  

The two concepts to solve this situation are mainly on one hand the extension of the 

heat transfer area and on the other hand the use of a composite material compounded by the 

salt and another material resulting in a higher heat conductivity. Normally the material used to 

form the composite is graphite. The extension of the heat transfer area between the heat 

carrier and the PCM can be achieved by the use of fins or by the encapsulation of the PCM. 

Some studies about the conductivity enhancement will be discussed and presented in section 

1.1.4. 

1.1.1.2.2. Metallics 

 Although there have not been so many research as in the case of the other groups, 

metals and its alloys must been taken into account as they can be used as high temperature 

storage materials and they, as a rule, are deprived those lacks which are characteristic for salts 

as mentioned in [3]. These lacks are: low heat conductivity, corrosion activity and high cost of 

some salts.  

 Some metal eutectic alloys have been studied as possible phase change materials 

determining their melting temperature and heat of fusion. These results are shown in tables 

17 to 19 from reference [3].  

 The study of two compositions on the basis of aluminum and silicon performed by 

Wang et al. [6] must be remarked. One was AlSi12 with a melting temperature of 576 ºC and a 

heat of fusion of 560 J/g and the other one was AlSi20 with a Tm of 585 ºC and 460 J/g. As the 

heat of fusions is greater in the case of AlSi12 this material was chosen for further studies. The 

thermophysical properties of this alloy are shown in table 1. This alloy has been used for the 

development of a high-temperature isothermal electric heater intended for thermal energy 

storage at night, when the tariff for the electric power is lower.  

Property Value Unit 

Heat capacity of solid 1,038 J/g·K 

Heat capacity of liquid 1,741 J/g·K 

Temperature of phase transition 576 ºC 

Heat of fusion 560 J/g 

Density 2,70 g/cm
3
 

Thermal conductivity 160 W/m·K 

Table 1. Thermophysical properties of AlSi12 alloy. [6] 
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1.1.2. Latent heat storage systems 

In the temperature range of interest (200-700ºC) the concepts used for the power 

solar plants can be generalized to use them for the rest of applications. The concepts here 

presented can be also applied to sensible heat storage systems. As told in [8] there are two 

main concepts: the active and the passive systems. 

In the active systems the storage medium itself circulates through a heat exchanger 

[8]. They are subdivided into direct and indirect systems. In the first case the heat transfer fluid 

(HTF) is also the storing medium and in the second case there is a second medium used for 

storing the heat. 

In the case of passive storage systems the HTF is used for charging and discharging the 

storage material which is a different material to HTF. 

1.1.2.1. Active direct systems 

As it has been said in these systems the heat transfer fluid and the storage medium are 

the same. That means a reduction on the costs of the system as there is no need of expensive 

heat exchangers, the working temperatures can be higher improving the performance of the 

plant and reducing the levelised electrical cost [8]. 

The usually system in this group is the two tanks direct system, where there are two 

tanks. One tank is used to store the hot HTF and the other one to store the HTF when it has 

been discharged.  

The advantages of the system is that cold and heat storage materials are separated, 

reducing the risk of approach and the high working temperatures that can be performed.  

The disadvantages are the high cost of the HTF; high cost of the heat exchanger to 

produce steam for the Rankine cycle; the need of two tanks; relatively small temperature 

difference between the hot and the cold fluid in the storage system; high risk of solidification 

of the storage fluid due to its high freezing temperature; increase of losses in the solar field 

due to the high working temperature and finally the lowest cost of the thermal energy storage 

(TES) system design and operation does not correspond to the lowest cost of electricity [8]. 

1.1.2.2. Active indirect systems 

There are two main concepts in this group based on working with different HTF and 

storage medium. One is the two tanks indirect systems which works as the direct one but as 

the HTF fluid and the storage material are different there is the need of a heat exchanger 

between them. 

The advantages of this first concept are similar to the two tanks direct system: 

separation between cold and hot HTF and the storage material flows only between hot and 

cold tanks, not through the parabolic troughs. The disadvantages are the same as in the two 

tanks direct systems [8]. 
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 The other concept is the single tank system reducing the cost as there is only one tank.  

The cold and hot fluids are in the same tank and separated because of stratification. This zone 

is known as thermocline. The hot fluid is at the top and the cold fluid at the bottom and there 

is also the need of a heat exchanger to transfer the energy between the HTF and the storage 

material. 

 The advantages of this concept are the decreasing of the cost in front of the two tank 

storage system. As for the disadvantages: it is more difficult to separate the hot and cold HTF; 

in the case of using molten salts it is necessary to keep a minimum system temperature to 

avoid freezing and salt dissociation as they have high melting temperatures; the outlet 

temperature is high resulting in an increase of losses in the solar field; the thermocline needs o 

be controlled with some method (complicated); the design of storage system is complex and 

from the thermodynamically point of view it is an inefficient power plant [9]. 

1.1.2.3. Passive systems 

In a passive storage system the heat transfer medium passes through the storage only 

for charging or discharging the system. The storage medium itself does not circulate. Passive 

systems are generally dual medium storage systems (these systems are also called 

regenerators). Passive storage systems are mainly solid storage systems (concrete, castable 

materials and PCM) [8] 

In the case of using concrete as a storage material the advantages are the low cost of 

it; its high heat transfer rate due to a good contact between concrete and piping; the facility of 

handling the material and the low degradation of heat transfer between the heat exchanger 

and the storage material. The disadvantages are increase of cost of heat exchanger and of 

engineering and a long-term instability [8].  

In the case of using PCM the advantage is the improvement of storage ratio thanks to 

the higher heat of fusion than specific heat of materials as it has already been said. 

1.1.3. Examples 

1.1.3.1. Active direct systems 

1.1.3.1.1. DISTOR Project 

Solar thermal power plants using parabolic trough collectors are the most economic 

systems to generate electricity from solar insulation in the MW range. DISS project 

demonstrated the feasibility of high temperature direct steam generation (DSG) in absorber 

pipes of parabolic trough which resulted in a cost reduction of the thermal fluid as it is water 

and also a higher working temperature which improves the efficiency of the plant. INDITEP 

project, based on the know-how achieved in the DISS project,  performed the design of the 

first pre-commercial DSG solar power plant (5 MWe).  

The storage systems play an important role in the improvement and acceptance of 

these power generation systems as there is a reduction in the dependence on solar insulation, 

there is a larger efficiency on the electricity production and it facilitates �the integration of a 

solar power plant into an electrical grid, since fluctuations in electricity generation resulting 

from the actual insulation are reduced. These advantages result in higher revenues [20]. 
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Finally, DSG solar power plants require isothermal energy storage systems and that is the 

cause of the DISTOR project birth.  

The DISTOR project (began in 2004) had the budget of developing thermal storage 

systems using phase change materials (PCM) in the temperature range from 230°C to 330°C for 

systems using steam between 30-100bar [19]. The economical goal was to achieve a 20 €/kWh 

storage system capacity.  The project developed different LHS concepts in parallel in order to 

reach to a solution as fast as possible. These concepts can be classified in three main groups as 

said in [22] (some of them have already been mentioned in section 1.1.1.2.1.): 

•  Extended heat transfer area: The contact area between the PCM and the containment 

for the steam is enlarged to reduce the distance for heat transport within the PCM. 

Possible implementations of this approach use either finned tubes or capsules. The 

walls of the capsules can be either flexible or stiff to withstand a pressure difference. 

•  Composite material with increased thermal conductivity: A material showing a high 

thermal conductivity is added to the PCM. The PCM can be infiltrated in a porous 

matrix made up of the additional material or the two components can be mixed as 

powders. 

•  Intermediate heat transfer medium liquid/gaseous: Here, the PCM and a heat 

exchanger are arranged in a container filled with a medium that transfers the energy 

between these two components. The heat transport involves a phase change of the 

heat transfer medium. The pressure of the heat transfer medium is significantly below 

the pressure of the steam in the heat exchanger; the costs for the outer containment 

can be reduced significantly compared to a system with a direct contact heat 

exchanger between steam and PCM. 
 

The melting temperature of the PCM must be between the saturation temperature of 

the steam from the solar field and the saturation temperature in the steam cycle. The 

integration of the thermal storage in the DSG power plant is shown in figure 5. The material 

chosen as PCM is an eutectic mixture of KNO3-NaNO3 with a melting temperature of 230ºC as 

due mainly to cost aspects the nitrate salts in eutectic mixtures are the most commonly 

materials used in LHS systems.  

 

Figure 5. Basic concept for integration of thermal energy storage into solar termal parabolic trough 

power plants using DSG technology [22]. 
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Figure 6. Schematic of the 

sandwich concept using 

graphite foil [22]. 

 The extended heat transfer area concept includes two 

different approaches. On the one hand the sandwich concept 

based on the integration of materials with high thermal 

conductivity. Thins plates orthogonal to the axis of the steam 

pipes are used. The first materials contemplated as high thermal 

conductivity ones were graphite, stainless steel and carbon steel. 

Due to the costs and good corrosion resistivity graphite foils are 

chosen instead of steel. The final structure can be observed in 

figure 6.  More details about distances, positions and assembly 

can be found in [22]. 

On the other hand the DISTOR project has deepened in 

the macro-encapsulation concept. The PCM is packed into 

capsules to reduce the maximum distance for heat transport. 

Then the capsules are introduced in a vessel where the 

steam/water circulates. As the PCM undergoes a change of 

volume of about 10% in the phase change there are two possible 

options: using a flexible capsule and filling it completely with PCM 

or using a stiff capsule filling it with PCM and gas.  

The flexible capsules for high temperature LHS systems is not a feasible option as the 

cost of the material needed for the capsules is too high. 

For the stiff capsules a cylindrical shape was chosen and the pressure inside the 

capsule depending on the amount of PCM was studied. There is the need of less than 80% 

PCM volume in order to avoid a serious cyclic load. The capsules can be observed in figure 7. 

 

 

 

In the case of the second group, composite material with increased thermal 

conductivity, the approach performed is the assembly by compression of a powder mixture of 

eutectic NaNO3 /KNO3 and expanded graphite. The result can be observed in figure 8. The 

Figure 7. Capsules filled with NaNO3 – 

KNO3 used for laboratory scale test [22]. 

Figure 8. Single segment made of 

PCM/composite material used for the 

laboratory-scale storage test unit. Holes 

are intended for steam pipes [22]. 
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content of graphite must be limited as far as it is possible in order to achieve a cost-

effectiveness composite material.  

Finally, there is not information available of the third group as it needed more research 

and trials than the other two groups. More detailed information about the different 

approaches can be found in [22]. 

The sandwich concept was chosen as the best option and in 2007 a test module of 200 

kWh  thermal capacity storage system was installed in the Plataforma Solar de Almería (PSA) 

where the DISS Project took place. The storage model and the acquisition devices in order to 

study its behavior can be observed in figure 9.  

 

Figure 9. General view of the storage module and the system installed in the PSA DISS plant for its 

evaluation [23]. 

 

More information about the installation can be found in [23] but it is interesting to 

remark the design parameters of the test module: 

• pressure /nominal temperature: 25 bar/220ºC 

•  nominal water/steam flow rate: 0,083 kg/s 

 

and the final conclusions of the annual report 2007 [23] concerning the DISTOR project: the 

technical feasibility of the molten salt thermal storage concept and later heat recovery by 

crystallization was demonstrated during testing.  It was also demonstrated how important 

tube bundle design is to ensure heat transfer during charging and discharging. The lower 

velocity of the working fluid (water) during discharging requires the tube bundles to be sized 

for the right convective heat transfer coefficient without excessive pressure drops in the tube 

bundle during charging, when the working fluid (steam) density is lower. 
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 Although the project was programmed to end in 2007, due to a delay in the 

construction the project ended in 2008. It must be mentioned that tests were stopped because 

there was a leak in the tube bundle and the cause of the leak was detected. It gave valuable 

information for future prototypes. DLR and CIEMAT which were some of the organisms 

working in the DISTOR project decided to perform a new LHS test module in PSA out of the 

DISTOR Project. This new test module is designed to work for a maximum of 80 bar and 300 ºC 

and the salt used is still a nitrate salt. The tests should have been done during 2010 but there is 

not available information about it [24]. 

 Within the framework of DISTOR project there are some articles which must be 

mentioned. The first article of interest is [25]. A model of a PCM composite block (figure 10) 

for heat storage is developed and some simulations and analysis are performed. The use of 

blocks allows to adjust the heat storage capacity to the working conditions of the DSG solar 

power plant. 

 

Figure 10. Composite block of composite EG-PCM studied in [25]. 

 The PCM composite consists of compressed naturally expanded porous graphite matrix 

(CEG). The manufacture was performed by pouring the expanded graphite powder into a cubic 

mold of aluminium and then pressed to obtain the porous graphite matix with the desired bulk 

apparent density. Then the CEG graphite pores were filled with the binary eutectic 

KNO3/NaNO3 mentioned before. Three different composites were obtained varying the 

percentage by mass of CEG (3’96, 5’27 and 7’35%) and the thermophysical properties of the 

resulting composite materials were studied and are shown in table 2. As it can be observed the 

thermal conductivity in the axial direction is lower thant the one in the radial direction due to 

the axial compression which is used in the manufacturating method. 
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Material Pure 

salt 

CEG–salt 

composite 

(3.96% 

mass graphite) 

CEG–salt 

composite 

(5.27% 

mass graphite) 

CEG–salt 

composite 

(7.35% 

mass graphite) 

Axial thermal 

conductivity (W/m K) 

0,8 1,6 2,6 2,8 

Radial thermal 

conductivity (W/m K) 

0,8 4,1 5,65 8,2 

Apparent latent heat 

of fusion (J/kg) 

94250 90500 89300 87300 

Apparent density of 

CEG (kg/m3) 

- 75 100 140 

Table 2. Measured thermophysical properties of the different composites [25] 

 The detailed heat transfer and fluid flow model is detailed in section 3 from [25] but 

due to its complexity as there is the need to know or fix a great amount of parameters a 

simplified model is developed in section 4 in order to have an easy and feasible preliminar 

design. The simplified model is validated through the comparison with the detailed model. 

 A design procedure for sizing the storage system is presented. The maximum energy 

storage capacity and average power of system are the most important design criteria and 

these two parameters are function of the length of the tubes, the number of tubes and the 

time of charging the system as can be observed in equation 11 from [25]. There is a design 

procedure explained which is based on fixing the internal tube diameter and solving some of 

the equations given in [25].  

 Finally this design procedure is used to design a thermal storage system of 20 kWh 

with an average power of 10 kW in order to test the different composites. The detailed 

information of the design is shown in table 2 from [25]. It is interesting to remark the 

conclusions which are reached. With less than 4% graphite by mass there is a reduction of the 

overall length of tubes of 74% with an increase in the PCM composite material weight less than 

4,5% and a small decrease in the overall heat storage capacity. This is an important point to 

consider as the steel tubes represent a large part in the total cost of the storage system.  

 The second article within the framework of the DISTOR project which is interesting to 

summarize deals with an analysis of a 100 kWth latent heat storage system for DSG using the 

sandwich concept presented above. The prototype, which is shown in figure 11, was installed 

in PSA and it proved the feasibility of this latent heat storage system.  
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Figure 11 . Sketch of the TES prototype with its dimensions (mm) [26] 

 The PCM used was an eutectic mixture of 54% wt KNO3/46% NaNO3 and the 

conductive fins were 490x490 mm
2
 and 1 mm thick of expanded graphite. More details about 

the prototype dimensions and configuration are shown in table 2 from [26]. It is interesting to 

mention the working conditions:  a mass flow of 0,08 kg/s, saturated steam at about 235 ºC in 

charge mode and saturated water at about 200 ºC in discharge mode.   

 Different termocouples were placed in 6 different transversal sections in order to 

study the behavior of the PCM. The working temperature ranges of the PCM were divided in 4 

regions which are specified in [26] both for charge and discharge processes. There were  

presented also some calculations which are compared to the experimental results in section 

4.1 from [26]. 

 There was a mismatch between the experimental and calculation results in some of 

the regions both for charge and discharge processes. One cause is the different steam 

production in the central pipes than in the outer pipes. The other cause of the mismatch is an 

excess of PCM which had no EG foils and then could not transfer heat in an efficient way. This 

must be corrected in other designs taking care of the TES module volume and tube 

bundle/PCM arrangement. 

 There is another disagreement between the theoretical calculations and the 

experimental results between the energy which can be charged if there is enough time (58 

kWthh) and the energy which can be recovered (40 kWthh). One of the causes is the excess of 

mass already commented which does not give any energy in discharge process.  

 The last simulation performed is the application of the quasi static approximation 

which is presented in detail in [26]. This approximation is based on neglecting the sensible heat 

exchanged and then the energy equation becomes independent of time. The results of the 
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calculations of the steam quality shown in [26] lead to the following conclusion: at the 

beginning of the heat transfer region considered the real HTF condensation is lower than 

expected from calculations. Some reasons as told in [26] could be the following: 

•  Not all tubes condense the same amount of vapor. 

•  Condensation does not occur along the whole tube length. 

•  The quasi static approximation cannot be applied at the beginning of charging. In other 

words, it is not possible to neglect the sensible heat exchange at the beginning of 

charging.   

 

During discharge mode the calculation curve of the steam quality fits the experimental 

results if it is considered a minor tube length than the real one taking into account that the 

vaporization does not take place in all the tube length due to a deficient thermal insulation. 

 Finally it is interesting to include the final suggestions of [26] in order to consider them 

in future designs: 

•  PCM mass should not exceed the amount that can be homogeneously melted/frozen 

by the tube bundle. 

•  Thermal insulation to environment is crucial and has to be ensured around the whole 

prototype. 

•  For a detailed description of TES module with sandwich configuration, it is necessary to 

improve the quasi static model by introducing a sensible heat term at both beginning 

and end of latent heat exchange regions. 

 

1.1.3.2. Active indirect systems 

1.1.3.2.1. Cascaded latent heat storage systems (CLHS) or multiple PCMs method 

In this case, different PCMs are used in order to store the heat as shown in figure t. 

This way allows to have a more uniform outlet temperature of the HTF and a higher used 

percentage of the possible phase change [10][13]. Also almost a constant heat flux is achieved 

along the device thanks to maintain a nearly constant temperature difference [28].  As it can 

be observed in figure 12, the melting temperatures of the different PCMs used must be 

cascaded from the minimum to the maximum operating temperature.  

 

Figure 12. Proposal of cascaded latent heat storage with 5 PCM according to [11]. [10] 
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 The study performed in [10] is summarized in this section. It is a cascaded latent heat 

storage system  oriented to be used in a parabolic trough solar power plant with a HTF which 

works between 290 and 350 ºC. The materials selected where:  sodium nitrate (NaNO3), an 

eutectic mixture of potassium nitrate and potassium chloride (KNO3/KCl) and potassium nitrate 

(KNO3). The selection of this materials where based on experimental and literature data. The 

properties of these three materials, as given in [10] are shown in table 3. 

Property Unit NaNO3 KNO3/KCl 

95,5/4,5 

KNO3 

Tm ºC 306 320 335 

����hf kJ/kg 172 74 95 

ρs kg/m
3 

2261 2100 2109 

Cp,s kJ/kg·K 1,10 1,21 0,953 

ks W/m·K 0,5 0,5 0,5 

Table 3. Properties of the materials selected in [10]. 

 The experimental device is shown in figure 13. It uses a synthetic heat transfer oil 

(similar to the solar thermal electricity generating systems (SEGS) plants), an electrical heater 

for the charging period and a cooling tower for the discharging period. The test modules are 

vertical shell and tube heat exchangers with the heat transfer oil flowing through the inner 

heat transfer pipes (simple high temperature steel –AISI K01200, outer diameter 0.012 m, wall 

thickness 0.002 m) and the PCM being enclosed in the annular space between the heat 

transfer pipes and the shell (simple steel –AISI 1015, inner diameter 0.13 m).  

 

Figure 13. Simplified flow diagram of the thermal oil test facility. Photo on the right side shows test 

module ‘‘B’’, before the test modules got insulated. For stressless thermal expansion each module is 

counter balanced [10]. 
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Due to the PCMs volume change during melting and solidifying the hot oil enters the 

test module at the top during charging and the somewhat colder oil enters the test module at 

the bottom during discharging. To determine the heat transfer coefficient during melting a 

simple double tube test module with a height of 2.5 m was used (Figure 5A). To investigate the 

behavior of a CLHS three identical test modules with a height of 1.1 m each where placed 

directly above each other to avoid heat losses of the oil when flowing from one test module to 

the other (Figure 5B).  

Temperature sensors were placed inside the heat transfer pipes to measure the oil’s 

temperature at the inlet, during the way through the test module and at the outlet. Further 

temperature sensors were placed in the annular gap around the heat transfer pipes to 

measure the PCMs temperature. 

Consecutive charging-discharging cycles were performed and the temperature 

distribution of the different PCMs is shown in figure 14. It must be observed that the charging 

period lasted for 4 hours but the discharging period for 2 hours due to heat losses to the 

ambient.  

 

Figure 14. Temperature distribution of a charging period with the scale time on the right side (h:mm). 

[10] 

 In this study also LHS were studied in order to compare the CLHS and to study if it is 

really advantageous. The materials used were NaNO3 and KNO3. In the case of KNO3, two  

studies were performed. In one the temperatures of the oil went from 270 to 330 ºC in order 

to have a sensible storage system as a reference as this range is below its melting 

temperature. For the other two cases the temperature range was maintained and in all the 

cases the temperature difference was the same. The results obtained are shown in table 4.  

Property Unit CLHS All NaNO3 All KNO3 
All KNO3 

(Sensible) 

Qtheor MJ 16,5 22,7 14,2 7,0 

Qexp MJ 9,4 10,2 7,6 5,0 

Qexp/Qtheor % 57,2 44,9 53,4 70,9 

Table 4. Heat storage capacities of four different storage configurations [10]. 
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 Qtheor indicates the theoretical storage capacity of each configuration which is 

calculated using equation 2. Qexp shows the experimental results and the third line is the ratio 

between these last two values. The interesting points to comment are on the one hand the 

higher storage capacity of the LHS systems in front the sensible storage system, the higher 

storage capacity of the All NaNO3 sample due to its high heat of fusion and the higher ratio 

Qexp/Qtheor of the CLHS in front the other LHS systems which was one of the advantages of this 

type of system commented at the beginning of the section. 
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Equation 2. Theoretical storage capacity of a latent heat storage system. 

 A simulation with Dymola-Modelica was also accomplished in order to compare the 

experimental data. More details about the model can be found in [10] but it must be remarked 

that all simulation results matched the experimental data well.  

 The model verified was used to design a CLHS for a 50 MWel parabolic trough power 

plant with a storage capacity of 875 MWhth to realize a discharging duration of 6 h (split into 

two storages with 3h each for more flexibility) while charged for 2*4 h. The storage operation 

boundary conditions were: 

•  Charging: Toil, top = 391 ºC and Toil, bottom = 290 - 330 ºC 

•  Discharging: Toil, bottom =285 ºC and Toil, out =390 - 350 ºC 

and the PCMs configuration was like the one shown in figure 4.  

More details about the design and simulation are included in [10]. In this case also the 

study of LHS systems using one PCM was carried out due to comparison reasons and it is 

interesting to plot the results obtained (table 5 and figure 15). 

Property Unit CLHS All NaNO3 All KNO3 All 

MgCl2/KCl/NaCl 

Qsim MJ 64,5 74,0 67,7 56,0 

mphasechange/mtotal % 47 8 30 4 

Table 5. Simulated storage capacities and mass portions to undergo a phase change between charging 

and discharging.[10] 
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Figure 15. Heat transfer oil temperature over time for four different LHS configurations: CLHS (with 5 

different PCM) and 3 non-CLHS (only NaNO3,only KNO3 and only MgCl2/KCl/NaCl). Left diagram: 

charging, same inlet temperature at storage top for all four configurations. Right diagram:discharging, 

same inlet temperature at storage bottom for all four configurat. [10] 

 

 The conclusions are that the CLHS has the highest phase change portion and the most 

uniform temperature compared to a non-cascade LHS system. The effect of the variation on 

the heat conductivity was also investigated showing a significant improvement when rising it 

from about 0,5 to 2 W/(m·K). A variation of the separate annular gap width, which contain the 

PCM, and also the partitioning of the axial segments was done in order to have the same 

portion of phase change in each PCM. This variation led to a configuration with the same 

amounts of axial segments for each PCM and an individual annular gap width for each PCM. 

 More details about the parameters and measurements accomplished and a 

comparison between the CLHS system and the indirect molten salt system with two tanks 

designed for the parabolic trough solar power plant AndaSol (Spain) can be found in [10]. 

 The costs and the volume specific heat for the materials used in this experimental 

device which are given in literature [12] are shown in table 6. 

PCM 
Volume specific heat 

[kWht/m3] 

Media costs per kg 

[US$/kg] 

Media costs per 

kWht [US$/kg] 

NaNO3 125 0,2 3,6 

KNO3 156 0,3 4,1 

Table 6. Cost and volume specific heat for some of the materials presented in this section [12]. 

It is important to mention that in the case where there is no axial temperature 

variation of the HTF the different PCMs should be arranged rather in radial direction than in 

axial direction in order to extract maximum benefit [28]. From [28] is interesting to show the 
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multiple PCMs concept developed by Wang et al. which tries the idea just mentioned. The 

phase change takes place everywhere in the PCM. This means the phase change rate of each 

component of PCM is same and remains constant during the process. The result is a reduction 

of the phase change time. This new arrangement is shown in figure 16.  

 

Figure 16. Multiple PCMs in LHTS unit of coaxial cylindrical tubes [28] 

In [28] a study about the right combination of PCMs is summarized. The right 

combination corresponds to appropriate difference between melting points of PCMs and 

relative proportions of the PCMs. With larger melting points differences higher melt fractions 

are achieved. Sets of three PCMs were studied and the conclusion was that when the PCM 

situated in the middle was decreased the melt fraction increased due to a major proportion of 

the PCM with lowest melting point. However in all the cases there is an optimal proportion of 

the PCM in the middle which must be found.  

It must be mentioned that although the technical feasibility of the CLHS system has 

been proven, further development of the concept was hindered because of: the 

thermodynamic penalty of going from sensible heat to latent heat and back to sensible heat; 

the complexity of the system; and the uncertainty over the lifetime of PCM [13]. 
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1.1.3.2.2. PCM-based TES for Concentrated Solar Power Tower 

As there is the need to store energy in different solar applications: power tower, 

trough, linear Fresnel collectors… there is the need to develop new technologies in order to 

reduce the volume and the costs. Terrafore which is a consulting and technology development 

firm is working on the topic. 

The project is called Heat Transfer and Latent Heat Storage in Inorganic Molten Salts 

for Concentrating Solar Power Plants. It started on March 2009 and it is programmed to end on 

December 2011. The concept which is being developed is shown in figure 17. It works with the 

thermocline concept presented in the previous section.  

 

Figure 17. PCM-based TES design being developed by Terrafore [16] 

The salt is heated up and inserted on the top of the tank. Then the hot fluid is on the 

top and the cold fluid at the bottom and when the tank is completely charged all the salt is at 

the same temperature. For discharging, the salt on the top circulates to the HX-2 in figure 17 

(heat exchanger) to generate superheated steam and then reaches a boiler (also a heat 

exchanger) where the feed water is vaporized resulting in saturated steam. The salt coming 

out from the boiler is around 40% solid forming a slurry with the liquid phase which is 

introduced at the bottom of the tank having the solid at the bottom and the liquid on the top. 

As the thermocline concept is used, one of the tasks of the project has been the 

development of an active thermal stratification management controller required for PCM 

storage and it has been demonstrated that this controller can be applied to any thermocline 

storage  

As it is said in [17] the objective of the project is to develop and demonstrate a shell 

and coated tube heat exchanger that significantly improves heat transfer from a freezing salt 
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mixture as the heat transfer rate is one of the challenges of the LHS systems. The salt melting 

temperatures studied go from 275 to 350 ºC and the operating temperatures to 570 ºC. 

There were over 700 salt mixtures examined but very few met selection criteria and 

the salt chosen for the rest of the project is a nitrate based mixture. 

 The major challenge in the project as told in [16] is that when the salt solidifies on heat 

exchanger surfaces, the heat transfer rates decreases significantly requiring large heat 

exchangers. In order to solve this problem, the approach proposed by Terrafore is based on 

three elements: choosing a dilute composition of salt mixtures that form a eutectic with a 

specific phase diagram called simple phase diagram, using an additive(s) that will cause the salt 

to solidify as a slush and that can be easily washed off the heat transfer surface and using a 

coating on the heat exchanger tubes that discourages strong adhesion of freezing salt [16]. 

 Two coatings have been selected in the first phase of the project in order to perform 

more tests in the next phases.  

 There is not more information about the following phases of the project but as the 

schedule in [17] shows, the next tasks should have been already completed:  

•  Build a scaled model experiment by July 2010 

•  Conduct tests with coated tube heat exchangers between July and December 2010 

•  Quantify adhesion properties of coatings before August 2010 

•  Characterize salt morphology near and during freezing by October 2010 

•  Complete modeling and system analysis with PCM TES and Power Tower CSP by 

November 2010 

 

1.1.3.3. Passive systems 

1.1.3.3.1. Combination of sensible and latent storage 

In [14] a three-part storage system for a direct steam generation device is proposed 

using concrete and PCM as it is shown in figure 18. In this concrete studied case the total 

storage capacity is about 1 MWh. The concrete storage modules are used for preheating and 

superheating the steam and the PCM storage module is used to evaporate/condensate the 

heat transfer fluid (water). This last heat transfer represents the 70% of the required energy.  
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Figure 18. Overview of a three-part thermal energy storage system for DSG combining sensible and 

latent heat storage [14] 

 

During discharging, feed water enters the preheater (A) and is heated up close to the 

boiling curve (B), then the water is circulated through the PCM storage, where part of the 

water evaporates (C). The steam is separated from the water in the steam drum and is 

superheated in the concrete unit (D), while the remaining water is recirculated through the 

PCM storage [14]. 

In the latent storage module the material chosen as PCM was sodium nitrate (NaNO3) 

by the sandwich concept using aluminum fins which is detailed in [15]. Its melting temperature 

is 306 ºC. 

Prior to the large scale demonstration PCM storage module, a lab-scale test module 

with 140 kg NaNO3 and the sandwich concept for enhancement of heat transfer was 

successfully tested for more than 4000 h and the tests comprised 172 melting / solidification 

cycles. A very high level of specific capacity and specific power was achieved, so it was 

demonstrated that these PCM units are a viable option for steam storage systems [14]. 

Once the lab-scale was proved, the design was scaled up to about 14 tons of salt with a 

latent heat capacity of approx. 680 kWh and adapted to the design parameters of the 

water/steam test loop (128 bar, 400 °C). The tube register is arranged vertically because the 

sodium nitrate experiences a volume increase of approx. 10 % during melting. Then  an excess 

volume is provided for the liquid phase at the top of the storage to guarantee the good 

performance of the module. The module already constructed is shown in figure 19 and 

detailed information about the construction of the module is presented also in [14] 

In charging mode, steam with a temperature slightly above saturation properties 

(typically about 107 bar and 320 °C) is routed into the PCM module where it condenses. The 

flow direction during charging is from top to bottom so that the condensate is removed by 

gravity. A condensate drain assures that the medium leaves the module only in liquid form. 

The module is expected to be able to condense the full mass flow of 0.8 kg/s that the test loop 

can provide. [14] 
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For discharging, the PCM module is flooded with liquid water at a temperature just 

below saturation properties (typically about 81 bar and 295 °C). The saturated steam produced 

by the module during discharge is dried in a steam separator (spherical drum on the tower left 

of the insulated PCM-module in figure 19). The liquid water from the steam separator is 

recirculated either by natural recirculation or by a pump. During discharge, the flow direction 

is from bottom to top. [14] 

�

Figure 19. PCM test module at the test site; left: delivery of the module; right: insulated module [14] 

For the concrete modules more detailed information including the description of the 

material, the design parameters and the construction of the concrete modules can be found in 

[14]. It is important to remark that only the superheating module was constructed and 

installed as it is more challenging than the preheating module and it can be used for both 

purposes.  

Different sensors measuring temperature, pressure and mass flow were installed as 

the design should have undergone different tests during 2009 at the power plant  Litoral of 

Endesa in Carbonera, Spain.  

1.1.3.4. Other studies 

1.1.3.4.1. PCM in solar thermal concentrating technology based on compact linear Fresnel 

reflector (CLFR) 

Although there is not any specific design presented in [18] it is interesting to 

summarize the information which is given there. After a literature research on the last years 

materials suitable for CLFR and Multi tower solar array (MTSA) are presented. These two 

technologies are included in the recent advances of low cost solar thermal electricity. 
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The materials considered to be possibly applied in this two applications had a melting 

temperature in the range of 300 K to 1200 K. Over 700 K, in spite of not being in the 

temperature range of interest, metals such as Sn and Zn can be used. Also above 500 K molten 

single salts can be used such as Na2CO3 and KCO3. 

For CLFR systems using low pressure turbines at or below 600 K, the salts NaNO2, 

NaNO3 and KNO3 are interesting candidates. 

 

 The heat capacity versus the melting point of the PCM candidates of this study is 

shown in the following figure. 

 

Figure 20. Heat capacity of high melting point phase change materials [18]. 

 And in the following figure, the media cost per kWh calculated from the price of the 

reagent versus the melting point are presented.  

 

Figure 21. Media costs of high melting point PCM [18]. 
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  A numerical analysis of charging and discharging the PCM is presented where a metal 

(Pb) and a salt (KNO3), which have some common characteristics,  are compared. The model 

used is a double tube model as the shown in figure 22. The equations followed and boundary 

conditions are presented in detail in [18] and as for the results of the comparison in both 

charging and discharging processes the time is much lower in Pb than in KNO3 due to the low 

thermal conductivity of salts, especially in comparison with metals as it has already been 

mention in section 1.1.1.2.  

 

Figure 22. Model for the charging and discharging study [18]. 

 The introduction of LHTES in the commercial solar thermal concentrating technology 

based on the CLFR at Liddell Power Station is shown in figure 23. In this plant, solar energy is 

used to preheat the feed water. The same concept will be applied for MTSA technology and 

although the LHTES design is not presented, it must be taken into account that a CLHS is not 

necessary in these kind of technologies as there is only one constant temperature to produce 

the steam that is required.  

 

Figure 23. CLFR plant design incorporating LHTES [18]. 
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1.1.3.4.2 Reflux heat transfer storage (RHTS) 

 

In  [54] a novel reflux heat transfer storage (RHTS) concept for producing high-

temperature superheated steam in the temperature range of 350–400 ºC within the frame of 

parabolic trough solar plants was developed and experimentally tested.  

In figure 24, the scheme of the concept is shown. HTF is used to transfer heat between 

the thermal storage medium – PCM and two heat exchangers (HE) placed externally of the 

PCM at the bottom and the top and of the storage vessel. The top HE, i.e. steam generator, is 

fed with high pressure water (return condensate) to produce superheated steam during the 

storage discharge cycle. The bottom HE is used to charge the thermal storage. It is immersed in 

the liquid HTF and connected to the solar working fluid, e.g. a flow of solar superheated steam 

or solar-heated synthetic oil. During heat charge cycles, due to pool-boiling of the HTF, there is 

an intensive flow of vapors up through the transport channels distributed in the PCM. By 

condensation on the surfaces of the channels and directly on the surface of the PCM, the 

latent energy of vapors is transferred across the walls to the PCM. On discharge, the heat flow 

direction is reversed. The hot PCM causes the liquid HTF to evaporate and the vapors transmit 

heat to the top located steam generator via the mechanism of condensation [54]. 

 

 
Figure 24. Schematic diagram of the RHTS concept [54]. 

 

The phase change material is a metallic Zinc-Tin alloy containing 70 wt. % of Zn. The 

HTF is an eutectic mixture of 26.5% biphenyl and 73.5% diphenyl oxide (Dowtherm-A). Several 

tests which are presented in detail in [54] were performed to test the compatibility and 

feasibility of the system with positive results.  

It must be remarked that the use of pure zinc is more favorable because it has got a 

higher heat of fusion than the metallic alloy chosen. Despite of this, a metallic alloy must be 

chosen, since the melting temperature of zinc is 420 ºC which is above the temperature of 

interest. The resulting melting temperature must be lower than 400 ºC to have got a sufficient 

gradient temperature between the solar steam and the PCM.  
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In order to extent the operating time of solar thermal electric systems a thermal buffer 

(also with the RHTS concept) is added to the system arranged in series to the main one. This 

buffer serves to settle the time-variable temperature of steam after the main storage caused 

by the gradually solidification of the alloy (non-isothermal).  

Additionally two different options for installing the thermal storage system are 

studied: serial connection (using the prime solar system) and parallel connection (using a 

supplementary solar system). The parallel connection offers a larger thermal capacity but 

there is an extra investment in the supplementary solar system.  

Finally, although the PCM chosen is more expensive than the salts used in other latent 

heat storage systems, the conclusion is that there are several advantages which can lead to the 

success of this concept in front of other ones:  

•  Outstanding chemical stability of the tested Zn70Sn30 – HTF system. 

•  High substance density and superior thermal conductivity of Zn70Sn30, roughly 50 

W/m-K in liquid state that is about two orders of magnitude over molten salts. 

•  High heat transfer quality demonstrated in the experiments that can be compared to 

the utility of thermosyphons [54]. 

 

1.1.4. Conductivity enhancement 

As the conductivity enhancement of PCM is one of the most difficult challenges as it 

has already been mentioned it is interesting to dedicate one section to this topic. As it has 

been said in the DISTOR project section there are two main approaches to achieve the budget 

of improving the thermal conduction (although there were considered three approaches the 

studies performed are mainly focused in two). On the one hand it is possible to increase the 

heat transfer area and on the other hand it is possible to use PCM composites. In the first case 

and for high temperature application there are two options: the macro-encapsulation and the 

use of a tubular heat exchanger with finned tubes (what is known as sandwich concept). In the 

following sections some studies about the conductivity enhancement are presented. 

1.1.4.1. Sandwich concept 

In reference [27] and as it has already been mentioned in the DISTOR Project graphite 

foil, stainless steel, carbon steel and aluminum are considered as possible materials in order to 

construct the fins. Although in a preliminary thought stainless steel would be the chosen one 

due to its compatibility with the steel tubes of the heat exchangers, graphite foil or aluminum 

are the chosen ones. The reason is their more favorable heat conductivity which allows a less 

volume of the material to be used. 

As told in [27] the application of fins made of expanded graphite offers several 

advantages besides good thermal conductivity. Expanded graphite shows good chemical 

stability in nitrates and nitrites at temperatures up to 250 °C and galvanic corrosion does not 

occur in contact with steel tubes. Since graphite foils, often used as sealing material, show a 

high flexibility, a close contact between tubes and fins can easily be realized. 
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Aluminum fins are applicable for temperatures up to 330 °C. The mounting of the fins 

on the tubes is an essential issue for the sandwich concept. Galvanic corrosion of aluminum 

with carbon steel and sodium nitrate has been analyzed, showing no critical corrosion. A good 

mechanical contact between fins and tubes is important [27]. 

In the following figure it is possible to observe the improvement which is achieved by 

the use of fins and also the better behavior of the graphite foils fins in front of the steel ones. 

 

Figure 25. Comparison of charge state for PCM without fins, with steel fins of different thickness and 

with graphite fins [27]. 

 In [27] another study of the sandwich concept is given. Based 

on previous experiments which are summarized in table 3 from [27], 

an experimental demonstration is performed with the aim of 

optimizing the thermo-economic graphite-based sandwich concept. A 

storage module using sodium nitrate (NaNO3) as PCM and aluminum 

for fins is chosen due to incompatibility between graphite and NaNO3 

in the working temperature range. It is shown in figure 26 and the fins 

can be observed in figure 27.   

 

 

Figure 26.  NaNO3 PCM 

Storage Test 

Module [27]. 

Figure 27. Fins for heat transfer enhancement [27] 
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 Thanks to some measurements the theoretical capacity of the storage module was 

calculated and was of 8,51 kWh. Some cycles (charge and discharge processes) were 

performed in order to calculate the real storage capacity. The result was a storage capacity of 

7,87 ± 0.03 kWh in the charge mode and of 7,20 ± 0.05 kWh in the discharge mode. More 

details about the tests performed are presented in [27]. The difference between the 

theoretical and the measured capacity are awarded to uncertainties in the measurement of 

the oil temperature but in any case the test results and the expectations are in good 

agreement.  

 The conclusions of this report are the following: High temperature latent heat storage 

with high capacity factors was demonstrated at different temperature levels. The sandwich 

concept using fins made either from graphite or aluminum was proven as the best option to 

realize cost-effective latent heat energy storage. The application of graphite is preferred for 

applications up to 250 °C; at higher temperatures aluminum fins are used [27]. 

1.1.4.2. PCM composite 

1.1.4.2.1. Graphite 

The thermal conductivity of graphite varies from 24 to 470 W/m·K. The thermal 

conductivity of PCM(0.2–1 W/m K) can be intensified by a factor of 5–100 depending upon the 

density of graphite added into the PCM. Cabeza et al. have found that using PCM-graphite 

compound is the best option in applications like thermally stratified storage tank. The cheapest 

form of graphite is natural graphite flakes, which are composed of dense staked graphite 

layers. However, it is found that expanded graphite (EG) can be a better choice as it is of better 

absorbability due to high porosity. When the EG is mixed with PCM, the melted PCM will be 

absorbed in the pores of the EG results in composite PCM. The thermal conductivity and 

thermal capacity of the composite PCM depend upon the relative proportion of graphite and 

PCM [28]. 

An article about the conductivity enhancement by the use of PCM composites using 

graphite can be found in [29]. Three different types of industrial graphite were tested: graphite 

flakes (NG), expanded natural graphite (ENG) and expanded graphite powder (GFG). Due to 

their different properties, the same graphite content in the composite results in different 

properties (thermal conductivity, anisotropy…). 

The elaboration route which was normally used is the dispersion and it is detailed in 

[29]. Four industrial grade composites were studied. They were all composed by the 

NaNO3/KNO3 eutectic at industrial grade but different graphite types and contents: the 

NG/400/22, the NG/400/30, the GFG/50/20 and the GFG/500/21. To understand the 

nomenclature: NG/400/22 is made of 22% wt of NG flakes of 400 mm. Other salts were 

considered as PCM in a previous study and are presented in table 1 from [29] but due to 

corrosion aspects, hygroscopic behavior, industrial availability and cost and hazard the nitrate 

eutectic was selected for further studies. 

The properties of the different composites were determined: the melting and 

solidification temperatures, the latent heat and the thermal conductivity. The results show 
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that the latent heat of the PCM is not affected by the graphite content but it affects the phase 

change transition temperature variation which decreases at increasing graphite amount [29].  

The different industrial made composites were thermally cycled 200 times and 

characterized. The latent heat is lowered after the 200 cycles and it depends mainly upon the 

size of the graphite flakes. A further study of the influence of particle size was performed and 

the conclusion was that it only affects for the largest amount of graphite flakes.  

With respect to thermal conductivity, the results obtained leaded to the following 

conclusions: different graphite sizes and types lead to a significant variation in conductivity, a 

larger particle size or a lower density particle (which leads to a larger number of dispersed 

particles) are favorable to the creation of a better conductive network within the PCM. The 

influence of temperature on thermal conductivity was also studied and it was proved that the 

thermal conductivity is strongly temperature dependant [29].  

As the thermal conductivity is still low for the solar application (within the framework 

of DISTOR project the target is a thermal conductivity of 8 w/m·K) it is proposed to use 

additional conductive graphite fins radially distributed in the volume with respect to the heat 

transfer tubes. To study the efficiency of this approach a simulation was performed and it is 

detailed in [29]. The conclusion of the simulation is that each particular case of application (in 

term of geometry and working parameters) will lead to a specific technico-economic optimum 

defined by the graphite amount within the composite and the interfoil distance between the 

graphite fins. 

1.1.4.2.2. Graphite and metal foams 

In [30] there is another study of the conductivity enhancement in high temperature 

storage systems. The PCM used is NaNO3 (properties have already been shown in table 3) and 

there are two improving ways presented: using metal foam or using expanded graphite. An 

experimental device which is shown in figure 28 was constructed in order to study the 

conductivity enhancement and its advantages in the charge/discharge processes. More details 

about the sensors, devices, insulation and container are presented in [30]. 

 

Figure 28. Experimental device for the study of the conductivity enhancement [30]. 
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 Three different charging processes and one discharging process are studied. The 

results show that the conductivity enhancement with the two methods is achieved. Porosity 

plays an important role and the conclusion is that reducing porosity and cell size significant 

conductivity enhancement is accomplished. It must be taken into account that the lower 

porosity implies a lower total heat storage capacity.  

 One of the charging processes studied correspond to the phase change of the PCM 

(250 to 350 ºC) and the stages and dominant heat transfers mechanisms during the process 

are explained with detail in [30]. It must be mentioned that NaNO3 has a solid-solid phase 

change at 276 ºC and this leads to a little step in the temperature curves.  

Another point to be remarked is that although metal foam structures enhance 

conduction, natural convection can be weakened by metal foams. In the case of expanded 

graphite natural convection can be severely suppressed due to its small pore size and higher 

viscosity inside the composite [30]. Due to this fact, after the complete melting of the PCM, 

temperature curves are much more complex with metal foams or expanded graphite than in 

the case of the pure salt. In some of the tested containers this fact leads to a lower heat 

transfer in the liquid phase region, namely porous materials do not always enhance heat 

transfer in every regime. 

For the discharging process it is shown that both methods allow a faster discharging 

process thanks to achieving also an enhancement in the heat transfer process. 

Besides the charging and discharging studies, a report about the compatibility in terms 

of corrosion between NaNO3 and metal foams is also presented. Heavy corrosion effects in the 

metal foams can be observed after some tests reducing the positive effect of using metal 

foams in the enhancement of thermal conductivity of PCM. 

 Although the overall performance of metal foams is superior to that of expanded 

graphite, graphite has a good chemical stability to resist corrosion as it has been mentioned 

before in section 1.1.4.1. The disadvantage of the expanded graphite pointed in [30] is the 

difficulty of the composite manufacturing (mixing process) with possible voids inside the 

composites with larger fraction of expanded graphite.  

Finally a discussion about the economic impact of the use of composites in TES is 

presented in [30]. The loss of thermal storage capacity is worth by the enhancement in heat 

transfer. It is said in [30] that the overall cost of the TES system using expanded graphite can 

be estimated as a little change or even up to 10% reduction thanks to the reduction of the area 

of heat exchangers and the relative low cost of the expanded graphite. In respect to the use of 

metal foams, as they have a higher price than the expanded graphite, it is estimated a 10-20% 

rise on the cost of the TES system [30]. 
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1.1.4.3.1. Other conductivity enhancement approaches: Heat pipe heat exchanger with 

latent heat storage 

A more recently approach to counteract the low thermal conductivity from the phase 

change  materials is the use of heat pipes. The concept is shown in figure 29. The heat 

exchanger consists mainly of four parts. The hot fluid flow passage (6), the PCM chamber (7) 

and the cold fluid flow passage (5) are connected by a number of heat pipes (3). The phase 

change material (8) is stored in the PCM chamber. In order to enhance the heat transfer 

process, annular fins made of pure copper (in the case of this reference) are attached to the 

heat pipes. As one can see from the figure, the sizes of the hot fluid flow passage, the PCM 

chamber and the cold fluid passage can be designed independently, which presents one of the 

major advantages over other latent heat thermal storage systems [52]. 

 

Figure 29. A heat pipe heat exchanger with latent heat thermal storage: The systematic configuration (1) 

Hot fluid in; (10) hot fluid out; (2) cold fluid in; (20) cold fluid out; (3) heat pipes; (4) annular fins; (5) cold 

fluid flow passage; (6) hot fluid flow passage; (7) PCM chamber; (8) PCM; (9) upper separation and (10) 

Lower separation [52]. 

  

In this concept it is possible to work in three different modes in comparison to the two 

usually modes (charging and discharging) as it is possible to charge and discharge at the same 

time. This third mode gives a more flexibility to the system in comparison to the other latent 

heat storage systems presented.  

 A thermal network model is developed and used to analyze heat transfer in a 

latent heat storage unit for solar thermal electricity generation in [53].  Two storage 

configurations are considered; one with PCM surrounding a tube that conveys the heat 

transfer fluid, and the second with the PCM contained within a tube over which the heat 

transfer fluid flows. Both melting and solidification are simulated. It is demonstrated that 

adding heat pipes enhances thermal performance, which is quantified in terms of 

dimensionless heat pipe effectiveness [53].  
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Although it has the budget of developing a latent heat storage system for high 

temperature applications, the experiments performed used water as a HTF and a paraffin with 

a Tm of 52,1 ºC as the PCM. As it is outside the temperature of range of interest, no more 

details about the model will be presented. It must be remarked that is a concept which must 

be taken into account as possibly further studies will be available during the next years.  

 

1.2. THERMO-CHEMICAL STORAGE 

 

As it has been said in the introduction the chemical storage is the third approach 

studied to store heat. This one is the approach which has been developed less. It is based on 

using reversible thermo-chemical reactions: chemical compounds store energy by an 

endothermic reaction and the energy is then released in the recombination of the compounds 

by an exothermic reaction [7]. 

The most interesting advantage of this method is that the enthalpy of reaction is 

considerably larger than the specific heat or the heat of fusion. Then the storage density is 

much better. Some of the compounds and reactions with their respective temperatures and 

heat of reaction and the storage density are shown in table 4 from [7] and in table 8 from [8].  

Another advantage from this approach is that thermal insulation is not required (lower 

cost) but on the other hand the chemical compounds must be heated and cooled before 

reactions (higher cost).  

1.2.1 Properties required 

As told in [7] when selecting the chemical compounds, some properties are required in 

order to achieve the desired performance:  

•  Reversibility: The reaction must go to completion; no side reactions or changes in 

reaction rate with time should occur. 

•  Reaction rates: Both forward and reverse reactions must be rapid enough to absorb all 

the available energy or release it promptly. The reaction rates must not decrease with 

cycling. Such a decrease can be observed, if structural changes of the storage medium 

occur (e.g., crushing of particles into powder). 

•  Controllability: The reactions must be controllable because they have to be turned on 

and off when required. Controllability is achieved by product separation, by controlling 

the temperature and pressure, or by catalysts. 

•  Ease of storage: The reaction products have to be easily separable prior to storage. 

Reactions must not occur at storage temperature. 

•  Safety: Toxicity, inflammability, and corrosiveness of the reaction products may pose 

unacceptable safety hazards. 

•  Cost: Cost should be low; this requires materials which are readily available. 
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1.2.2. Classification of reactions 

There are two different types of reaction which can be used to store thermal energy. 

On one hand there are the dissociation reactions. In these reactions a solid or a liquid release 

gas in the endothermic reaction (charging process) and for discharge the gas is recombined 

with the solid or liquid. The dissociation products have to be separated and stored individually 

in order to avoid their spontaneous recombination due to a change in the equilibrium by a 

temperature decrease or a pressure increase [7]. One example of this kind of reaction is the 

dissociation of Ca(OH)2 which will be presented in detail in section 1.2.3.3.2. 

On the other hand there are the catalytic reactions. The name come from the fact that 

a catalyst is needed in order to increase the reaction rates. These are usually gas-gas reactions. 

The reaction products are transported in a pipeline from the source (charging process) to the 

consumer (discharging process). This pipeline is known as chemical heat pipeline or chemical 

heat pipe. An example of this kind of reaction is the carbon dioxide reforming of methane 

which is presented in section 1.2.3.2.  

Catalytic reactions product do not need to be separated which implies a reduction in 

their cost. In the dissociation reactions, although separation is easy, when one of the products 

is gas there are generally  some difficulties with the storage (cost, complexity, volume) as it is 

presented in [7] with some possible options. 

The most studied reactions for thermo-chemical energy storage until now are the 

dissociation of ammonia and the steam and the carbon dioxide reforming of methane. The 

applications and studies which have been performed will be presented in the next section. 

1.2.3. Applications 

1.2.3.1. Dissociation of ammonia 

The dissociation of ammonia (1) is one of the most investigated reactions for the 

thermo-chemical energy storage as mentioned before. It has been studied by the Australian 

National University (ANU) for more than two decades and a summary of the experiments and 

investigations performed with some results will be presented in this section.  

NH3 + �H ↔ 
&
+ N2 + 

,
+ H2  (1) 

There are few reasons for the high interest in this reaction. First of all the use of 

ammonia in industrial and chemical applications is wide and then the knowledge of the 

compatible materials, uses and performing of the reaction is also extensive. On the other hand 

no side reactions take place in and the separation of reactants is spontaneous due to 

condensation of ammonia fraction at ambient temperature. These are two important 

advantages in comparison to other reactions considered for thermo-chemical energy storage 

such as the carbon dioxide reforming of methane.  Working at ambient temperature is feasible 

thanks to the low vapor pressure of the substance. Finally another advantage which must be 

remarked is the low toxicity of ammonia. [31] [32] 

The most important disadvantage of using the ammonia dissociation is its low enthalpy 

of reaction (66,5 kJ/mol) in comparison to other reactions such as the carbon dioxide 

reforming of methane (247 kJ/mol).  
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The recent literature about the ammonia thermo-chemical energy storage is mainly 

based on the work performed by ANU and is based on a pseudo-homogenous model adapted 

from the work of Richardson et al. (1988) and the model is described in detail by Lovegrove 

(1995).  

In [33] a study about an endothermic reactor for an ammonia thermo-chemical energy 

storage system is presented. The most important points about it is the feasibility of reaching 

pressures up to 30 MPa which provides benefits in the heat transfer coefficients and the 

volumetric energy storage density. In this technical report also different receiver/reactor 

concepts are investigated. The details about the tests and results can be found in [33] but it is 

important to remark the option which is most cost effective is the use of a cavity of directly 

irradiated catalyst filled tubing as the one shown in figure 30. There are forty-three 500 mm 

long reactor tubes and the catalyst tube cross-section used was the same used before in the 

electrically heated dissociation reactor (15,6 mm i.d. 24 mm o.d. Inconel) which was used 

before the installation of the 20 m
2
 dish in the ANU campus.  

 

Figure 30. Receiver/reactor concept chosen for the ammonia thermo-chemical storage system developed 

by ANU [33]. 

 Once the receiver/reactor concept was chosen, the following study which can be found 

in literature is the one presented in [34]. It presents the results regarding the design, 

performance modeling and preliminary costing of key system component of a complete 10 

MWe solar thermal power plant system designed for 24-h base-load operation. The conceptual 

design is shown in figure 31.  
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Figure 31. Conceptional system design of a solar thermal power plant using an ammonia-based thermo-

chemical closed-loop for energy conversion, storage and transport [34]. 
 

The system as told in [34] is based around one or more endothermic reactors (R-101), 

which are driven by solar heat, and a single exothermic reactor for heat recovery via 

generation of superheated steam (R-102). Associated with these reactors are counter-flow 

heat exchangers (E-101 and E-102). They exchange heat between the inlet and outlet reactant 

flows and so ensure the remainder of the system (e.g. energy storage, transport piping and 

compressors) operate at ambient temperature. In table 1 from [34] the key operating 

parameters of the plant are presented.  

Details about the different components of the plant:   

•  Solar collectors: two different technologies have been considered. One is a 400 

m
2
 paraboloidal dish solar collector and the other one is a 150 m

2
 stretched-

metal-membrane heliostat. 

•  Ammonia receivers/reactors: there are also two different concepts presented 

using tubular fixed-bed catalytic reactors. The first one is based on the 

receiver/reactor presented in figure 30 which was chosen as the most cost 

effective in the previous study presented in [33]. The second one is a 

conventional, megawatt-scale tube-bundle reactor which uses hot air to heat 

up the reactor.  

•  Ammonia synthesis components which are based on a previous study [32]. 

More information about the ammonia synthesis reactor based on a 1 kWchem. 

laboratory-scale synthesis reactor is presented later.  

•  The steam Rankine cycle which is a conventional single-stage one due to space 

and control limitations. 

•  The heat exchangers which are counter-flow heat exchangers specially 

developed for this application by FC Consulting. 

•  Compressors and pumps. 

•  Storage system: two storage tanks concepts. In the first one the ammonia is 

stored at 25 MPa which is the working pressure of the reactor and in the 

second one it is stored in a low-pressure ammonia tank of typically 3 MPa. 

•  Piping. 
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with its working parameters, information about the models used and the overall performance 

are presented in [34]. 

 Finally there a preliminary cost estimation is performed based on 1997 prices, past 

project experiences and quotes from European and Australian manufacturers. The result of 

this estimation is shown in table 5 from [34] and the results shown are encouraging as they 

indicate the potential for economic viability of this solar power plant concept. Besides the 

positive economical results, it is important to remark that the first receiver/reactor concept is 

more cost-effective than the second one due to a more direct energy transfer from the sun to 

the ammonia system [34]. In the laboratory-scale and other experiments for the study of the 

ammonia thermo-chemical energy storage systems this reactor concept is the one used. 

 As mentioned before, there is more information available about the ammonia 

synthesis reactor in the literature [32]. Although different ammonia synthesis reactors have 

been already used for other applications it is needed to perform a study about it. The reason is 

that the optimized working conditions for each application vary. In the case of thermo-

chemical energy storage it is important to maximize the  output of high-temperature heat for 

electrical power generation in comparison to the maximization of the production rate of 

ammonia which is desired in other applications. 

 In order to find the optimal working conditions experimental data have been recorded. 

A model based on the two-dimensional pseudo-homogeneous packed-bed catalytic reactor 

model mentioned before has also been validated after performing a calibration with the 

experimental results. Details about the experimental results and this calibration process can be 

found in [32]. The 1 kWchem. laboratory-scale scheme used in the study can be observed in 

figure 32. 

 

Figure 32. Experimental arrangement of ANU’s solar laboratory-scale closed-loop energy transfer and 

storage system [32]. 
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 Both liquid ammonia and the 3:1 hydrogen/nitrogen gas mixture are stored at ambient 

temperature and high pressure in a 20 l storage vessel. The ammonia laboratory allows 

handling and analysis of reactants up to 30 MPa [32]. 

 For dissociation, liquid ammonia is drawn from the storage vessel and passed via a 

circulation pump to the nitrogen gas backed accumulator. It is subsequently passed to one of 

the two receivers/reactors mentioned before [32]. The whole system operates at constant 

volume and so the pressure increases as the ammonia in the vessel is dissociated [35].  

 For synthesis, gas is drawn from the storage vessel by a compressor pump and stored 

in a 10 l buffer vessel. Subsequently, it passes through a chilled separator where some fraction 

of the ammonia vapor condenses and separates from the gas and travels back to the 10 l 

vessel. The purified gas continues on the heat recovery reactor which is illustrated in figure 33. 

More detailed information about the laboratory installation and the measuring devices used 

for testing is presented in [32] and [35].  

 

Figure 33. The 1 kWchem. synthesis reactor [32]. 

It is important to mention the conclusions reached about the maximization of the 

output heat. The external reactor wall temperature plays an important role in the output heat: 

higher temperature contribute to higher reaction rates while an approach to chemical 
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equilibrium conditions work to reduce them. Regarding the pressure, thermal output increases 

almost linearly with operating pressure.  

In [35] more studies about the laboratory-scale closed-loop installation presented 

before are presented. It is important to mention that the dissociation reactor used is an 

improvement of the one shown in figure 30. The new version is shown in figure 34.  

It differs from the previous model in that the endcap is sealed against leaks by welding 

rather than using a copper gasket. It has a reduced thickness of catalyst bed, as modeling 

indicated that the significantly improved heat transfer associated with higher gas velocities 

strongly reduced the reactor wall operating temperature and outweighed the loss of catalyst 

surface area. The reactant flow direction has also been reversed, ammonia now enters from 

the base and flows through the catalyst bed toward the tip. This reversal of flow direction 

allows the hot product gases to give up some of their heat to the bed as they pass back down 

the centre tube. Then this new reactor uses less catalyst material [35]. 

 

Figure 34 . Ammonia dissociation reactor/receiver in operation on ANU’s 20 m
2
 solar concentrator [35].  

 An experiment with the details of the working conditions is presented in [35]. It proves 

the ability of solar ammonia dissociation reactors to operate smoothly and effectively through 

transients. Also the synthesis reactor was proved to work correctly as the heat was being 
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exchanged and the ammonia level at the end of the performance the ammonia level was close 

to the initial conditions [35]. 

 Finally, some considerations about the scale-up of the system to accept the 15 kWsol 

input from the 20 m
2
 installed at ANU will be mentioned. Twenty 0,5 m long Inconel catalyst 

filled tubes of similar design to the 1 kW unit are positioned in a conical arrangement around a 

water-cooled cavity receiver aperture. It is shown in figure 35. The water-cooling can be 

substituted by ammonia in future designs [35]. The reactor in operation can be observed in 

figure 36. 

 

Figure 35. Design of the cavity receiver with 15 kWsol solar dissociation reactor and its assembly on ANU’s 

20-m
2
 dish without insulation fitted [35]. 
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Figure 36. 15 kWsol ammonia dissociation receiver/reactor in operation on the ANU 20 m
2 

dish [37]. 

 The scaled-up heat recovery reactor is constructed from a bundle of 19 tubes virtually 

identical to the 1 kW prototype. The design and the partially completed assembly are shown in 

figure 37. Main of the rest of the components of the system function directly with the larger 

reactors. Some massflow control elements required upgrading and a larger-volume reactant 

storage vessel has been incorporated to complete the scale-up [35]. 

 

Figure 37. Design of the 10 kWth ammonia synthesis heat recovery reactor and heat recovery tube 

assembly partially inserted in insulated containment [37]. 
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 It is interesting to remark the conclusions which are presented in [35]. The small 

laboratory-scale system has shown that ammonia dissociation receiver/reactors are ideally 

suited for operation through solar transients; ammonia synthesis heat recovery reactors are 

capable of stable, predictable operation with heat recovery at temperatures suitable for high- 

quality superheated steam production and reactant storage and handling, for the ammonia 

system at pressures up to 30 MPa, can be achieved using standard components and 

manufacturing techniques. These encouraging conclusions have led to the scale-up just 

presented. 

 Among the studies performed it is important to mention that there have been run 

some optimization exergy rate output analysis on the exothermic side of the 1 kW closed-loop. 

Details about this analysis including the system considered, the exergy calculations and the 

results can be found in [36].  

It is interesting to mention the different optimal working conditions between the 

maximum thermal power and the maximum net exergy rate output. Whilst equal distance 

between average composition curve and chemical equilibrium along the reactor gives 

maximum recovery of heat, maximum net exergy output is achieved with the internal average 

composition being close to equilibrium at the end of the bed. Also the average outer reactor 

wall temperature plays an important role in both cases having the maximum net exergy rate 

output at temperatures slightly higher than for the maximum thermal power. Then it is 

important to choose and maintain the best average wall temperature taking in consideration 

both cases [36]. 

 In [38] some tests (experimental and simulation) on an ammonia receiver design for a 

500 m
2
 dish which has been constructed in the ANU campus are carried out. Five different 

receiver geometries were considered and three of them were thoroughly studied and are 

shown in figure 38. These designs were based on geometric variations to the prototype 

ammonia receiver used in the 15 kWchem. installation presented before.  

 

Figure 38. Three receiver configurations viewed looking in to the aperture. Left: Receiver with a 7.5º half 

cone angle (front shield removed). The indents in the wall insulation indicate the position of the tubes in 

the frustum with a 17.º half cone angle. Centre: Receiver in a frustum with base radius 77 mm (front 

shield removed). Right: Receiver as a frustum with base radius 77 mm, but with minimal insulation on 

feeder tubes (front shield in place). 

 

 The solar to chemical efficiencies were studied for each case varying the mass flow 

rates of the ammonia through the receiver and then a comparison between the three cases 

was performed. The efficiencies values are generally quite low due to the masking of the dish 
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that has effectively considerably reduced its concentration ratio. The maximum difference 

between the performances of the three cases is only 7% but the receiver with 7,5º performs 

better than the cone with 77 mm radius base, which performs better than the receiver with 

17,5º half cone angle.  

 It is important to mention that the simulations and experimental results can not be 

directly compared as the simulation model does not take into account the losses from heat 

exchanger or due to flux spillage on the shield. Then the heat transfer code of the model which 

is more detailed in [38] and its references must be revised. Then further work must be done to 

calibrate the simulations with the experimental data in order to use the model to evaluate 

different receiver designs for the prototype Generation II 500 m
2
 dish on the ANU campus. 

 Besides, it is necessary to investigate other methods of increasing the receiver 

efficiency. The options to be considered include the optimal number of tubes, the optimal tube 

length and optimal tube diameter [38].   

Finally and although ANU have been working on the development of dish 

concentrators, trough concentrators are the ones which have been more developed and which 

represent the highest share of installed capacity. Because of that a preliminary study about the 

application of the ammonia cycle in trough solar power plants is summarized in [37] with 

encouraging results and remarking the need of further investigation. From [31] there is the 

scheme of the trough solar power plant using ammonia cycle concept proposed in [37]. It is 

shown in figure 39. 

Figure 39. Sketch of the parabolic trough driven ammonia system [37]. 

 In this new direction of this new research it is interesting to remark the diploma thesis 

which is presented in [31]:  investigation of the feasibility of a parabolic trough driven solar 

energy storage system using ammonia. As it is told there, except for the dissociation reactor, 

all the other components of the system are available on the market for industrial components. 

Then the diploma thesis focuses on the modeling of a dissociation reactor which fits a 

parabolic trough solar power plant.  
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 Three different concepts are investigated and presented in detail in [31]:  a single tube 

heat collecting reactor element (HCRE), a tube bundle HCRE and a cavity type HCRE. The 

advantages and disadvantages of the different approaches and the necessary considerations in 

order to adapt the concepts to a parabolic trough solar power plant are discussed also in [31]. 

Some simulations are run in order to test its expectable performance and to demonstrate 

opportunities for further research within this field.  

 The design chosen was the cavity type reactor due to reduced heat loss and the ability 

to expose the reactor elements to a staggered flux distribution. Some simulations varying the 

diameter and ammonia feeds were performed in order to find the best nominal diameter of 

the reactor which resulted to be of two inch.  

 To obtain constructive limits, the limits regarding pressure drop and maximal reactor 

temperature were chosen, and the maximal achievable reactor length was determined out of 

the result files.  

 Depending on the different reactor elements, length, diameter and the reaction extent 

which could be expected at the corresponding massflow one design and its operation was 

chosen to simulate a bench mark design for the further modeling. Depending on the results of 

this bench mark a next step was performed assuming a staggered flux distribution in 

comparison to the assumption of isothermally operation made in the first steps. 

 The results obtained from these simulations show that remarkable reaction extents 

are achievable even for a non optimized reactor design regarding geometry and catalyst used. 

Then, it can be concluded that the dissociation of ammonia should be achievable using a cavity 

type reactor operated with the LS-3 type trough considering the assumptions taken within the 

work presented in [31]. It is also concluded that the new trough design which allow a higher 

temperature tolerance of the absorber could lead to higher reaction extents and thus to higher 

overall efficiencies of the system [31]. 

1.2.3.2. The steam and the carbon dioxide reforming of methane 

The reforming processes of methane are catalytic processes. In the case of the carbon 

dioxide reforming of methane, the overall CO2/CH4 reaction is shown in (2) and its enthalpy of 

reaction is of 247 kJ/mol at 25 ºC. 

CO2 + CH4 ↔ 2 CO + 2 H2   (2) 

And the thermo-chemical heat-pipes concepts using this reaction are shown in figure 

40. For the storage of heat only the closes loop concept is of interest.  
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Figure 40. Concepts for (a) closed and (b) open loop thermochemical heat-pipes based on CH4/CO2 

reforming and solar energy [46]. 

 In [45] CSIRO/Pacific Power research on using the carbon dioxide reforming of 

methane reaction for solar energy storage is described. Fluidised-bed reactors were chosen for 

both endothermic and exothermic reactions.  

 Several potential catalysts were prepared and characterized for both reactions. The 

CSIRO catalysts chosen were used to conduct both reacions in small-scale fluidised-bed 

reactors under practical reaction condictions without carbon formation. Stable, equilibrium 

CO2/CH4 reforming was obtained over a wide range of operating conditions (650 – 950 ºC, 0,1 

– 0,7 MPa, 0,8 – 1,2 CO2/CH4 feed molar ratio) with thermo-chemical energy storage rates 

equivalent of up to 30 MWth/tonne of catalyst being achieved. The exothermic reaction was 

conducted in a fluidised-bed reactor in such a manner than more than 90 % of the reaction 

heat can be recovered at temperatures around 550 ºC, thus allowing the closed loop version of 

this technology to either be integrated with a conventional Rankine cycle power plant or be 

used for the production of high grade process heat [46]. 

 For the steam reforming process of methane, the reaction which takes place is shown 

in (3) and the enthalpy of reaction is 206,2 kJ/molt at 25 ºC. 

CH4 + H2O ↔ 3H2 + CO     (3) 

 The same concepts as for the carbon dioxide reforming of methane can be applied but 

as the temperature range needed for the reforming processes is between 750 and 950 ºC , no 

further information about these two thermo-chemical reactions will be presented as it is 

outside the range of interest. They have been mentioned since they are one of the most 

studied and a promising technology is being developed around these two thermo-chemical 

reactions [47]. 
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1.2.3.3. Dehydration/Hydration cycles  

 

1.2.3.3.1. Medium temperature (200-300ºC) chemical heat storage using mixed hydroxides 

In [39] an hybrid system with a chemical heat pump and a high-temperature process is 

proposed.  In this case the system is focused on the efficiency enhancement of vehicles as 

carbon dioxide emission due to vehicle usage has a significant impact on global warming [39].  

An electric hybrid system (EHS), which combines an internal combustion engine (ICE) 

with an electrical battery and a power controller as shown in figure 41, has good energy saving 

performance. Upon braking, the EHS kinetically converts surplus work into electricity, which is 

stored in the electrical battery. The stored electricity is used to start the vehicle or to assist 

during a period of low-efficient operation of the ICE.  

 

Figure 41. Thermal hybrid system (THS) combined with a medium-temperature chemical heat pump and 

a high temperature exhaust gas from ICE, in comparison with the electric hybrid system (EHS) currently 

employed in some hybrid vehicles [39]. 

 

The authors are proposing a thermal hybrid system (THS) that combines an ICE with a 

thermal battery and a thermal power controller for efficient use of exhaust heat from ICE as 

shown in figure 41 in comparison with the EHS. The thermal battery in THS is used for heat 

storage of surplus exhaust heat from ICE. The stored heat in the thermal battery is supplied to 

heat output side for tasks such as cold start, catalyst heating for exhaust gas reduction and 

vehicle cabin heating. The THS is expected to contribute to load leveling of ICE operation, 

improvement of fuel consumption efficiency, and reduction of CO2 emission. The THS concept 

can also be applied to the cogeneration engine and solar thermal power systems [39]. 

Different chemical reactions were surveyed and the most promising one was the metal 

oxide/water reaction (4). 

MO + H2O ↔ M(OH)2  (4) 

Several reactions of this type are shown in figure 2 from [39] and approach finally 

chosen was a mixed between magnesium hydroxide and nickel hydroxide as it combines the 

high reactivity with water vapor from magnesium oxide with the potential as new reaction 

system of nickel hydroxides. 
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Several tests were performed and  it was found that the mixed hydroxide can expand 

operation heat storage temperature  by changing the composition of the added cation in its. 

The heat capacity of Mg0,5Ni0,5(OH)2 was estimated to be 165 kJ/kg and although the amount of 

reacted fraction at hydration decreased in the first cycles, it was constant for the following 

cycles and the repetitive durability of the mixed hydroxide was proved assuming the same 

behavior as the pure Mg(OH)2. 

The integral reactivity of the developed mixed hydroxide was investigated using a 

packed bed reactor. It was proven that the mixed hydroxide can be decomposed by storing 

heat at approximately less than 300 ºC and outputting heat at approximately 230 ºC by 

physical sorption and at approximately 185-200 ºC by exothermic hydration under the working 

conditions presented in [39]. The heat output temperature is expected to be increased by 

increasing the vapor pressure in the hydration process.  

Finally, it can be concluded that the mixed hydroxide showed new possibility of 

chemical heat pump and it was demonstrated the feasibility of a hybrid system combining a 

medium-temperature chemical heat pump and a high-temperature process for efficient 

primary energy use. More details of the results and devices used for the tests can be found in 

[39]. 

1.2.3.3.2. Dehydration/Hydration cycle of Ca(OH)2/CaO 

In [41] the  study of the dehydration/hydration cyxle of Ca(OH)2/CaO in the appliaction 

of thermal storage is performed by the use of a reactor designed for the purpose. It must be 

mentioned that normally in the hydration step water is usually added in vapour phase but in 

the experiments performed liquid water was added at 0 ºC. The cycle is shown in (5).  

 

An input energy of 148,6 kJ (54,0 + 94,6) can decompose 1 mol of Ca(OH)2 at 25 ºC to 

CaO + H2O at 510 ºC. The produced CaO can be easily stored as a solid at 25 ºC loosing 23,5 kJ. 

If water is allowed to escape to the atmosphere, instead of storing it at 510 ºC in vapour 

phase, 61,5 kJ are additionally lost. Therefore, 57,3 % (85,0 kJ) is the portion of input energy 

that results in sensible heat of the products, and the remaining 42,8 % (63,6 kJ) is actually 

stored in the form of chemical energy. 

When the stored high temperature steam at 510 ºC is used in the hydration strep 

125,1 kJ could be recovered (84,2 % of the initial input of energy), but the recovery of stored 

heat using liquid water at 25 ºC can only provide the already mentioned 63,6 kJ [41].  

(5) 
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There are several application for this cycle but this experiment focuses on the use of 

the cycle for preheating the combustion engine in motor vehicles. Then the exothermic 

reactions heat is partially used to heat CaO and water from 0 ºC to 25 ºC (63,6 kJ) and the rest 

(60,6 kJ) are left for this particular application [41]. 

Only 20 cycles have been studied because after them the carbonation of CaO and 

Ca(OH)2 becomes a trouble in system performance. The scheme of the designed thermal 

prototype is shown in figure 42. Specficic heats, reaction rate and enthalpy, mass losses and 

heat release were monitored and the details of the experimental setup and results can be 

found in [41]. 

 

Figure 42. Scheme of the designed thermal storage prototype [41]. 

 It is interesting to show the conclusion reached by the experiments carried out which 

should be considered in further studies. 

•  Due to carbonation, the process does not reach a full reversibility in the dehydration 

step, and therefore could be used with a limited number of cycles, that however can 

go up to 20. A periodic dehydration at 1000 ºC could be necessary to recover full 

system reversibility. 

•  Efficiency is higher when the heat recovery solution is changed and a system with 

renewal of this solution in a prototype of Cu is a better design to heat water from 0ºC 

up to medium final temperature of 33,3 ºC. 

•  Hydration water addition should be carried out pouring it slowly with a uniform 

distribution along the whole mass of CaO as in a spray [41]. 

In [42] a previous study of the application of the same cycle for the same purpose was 

performed with the objective of determining how much heat energy can be produced and how 

long does it take to produce it; the maximum temperature obtainable; and whether it could be 

chemically recycled in that rig configuration without losing its potential for producing heat; 

and finally to evaluate the impact of utilizing such a thermal store for reducing energy 

consumption and pollutants from motor cars. 
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The scheme of the experimental device used for the experiments is presented in figure 

43. The details of the experimental method and the results obtained can be found in [42]. Also 

a theoretical model was developed and confirmed by comparison to the experimental data. 

The model can be used for future calculations. The important points to remark from the study 

are the conclusions itself. 

 

Figure 43. Scheme of the experimental device used in [42 [42]. 

In all the series of tests conducted, rapid interaction of fresh/dehydrated CaO and 

water vapor was observed. The maximum temperatures obtained which vary between 207 and 

219 ºC  indicate that CaO is capable of being recycled provided it is well dehydrated and 

properly stored, thus confirming other established studies on material recyclability. Even 

though there were slight differences in the maximum temperatures attained, there was no 

observance of any hindrance to the reaction rate by diffusion of water vapor through the bed. 

However, insufficient heat transfer due to low effective thermal conductance of the bed and 

the high thermal contact resistance of the wall was observed. Analysis of the experimental 

data showed that the average deviation from the theoretical values was about 17% and 

uncertainties in the primary data accounted for about 8%.  
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In conclusion, the experiment has demonstrated that it is feasible to integrate a fixed-

bed thermo-chemical energy store in a motor vehicle. However, for effective heat and mass 

transfer, it would be necessary to redesign the reaction bed as a bonded disc type with 

extended fins (which were used in the design presented before) and have them arranged in a 

cascading form. Alternatively, porous vapor tubes can be inserted into the reaction beds to 

ensure a low flow resistance along the water vapor line for the vapor to diffuse in a more 

compact structure over short distances only.  

More recently, the DLR is studying this reaction to be applied in the temperature range 

between 400 and 650 ºC as the reversibility of the reaction has already been proved. In [45] 

some simulations and experimental results are presented. Two different reactor concepts are 

simulated by a 2D-model based on a model previous developed for metal hydride reactions.  

An indirectly heated reactor concept as shown in figure 44 a) has been simulated. It 

uses an external heat exchanger and its performance is strongly limited due to the low thermal 

conductivity of the fixed bed. The second reactor concept, directly heated reactor with direct 

heat exchange by flow of a heat transfer fluid through the reaction zone, overcomes this 

problem and is not limited by heat transfer.  

Then an experimental setup as shown in figure m b) has been built in order to validate 

the simulation results of the directly heated reactor concept. First experiments have shown 

that the reaction can be conducted reversibly and the heat of reaction is partially transferred 

to the gaseous stream flowing through the solid reactants.  

 

 

Figure 44. a) Indirectly heated reactor concept simulated by the DLR b) Experimental setup built for the 

directly heated reactor concept [45]. 

It is concluded that reactor kinetics could have an impact on reactor performance and 

therefore have to be determined experimentally. Due to the thermal capacity of the gaseous 

stream needed to take-up all of the heat being generated by the reaction the pressure drop 

through the reaction zone can be a limiting factor in the concept with direct transfer. 

a) 
b) 
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Experiments are currently under way to investigate the influence of various operating 

conditions and to get close to the commercial demonstration of thermo-chemical energy 

storage. 

1.2.3.3.3. Ni-doped and undoped Mg-MgH2 materials  

In [44] the use of Ni-doped and undoped Mg-MgH2 materials for thermo-chemical heat 

storage in the temperature range of 450-500 ºC is also studied. It is proved that both types of 

materials have excellent cyclic stability and high hydrogenation rates. Several cycling tests are 

carried out focusing mainly on the causes of hydrogen capacity losses and finding the 

operational conditions which minimize these losses. 

Details about the experimental devices, the samples of the materials and the cycling 

tests are detailed in [44] with their respective results. It is important to mention that the 

properties of the different materials are sensitively dependent upon all the details of the 

experimental cycling conditions: hydrogenation/dehydrogenation pressure and temperature, 

distance to the equilibrium conditions, time allotted for hydrogenation/dehydrogenation 

processes, the temperature regime of heating and cooling and the previous cyclization history 

of the material sample. 

The conclusion is that these materials can be applied for applications such as solar 

generation of heat and cold, heat pumps, hydrogen storage, solar power generation via Stirling 

engine and storage of industrial heat in the temperature range of 450 to 500 ºC [44]. 

1.2.3.3.4. Mg2FeH6 

The reversible Mg2FeH6 hydride system has been studied as an option for thermo-

chemical storage at approximately 500 ºC. In [43] there is a report about the thermodynamic 

properties and cyclic stability of this system by an elemental analysis, themovolumetry, X-ray 

powder diffraction, PCI measurements and transmission electron microscopy . The preparation 

of the different samples and experimental devices used and the experiences carried out are 

presented in [43].   

The reaction with its enthalpy of reaction (77,4 kJ/mol H2) resulted to be the one 

shown in (6). 

2Mg + Fe + 3H ↔  Mg2FeH6+  77.4 kJ/mol H2  (6) 

A comparison between this system and the MgH2 system is also performed reaching to 

the conclusion that Mg2FeH6 shows a lower hydrogen dissociation pressure which is favorable 

from technical and economical points of view, since the required heat storage containers 

would be less costly and the H2 leakage rate would be reduced. 

Also the mixed Mg2FeH6-MgH2 is studied and characterized resulting to be also a 

potential thermo-chemical hydrogenation/dehydrogenation system.  

The conclusions are that these two systems have got a higher gravimetric and 

volumetric thermal energy density than the sensible or latent heat storage materials and the 

stability in cycle tests at around 500 ºC has been proved. Further advantages include the low 
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price of the materials, the free choice and constancy of the heat delivery temperature by 

controlling the applied hydrogen pressure and absence of heat losses with time. 

On the other hand further research must be carried out in order to find the optimal  

working conditions regarding the storage density, the intermediate storage of the desorbed 

hydrogen and engineering. This studies are especially needed in the mixed Mg2FeH6-MgH2 

hydride system with a low proportion of Mg2FeH6.  

1.2.3.3.5. Dehydration/hydration cycles of salt hydrates 

Salt hydrates are chemical that release water when heated thereby dissociating into an 

anhydrous salt. When heated to a charging temperature thermochemical dehydration of the 

salt hydrate occurs releasing water from the compound. The anhydrous salt has a larger 

energy content and can be stably stored at ambient temperature for long durations. When 

thermal energy is required a water vapor flow across the salt once again hydrates it ant the 

stored heat is released to the ambient. 

These salts have both a high volumetric heat storage capacity, large thermal 

conductivity and are also inexpensive. However liquid supercooling is of major concern and 

their poor nucleatins properties make them inapplicable for reuse.  

 Although reuse is not possible, they can be considered as a long-term thermal 

application as for example utilizing solar energy to dissociate a salt hydrate in the summer, 

storing the anhydrous salt and water vapor separately until the winter and then recombining 

them to release heat to warm buildings [48]. 

 In [48] a model to study the salt hydrates thermochemical storages is presented using 

it in the concrete case of the magnesium sulfate heptahydrate (MgSO4·7H2O). The reaction will 

be the following (7), 

 

and the model can be applied to other salt hydrates in order to study the different parameters 

which affect the process performance and select the optimal materials for the salt hydrates. 

Any conclusion about the feasibility of using MgSO4·7H2O is mentioned. 

1.2.3.4. Reduction and oxidation reactions (REDOX) 

General Atomics in collaboration with the German Aerospace Center (DLR) is studying 

the feasibility of using REDOX reactions to store and release heat as it is shown in (8): 

MnO2x+1 → MO + xO2  Endothermic reaction (charge) 

MO + xO2 → MnO2x+1  Exothermic reaction (discharge) 

The project started in April 2009 and it has the budget of demonstrating the feasibility 

and economics of a solid oxide based TES system by: 

(8) 

(7) 
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•  Indentifying and select the multivalent oxide based TES systems that have the 

potential to meet the economical targets. 

•  Evaluating and demonstrating their feasibility experimentally. 

•  Determining the process economics based on the data obtained. 

Achieving these targets, CSP will be competitive in the intermediate power market by 2015 

and baseloadmarket by 2020 [40]. 

 Sixteen pure oxides were found to be able to undergo REDOX in air based on 

thermodynamics calculation with their respective equilibrium reaction temperatures and 

energy density storage are shown in figure 45. 

 

Figure 45. Equilibrium reaction temperature and potential energy storage density for various oxides in air 

[40]. 

From these sixteen oxides Cr5O12, Li2O2, Mg2O, PtO2, UO3 and Rh2O3 were eliminated 

based on transition temperatures and raw material costs. Then an experimental protocol 

which is detailed in [40] was  establised in order to test and characterize the candidates left. 

It is important to mention that in the temperature range of interest (200-700 ºC) no 

large scale re-oxidation was observed in thermochemical candidates. Nevertheless in the range 

of 700 to 1100 ºC, Co3O4 was chosen as a feasible candidate as it demonstrated full re-

oxidation. Heat charge and discharge in a TES packed bed was shown using the cobalt oxide 

and further studies will be performed in the next phases of the project.  

Finally, re-oxidation kinetics improvement and long term stability of the low cost 

oxides via secondary oxide incorporation will be key to large scale deployment of this TES 

concept with CSP and will allow to make feasible other oxides which have been previously 

mentioned. More details about the project, the time horizon of the different phases and 

budgets can be found in [40].  
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2. DESIGN OF A LATENT HEAT STORAGE SYSTEM FOR A LABORATORY DEVICE 

Based on the literature research presented in section 1.1. and in order to summarize 

the most important conclusions, a discussion of the different possible approaches for a high 

temperature latent heat storage will be discussed.  

The latent heat storage in the charging process must store the energy coming from a 

thermal oil, the Dowtherm A, which is working between 322 and 312 ºC. 

During the discharging process, the same thermal oil is used but going from 290 to 300 

ºC. Then the suitable phase change material in this range of temperatures and based on the 

different examples already presented is the sodium nitrate (NaNO3) as it has got a melting 

temperature of 306 ºC. It fits the temperature needed and the feasibility of using it as a phase 

change material for high temperature applications has already been proved.  

As for the different possible designs, based mainly in the results from the DISTOR 

Project, three different approaches must be considered: 

•  Macro-encapsulation of the PCM 

•  Using a composite material compounded by the PCM and expanded graphite 

•  Sandwich concept 

Regarding the macro-encapsulation of the PCM approach, cylindrical stiff capsules 

where chosen in the DISTOR  Project due to manufacturating aspects as it has already been 

said in section 1.1.3.1.1. Nevertheless, the spherical macro-encapsulation must be keeped in 

mind as several models for low temperature applications of spherical solidification, melting 

and heat transfer have been performed. The concept itself is based on encapsulating the PCM 

inside the capsules which are sealed by welding and finally the capsules are integrated into a 

vessel as it is shown in figure 46. 

 

Figure 46. Macro-encapsulation designing approach [49]. 
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 The advantage of this approach is the easy commercialization which can be achieved 

as some companies can be focused on the manufacturing of PCM capsules providing their 

features and giving a certain warranty and other engineering companies can just focus on the 

device or system design. Although for the low temperatures applications there is plenty of 

information about it, for the high-temperature applications there are some reasons which lead 

to the rejection of this option: 

•  The amount of hull material needed for pressure-tight capsules is significant;  if steel is 

used, the mass of steel is almost equivalent to the mass of PCM. 

•  The volume fraction of PCM in the pressure vessel is less than 40%. 

•  The filling and sealing procedure with molten PCM is complex. 

•  A contamination of the steam by PCM due to leakage of capsules must be avoided;  

this demands high quality standards resulting in a further cost increase [51].  

 

 As for the use of composite material compounded by PCM and expanded graphite for 

LHS design, it must be mentioned that in the case of NaNO3 the properties from the resulting 

composite are still under investigation. An article from the Doctor Chang-Ying Zhao (University 

of Warwick) was summarized in section 1.1.4.2.2. but the properties of the resulting 

composites were not shown. The investigation is still being performed as can be found in [50]: 

the research project which is called Thermal Conductivity Enhancement of High-Temperature 

Thermal Energy Stores for Use With Solar Power Plants was started on 01/10/2008 and is 

programmed to end on 30/09/2012. It is interesting to trace the project as the results may be 

useful for next designs. 

 Regarding the design concept, it has already been shown in section 1.1.3.1.1 but is 

interesting to plot it again. It is based on the manufacturing of the composite material by 

compression of a powder mixture of the salt and the expanded graphite as is the 

manufacturing method which has been chosen in previous studies as shown in figure 47: 

having the appropriate ducts inside in order to install the pipes where the HTF will flow in the 

charging and the discharging processes.  

 

Figure 47. Single segment made of PCM/composite material used for the laboratory-scale storage test 

unit. Holes are intended for steam pipes [22]. 
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The shape of the composite block, position of the ducts and dimensions can be varied 

depending on the working conditions in order to achieve the optimal design. It must be 

remembered that there is an analytical model with some assumptions presented in [25] which 

can be useful once the results from Dr. C.Y. Zhao are published. The conclusion is that this 

option must be rejected as the feasibility of the composite material approach could not be 

proven for nitrate salts so far [51]. 

Finally the sandwich concept approach which is the one chosen as the best solution in 

the DISTOR Project was already presented in sections 1.1.3.1.1 and 1.1.4.1. As the melting 

temperature of the sodium nitrate is 306 ºC, aluminum fins are the ones that must be used in 

this case.  

The feasibility of this approach with high capacity factors, as mentioned in [27], has 

already been proved in different storage units ranging from 2 to 100 kW. Because of that, this 

option is the one chosen for the design of the latent heat storage system for the laboratory 

device which is shown in figure 48. It can be observed several valves, pumps and the heating 

source and heat since which can be chosen depending on the process required: charging and 

discharging processes respectively. The temperatures shown in figure 48 are the ones 

corresponding to the charging process. 

 

 

 

Figure 48. Laboratory device where the LHS will be installed. 
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A part from choosing the latent heat storage material and the configuration of the 

system, the designing parameters are: 

•  The latent heat storage power: 30 kW. 

•   The heat transfer fluid: Dowtherm A. The properties of the fluid which have 

been used for the calculations presented in the following section can be found 

in [56]. 

•  The volumetric flow: 6 m
3
/h and a velocity of around 1 m/s. 

•  The temperatures in the charging process from the Dowtherm A: 322 ºC in the 

beginning and 312 ºC in the end. 

•  The temperatures in the discharging process from the Dowtherm A: 290 ºC in 

the beginning and 300 ºC in the end. 

•  The maximum dimensions: 2 m
3
 

•  Charging and discharging time of 2 hours: energy capacity of 60 kWh. 

Once the design has been chosen (sandwich concept) and the main designing 

parameters are clearly listed, it is possible to model it in order to choose the geometrical 

parameters and observe the behavior of the system.  

Due to the complexity of the problem, the model presented in the following section is 

a preliminary and approximate model which can be only seen as a way of having an initial idea 

of how the temperature profiles evolve and a trial to prove the feasibility between the design 

chosen and the designing parameters. Before building the system for the experimental device, 

further studies and modeling performances must be carried out, including software and 

simulation tools such as FLUENT, Mathcad and Mathlab. 

2.1.  Modeling of the latent heat storage system 

2.1.1. The Classical Stefan Problem 

 The calculation of a latent heat storage system is based on the Classical Stefan 

Problem. The complexity of the problem due to the unknown location of the interface 

between the solid and liquid results in the need of making several assumptions.  

 These assumptions are presented in the following table comparing them to the real 

situation: 
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Physical Factors Involved in 

Phase Change Processes 

(real situation) 

Simplifying Assumptions for 

the Stefan Problem 

Remarks on the assumptions 

Heat and mass transfer by 

conduction, convection, 

radiation with possible 

gravitational, elastic, 

chemical and 

electromagnetic effects. 

Heat transfer isotropically by 

conduction only, all other 

effects assumed negligible. 

Most common case. Very 

reasonable for pure 

materials, small container, 

moderate temperature 

gradients. 

Release or absorption of 

latent heat. 

Latent heat is constant; it is 

released or absorbed at the 

phase-change temperature. 

Very reasonable and 

consistent with the rest of 

assumptions. 

Variation of phase-change 

temperature. 

Phase-change temperature is 

a fixed known temperature, a 

property of the material. 

Most common case, 

consistent with other 

assumptions. 

Nucleation difficulties, 

supercooling effects. 

Assume not present. Reasonable in many 

situations. 

Interface thickness and 

structure. 

Assume locally planar and 

sharp (a surface separating 

the phases) at the phase-

change temperature. 

Reasonable for many pure 

materials (no internal heating 

present). 

Surface tension and 

curvature effects at the 

interface. 

Assume insignificant. Reasonable and consistent 

with other assumptions. 

Variation of thermophysical 

properties. 

Assume constant in each 

phase, for simplicity. 

 

An assumption of 

convenience only. 

Reasonable for most 

materials under moderate 

temperature range 

variations. The significant 

aspect is their discontinuity 

across the interface, which is 

allowed. 

Density changes. Assume constant (�L = �S). Necessary assumption to 

avoid movement of material. 

Possibly the most 

unreasonable of the 

assumptions. 

Table 7. Assumptions made in the Classical Stefan Problem [55]. 

 Several models have been built around the Stefan problem which in some cases add 

some accuracy to the assumptions shown in table 7. For further details about these models, 

the reviews shown in [57] and [58] and the book mentioned in [59] are interesting. 

 In this Master Thesis due to time and resources limiting factors, the model performed 

is a simplified one and has got the target of using an analytical solution of the Stefan Problem: 

the quasi-static approximation.  The effects of sensible heat are neglected and thanks to that 

the energy equation becomes independent of time and solutions are much easier to obtain.  
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 For the case of interest, the equations which will be used are the ones corresponding 

to a Cartesian Coordinate geometry as the Stefan Problem is a non-linear problem and it is not 

possible to obtain the results from the steel cylinder and the aluminum fins and add them at 

the end. Because of that, the heat transfer from the steel tube is neglected and only the heat 

transfer from the aluminum fins considering Cartesian coordinates is taken into account.   

The general equations governing the process for the quasi-static approximation are 

the following:  

-(./ = [2 · 2(
3 · ℎ (

· � [��(./ − ��5 · �.5
�

6

&/+
    89: . ≥ 0 

Equation 3. Position of the liquid-solid interface in the melting process of a semi-infinite solid [60] 

�((=, ./ = ��(./ − >��(./ − �?@ · =
-(./  AB 0 ≤ = ≤ -(./ 89: . ≥ 0 

Equation 4. Temperature profile of the liquid region in the melting process of a semi-infinite solid [60] 

 As it can be observed in equations 3 and 4, there is the need to obtain the temperature 

profile of the aluminum fins in the non-steady state. An analytical solution for a hollow 

cylinder with radial fins along the cylinder in the external surface does not exist and there is 

the need to use numerical methods to solve the problem. The finite volume model built for the 

purpose is presented in the following section. 

2.1.2. The finite volume model 

 The finite volume model developed can be observed in figure 49 with the 

corresponding nodal numeration. It takes into account only one fin and has got 13 nodes, 

the last three of them are contour nodes and their temperature is already known:  

•  Node 11 is the phase-change material and it is at its melting temperature as the 

sensible heat is neglected in the quasi-static approximation and no supercooling is 

considered in the Classical Stefan Problem as mentioned before.  

•  Node 12 corresponds to the Dowtherm A and the heat transfer with the steel tube is 

by convection. 

•  Node 13 is the contour of the steel tube in its extremities from z direction and it is 

considered the same temperature in both of the sides (symmetry from the horizontal 

axis of the fin). 



62 

 

 

Figure 49. Finite volume model  

 Before performing the numerical method calculation it is necessary to determine the 

convective coefficient and it is also a good way of checking the feasibility of the design. In 

order to facilitate the calculations, the convective coefficient is calculated neglecting the fins 

and for the steady state in an iterative process which is detailed in the annex A.  

 It is also a way of fixing the steel tubes dimensions which result taking into 

consideration the volumetric flow, velocity and the European Norm for Steel tubes. The 

properties of the steel are taken from [61] and regressions using Excel have been done in order 

to obtain their dependency with temperature. 

 It is important to mention the volume of PCM needed for the 30 kW device, which is 

easily calculated taking into account its latent heat of fusion (173 kJ/kg) and density (2261 

kg/m
3
), neglecting the sensible heat exchanged and considering a charging/discharging time of 
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2 hours. Then the resulting volume of PCM needed is 0.551 m
3
 which has been placed 

uniformly as a hollow cylinder in this first calculation (operations shown in annex A if any 

doubts).  

 The main results are the need of having four different tubes with 6 steps with an 

internal diameter of 22.9 mm and a thickness of 2 mm and the mean convective coefficient of 

the Dowtherm A of 1715 W/(m
2
·K). The results are considered for the charging process as it 

was found to be the most limiting process as the longitudes needed were larger than for the 

discharging process.  

Finally it is important to mention that the iterative process shown in the annex A has 

been done manually until the difference between the new longitude and the old one is smaller 

than 0.001. 

 Once the convective coefficient has been found it is possible to proceed with the 

calculations of the finite volume model. For a general node the equations of the conductivities 

which correspond to figure 50 are the following: 

 

Figure 50. General node in cylindrical coordinates [62]. 

D%& = 2 · E:% + ∆:
2 F · ∆G · ∆H
∆:  

Equation 5. Conductivity between the i-node and the next one in the positive radial direction [62]. 

D%, = 2 · E:% − ∆:
2 F · ∆G · ∆H
∆:  

Equation 6. Conductivity between the i-node and the next one in the negative radial direction [62]. 
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D%+ = 2 · ∆: · ∆H
:% · ∆G = D%I 

Equation 7. Conductivity between the i-node and the neighbor in the G direction (both sides) [62]. 

DJK = 2 · :% · ∆G · ∆:
∆H = DJL 

Equation 8. Conductivity between the i-node and the neighbor in the z direction (either up and down) 

[62]. 

 It is important to mention that due to symmetry the conductivities in the � direction 

are not taken into account, there is only heat transfer in two dimensions: z and r. That leads to 

use for all the nodes an �� of 2� and also is important to remark that ��� in figure 50.  

Also there is the need to choose the numerical method resolution: in this case the 

implicit method as the properties of the different materials are considered constant with 

temperature and in this method there is not any problems with stability and convergence in 

the solutions. 

 Once the conductivities for each node are calculated, it is possible to define the 

conductivity matrix (KT), the conductivity contour matrix (KC), the temperature contour nodes 

vector (TC), the CDT matrix which is needed as it is the unsteady state and it is possible to 

calculate the final temperatures (TF) after each time interval (2 s) supposing for the first time 

interval a first temperature vector of the nodes: in this case 579 K as it is the temperature of 

the steel tube from the calculations presented before (annex A). 

 The matrix solution is then: 

�M = (D� − �N�/L& =(−D�=�� − �N�=�O/ 

Equation 9. Matrix solution of the unsteady state for the implicit method [62]. 

and the details about all the procedure, with the conductivities defined for each node and the 

matrixes mentioned before can be found in the annex B for the first time interval. 

 The steady state is reached after 6 seconds and the temperature profile in front of 

time of the nodes of the aluminum fins (8,9 and 10) are plotted in the following two figures as 

the results for node 9 and 10 are the same. 

 



65 

 

 

 

 

 

 

 

Figure 51. Temperature profile for the unsteady state of node 8. 

 

Figure 52. Temperature profile for the unsteady state of nodes 9 and 10. 

 As for the contour conditions, the PCM has been considered at a constant 

temperature:  the melting temperature. The results show that the temperature of the nodes of 

the fin is not enough high as the heat flux between the Dowtherm A and the aluminum fins is 

not enough. 

 Then in order to calculate the time needed for the melting of the PCM, after all the 

assumptions made, it is reasonable enough to consider a constant temperature five degrees 

above the melting temperature for the aluminum fin which should be the target of future 

designs. 

 Then the time it takes for the solid-liquid interface to get to the most extreme area: 2 

mm far away from the fin is from equation 3 and considering T0(t) = 311 ºC = constant: 

. = -(./+ · 3 · ℎ (
2 · P( · (�6 − ��/ = 0.006 +�+ · 2261PT/�, · 173300W/PT

2 · 0.5Y/(� · D/ · 5D = 2821 [ = 0.78 ℎ 

Then, using equation 3, it is possible to have a bigger distance between fins than the 

one initially selected as it is possible to have a charging time of 2 hours: 

-(7200/ = \2 · 0.5 Y/(� · D/
2261PT/�, · 173300W/PT · 5D · 7200[]

6.^
= 0.009 � 

It must be mentioned that all the calculations presented in both annex A and annex B are 

based on several chapters from [62]. 
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3. CONCLUSION 

 

A review of the latent heat storage systems which can be found for high temperature 

applications has been performed. A great progress has already been achieved with several 

models and laboratory devices which have been built. Nevertheless there is still work to do in 

order to reach to the commercialization of LHS devices for high temperature.  

There are still some challenges which must be overcome and specially the low thermal 

conductivity of the phase change materials which are normally used. In this direction, different 

approaches have been studied and the sandwich concept is the most successful at the 

moment as it has already been mentioned. Nevertheless, the macro-encapsulation of PCM, the 

use of composites and the use of metallic materials are interesting approaches which must be 

followed and studied further.  

In addition, a review on thermo-chemical storage systems has been shown. Although it is 

a newer topic than the LHS systems, there is also a great work already developed specially with 

the dissociation of ammonia, the dehydration/hydration cycles and the reduction and 

oxidation reactions. As in the case of the LHS systems, there is a long way to reach the 

commercialization level but to have an idea of when it can be enough developed it is 

interesting to remark that the reduction and oxidation reactions project already mentioned 

has got the target of reaching the commercialized level between 2015 and 2020. 

Finally, an initial design of a LHS system for a laboratory device has been presented. The 

model is limited as the phase-change is a non-linear problem which has a complex 

mathematical modeling. The sandwich concept was the design chosen and some first 

calculations were performed including a simple finite volume model in order to have a first 

idea of the behavior and the temperature profiles of the system. Software with adequate 

simulations tools for the problem must be used in the future to continue the modeling of the 

system and finish the detailing of the design specially because at the moment the heat flux 

between the heat transfer fluid and the aluminum fins is not enough. An option to overcome 

the situation could be the reconsideration of the designing parameters such as the input and 

output temperature of the heat transfer fluid (Dowtherm A). 
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ANNEXES 

 

ANNEX A. Calculation of the convective coefficient and first dimensions 
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ANNEX B. Numerical model calculation 
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Nodes from the aluminum fin 
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Steady state: 
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