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Abstract

A finite deformation hyper-elastic membrane theory based on inter-atomic potentials for crystalline films composed

of a single atomic layer is developed. For this purpose, an extension of the standard Born rule that exploits the dif-

ferential geometry concept of the exponential map is proposed to deal with the curvature of surfaces. The exponential

map is approximated locally and strain measures based on the stretch and the curvature of the membrane arise. The

methodology is first particularized to atomic chains in two dimensions, and then to graphene sheets. A reduced model

for the transverse mechanics of carbon nanotubes is developed in detail. This model is a hyper-elastic constrained

membrane which fully exploits the symmetry of the transverse deformation. Additionally, a continuum version of the

non-bonded interactions is provided. The continuum model is discretized using finite elements and very good agreement

with molecular mechanics simulations is obtained. Finally, several simulations illustrate the strong effect of the van der

Waals interactions in the transverse deformation of carbon nanotubes.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of crystals by means of continuum

elasticity theory is well established. It is possible to

extract the elastic constants of the crystal from the

force constants of the inter-atomic interactions

(Martin, 1975). It is also possible extend the con-

tinuum theory to the finite deformation realm. In

order to formulate a hyper-elastic strain energy

density from the inter-atomic potentials, a key

ingredient is the Cauchy–Born rule, simply called

Born rule in the following (Ericksen, 1984; Zanz-

otto, 1996). This classical rule is a kinematic as-

sumption that links the atomic and the continuum

deformations. It states that the crystal vectors

defined by two nuclei deform according to the

local deformation gradient. The resulting local

hyper-elastic models describe well the crystal

behavior as long as the continuum deformation is

nearly homogeneous in the scale of the crystal

*Corresponding author. Tel.: +1-847-491-4029; fax: +1-847-

491-4011.

E-mail addresses: m-arroyo@northwestern.edu (M. Ar-

royo), tedbelytschko@northwestern.edu (T. Belytschko).

0167-6636/03/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0167-6636 (02 )00270-3

mail to: m-arroyo@northwestern.edu


vectors. In addition to the extraction of elastic

material tensors, these models have been used with

the finite element method to solve boundary value

problems, such as the nano-indentation of silicon

(Tadmor et al., 1999). If the deformation is not

uniform enough for the local theory to hold, mixed

continuum–atomistic approaches have been pro-

posed to deal with inhomogeneities or defects

(Tadmor et al., 1996; Shenoy et al., 1999).

The appeal of the approach based on the Born

rule stems from the fact that it gives rise to finite

deformation constitutive models based on the

nano-scale physics rather than phenomenologi-

cal material models. The inter-atomic potentials,

based on experimental data and quantum me-

chanical considerations or calculations, are thus at

the core of the resulting strain energy density. A

local quasicontinuum has also been developed

based on the tight-binding method (Tadmor et al.,

1999).

This paper deals with the application of such a

theory to the mechanics of carbon nanotubes.

Since the discovery of these crystalline tubes in

1991, many studies have focused on their unique

mechanical properties, through experiments (Yu

et al., 2000; Chopra et al., 1995; Yu et al., 2001b),

molecular dynamics (MD) and molecular me-

chanics (MM) simulations (Bernholc et al., 1998;

Gao et al., 1998) and first-principles calculations

(Zhou et al., 2001; Maiti, 2000). Although molec-

ular simulations seem well suited to study these

systems, they are not completely satisfactory. In-

deed, they are very demanding from the compu-

tational point of view. The length scales (�AA) and

time scales (ps) that must be resolved are often well

below the scales of practical interest for a partic-

ular problem. In addition, although systems of

over one million nuclei are currently being ana-

lyzed, one can always envision larger problems for

which the computing capabilities do not suffice.

An approach that can alleviate some of the

drawbacks of molecular simulations is the use of

continuum mechanics. The ability of continuum

models to describe the mechanics of nanotubes has

been noted by several authors. Cross-section con-

tinuum models have been used to explain experi-

mental observations on the transverse stability of

nanotubes (Chopra et al., 1995; Yu et al., 2001a).

These extremely simplified models bring insights as

well as quantitative information on the physical

phenomena that govern the stability of the circular

and the collapsed configurations observed in na-

notubes. The vibrational properties of carbon na-

notubes have been investigated through linear

elasticity by Sohlberg et al. (1998). The elastic

properties of carbon nanotubes as a continuum,

neglecting all curvature effects, have investigated

by Lu (1997). Zhong-Can et al. (1997) considered

the nanotube to be an inextensible membrane, and

obtained an expression of the elastic energy in

terms of the curvature for a family of simple de-

formations. Yakobson et al. (1996) used the theory

of elastic shells and linearized bifurcation analysis

to study the buckling patterns of compressed car-

bon nanotubes observed in MD simulations. Qian

et al. (2001) used a 3D continuum theory com-

bined with a mesh-free approximation to study C60

molecules inside nanotubes.

Nevertheless, the proposed models so far are

either over-simplified, restricted to the linear re-

gime, or to very particular situations, and do not

constitute a systematic continuum approach to the

mechanics of nanotubes. This is particularly true

with regards to the large deformations. Indeed,

experiments (Chopra et al., 1995; Falvo et al.,

1997), MD/MM simulations (Bernholc et al.,

1998) and first-principles calculations (Maiti,

2000) show that carbon nanotubes undergo very

large deformations, with highly non-linear behav-

ior and still remain elastic in the sense that the

deformations are reversible, with stable bonds and

intact bond topology.

From these considerations, developing a finite

deformation model based on the Born rule and on

nano-scale physics applicable to nanotubes would

be of great interest and would fill in a gap in the

present use of continuum models to model crys-

talline films one atom thick. Apart from the

physical insights that a continuum model brings,

such a description could be the basis for an effi-

cient numerical simulation methodology, in con-

trast with the sometimes too detailed molecular

simulations. Efficiency becomes an issue when

nano-ropes––bundles of tens to hundreds of na-

notubes––or multi-walled nanotubes several mi-

crons long (Ruoff et al., 1993; Yu et al., 2000) are
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to be analyzed. Furthermore, a continuum me-

chanics theory allows us to exploit the symmetry

of certain situations explicitly, analogously to the

plane strain and plane stress situations in 3D

elasticity. Such reduced models for the transverse

behavior of nanotubes are one of the topics pre-

sented in this paper.

Unfortunately, the traditional approach based

on the Born rule works for bulk materials but fails

to extend directly to the case of crystalline films

and ropes one atom thick deforming in higher di-

mensional spaces, i.e. 3D in the case of films, and

2D or 3D in the case of ropes. The present paper

describes some mechanical effects that arise from a

recent extension of the Born rule to membranes

(Arroyo and Belytschko, 2002). The extension is

based on the differential geometry concept of the

exponential map, and is here called the exponential

Born rule. An alternative approach has been re-

ported by Friesecke and James (2000).

The outline of this paper is as follows: we first

present the Born rule for bulk materials, investi-

gate its structure and explain why it breaks down

for films (Section 2). Then, after some geometric

preliminaries, Section 3 introduces the proposed

exponential Born rule in an abstract and general

way. This abstract presentation of the theory is

complemented by its realization in the simplest, yet

complete, situation, i.e. an atomic chain deforming

in two dimensions. The formulation of the equiv-

alent continuum rope-like object is detailed in

Section 4, and a simple example illustrating the

effectiveness of this model in mimicking the atomic

chain is provided. Previous to the application of

the theory to carbon nanotubes, their crystalline

structure, as well as the instance of inter-atomic

potential considered, are described in Section 5.

Section 6 describes in detail the model for the

transverse mechanics of carbon nanotubes. The

implementation of the new theory to the arbitrary

deformation of the continuum membrane in 3D is

presented in Arroyo and Belytschko (2002). The

Bravais multi-lattice nature of graphene requires

the treatment of additional internal variables, the

so-called inner displacements. Additionally, the

van der Waals interactions are also accounted for

in the continuum theory, and the continuum

variational statement of the problem as well as the

Lagrangian stress measures that naturally arise are

described. Finally, a validation test comparing the

proposed continuum model discretized with finite

elements to molecular calculations is provided in

Section 7. Several simulations highlighting the

relevance of the van der Waals forces in the

transverse configurations of carbon nanotubes and

nano-ropes are also included in this section.

2. Breakdown of the Born rule for films

The formulation of a finite deformation con-

tinuum model for space-filling defectless crystals

based on the Born rule is relatively straightfor-

ward. The Born rule links the atomistic deforma-

tion to that of the continuum medium. Then, a

representative crystallite is considered, and, for a

given continuum deformation, the continuum

strain energy density is defined to be the energy of

the crystallite subject to the deformation divided

by its volume. The details of the procedure are

presented in several of the articles referenced in

Section 1, and will also be briefly described later in

the present paper. The focus of this section is

on the fundamental kinematic assumption that

links the continuum and the atomic deformations,

i.e. the Born rule. The details of the atomic model

are deliberately omitted. Later, an instance of an

atomic model is adopted.

2.1. The standard Born rule

Assume for the moment that we are dealing

with space-filling continuum bodies, i.e. open

subsets of the ambient Euclidean space. Let U be

the deformation that maps the undeformed body

X0 � R
n, into Rn, n being either 1, 2 or 3. If X

denotes a point in the undeformed body, its image

after deformation is x ¼ UðXÞ. The deformed

body is denoted as X ¼ UðX0Þ and is an open set of

R
n. The deformation gradient is the derivative of

the vector-valued vectorial function U, F ¼
DU ¼ oU=oX 2 Rn�n. At each point X, the defor-

mation gradient is a linear transformation from R
n

into Rn, which maps ‘‘infinitesimal’’ material vec-

tors, dx ¼ FdX (see Malvern, 1969, p. 156).
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From a differential geometry point of view, the

deformation gradient is called the tangent map of

U, and is denoted as F ¼ TU. Let us call the in-

finitesimal neighborhoods of X and x the tangent

spaces of the undeformed body and the deformed

one, respectively denoted as TXX0 and TxX (see

Fig. 1 for an illustration). Then, using this lan-

guage, the deformation map U maps the unde-

formed body into the deformed one, and the

tangent map F ¼ TU maps the tangent space of

the undeformed body into the tangent space of the

deformed body.

In the absence of slips, phase transitions and

other special crystallographic phenomena, the

Cauchy and Born hypothesis for crystals are

equivalent for homogeneous deformations (Er-

icksen, 1984). What is referred to as the Born rule

in some works is simply called the method of ho-

mogeneous deformations in others (Martin, 1975;

Cousins, 1978). The Born hypothesis consists of

assuming that the lattice vectors deform as would

material line elements in a homogeneous defor-

mation:

a ¼ FA; ð1Þ
where A denotes an undeformed lattice vector and

a the same vector in the deformed crystal. The

geometry of the lattice vectors, that is their length

and the angles they form with other lattice vectors

in the deformed crystal, can therefore be extracted

from the continuum deformation through the

Green deformation tensor C ¼ FTF using standard

continuum mechanics relations:

kak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A � CA

p
and cos h ¼ A � CB

kakkbk ; ð2Þ

where B and b represent another undeformed

and deformed lattice vector and h is the angle a

and b form in the deformed crystal. Once the

geometry of the deformed lattice vectors is linked

to the continuum deformation, a constitutive

model based on the atomic interactions can be

constructed by identifying the continuum strain

energy density with the potential energy of the

atomic system for a representative cell divided by

its volume.

One could argue that the rule expressed by Eq.

(1) is formally inconsistent, because the lattice

vectors A and a, each connecting two atomic po-

sitions, are physical entities that lie in the unde-

formed and deformed body respectively, while the

tangent map F ¼ TU maps elements of the tangent

of the undeformed body into elements of the tan-

gent of the deformed body. This inconsistency can

also be viewed from a more classic standpoint: the

lattice vectors have finite length while the defor-

mation gradient maps ‘‘infinitesimal’’ material

vectors, dx ¼ FdX. These objections are circum-

vented by noting that for homogeneous deforma-

tions, Eq. (1) holds exactly, even for material

vectors of finite length. The Born rule assumes

that, at least ‘‘locally’’, i.e. in the scale of the lattice

vectors, the deformation is homogeneous.

2.2. Why the case of films is more difficult

Consider now the case in which we have a single

atom thick crystalline film (such as a graphene

sheet) deforming arbitrarily in 3D. It is natural in

this case to treat the continuum solid as a mem-

brane without thickness. The sheet is then a two-

manifold embedded in R3 (a surface). It is assumed

that the atoms lie on the surface (Cauchy�s hy-

pothesis), and therefore the lattice vectors are

chords of the surface. We would like to use the

Born rule in order to express the geometry of the

deformed lattice vectors in terms of the some

continuum variable characterizing the deforma-

tion of the surface, such as the Green deformation

tensor.

Suppose that the undeformed body is planar,

like a planar graphene sheet. In this case, X0 an

open set in R2. The deformation map transforms

this originally planar body into a curved mem-
Fig. 1. Deformation map and its tangent map for space-filling

bodies.
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brane, and therefore X ¼ UðX0Þ is now a surface in

R
3. The language of differential geometry intro-

duced previously acquires a clear visual meaning in

this context. Indeed, the tangent space of the de-

formed body at a particular point x 2 X, TxX, is

the tangent plane to the surface at that point. The

tangent map F ¼ TU maps vectors of the infini-

tesimal neighborhood of X 2 X0 into vectors tan-

gent to the surface at x ¼ UðXÞ, that is vectors that
belong to TxX (see Fig. 2 for an illustration).

Therefore, the deformation gradient or tangent

map cannot be used here to map a lattice vector

A in the undeformed membrane into the vector a

in the deformed membrane, since the latter is a

chord to the surface X, whereas FA is tangent to

X. The standard Born rule expressed in Eq. (1) is

therefore not meaningful in this context. Here,

unlike the case of space-filling materials, there is

an essential distinction between the deformed

body, which is curved, and its tangent space,

which is flat.

3. An extension of the Born rule

In this section, an extension of the standard

Born rule is proposed. The formulation of the

proposed kinematic assumption that links the de-

formation of the lattice vectors and that of the

continuum body, as well as its further develop-

ment in other sections, require some geometric

preliminaries provided below. Then, the extension

of the Born rule is described in an abstract man-

ner, and some of its properties are sketched. We

also discuss its practical application before actu-

ally implementing it for two simple instances in

following sections.

3.1. Kinematic and geometric preliminaries

Two useful references for this section are

Marsden and Hughes (1983) for a mathematical

treatment of continuum mechanics, and do Carmo

(1976) for the differential geometry of curves and

surfaces.

For the sake of simplicity, the undeformed body

is considered to be planar. This assumption sim-

plifies the formulation, and is sufficient for the

analysis of carbon nanotubes since planar graph-

ene can be considered to be the undeformed body.

For a more general presentation of the theory (see

Arroyo and Belytschko, 2002). We denote the

original position vector of a point and its Carte-

sian components by:

X ¼ X 1I1 þ X 2I2; ð3Þ
where fI1; I2g denotes the Cartesian basis of R2.

Similarly, U denotes both the point mapping and

its Cartesian components, and we write:

UðXÞ ¼ U1ðXÞi1 þ U2ðXÞi2 þ U3ðXÞi3; ð4Þ
where fi1; i2; i3g represents the Cartesian basis of

R
3.

3.1.1. Metric tensor and deformation gradient

We can define the natural basis or convected

basis vectors (tangent vectors to the surface X) as:

gI ¼
oUi

oX I
ii: ð5Þ

Then, at each point x, fg1; g2g is a basis of TxX. We

can also define the corresponding dual basis of the

cotangent space of X, fg1; g2g. The cotangent

space T 
xX is the space of one-forms on TxX, i.e. the

linear mappings from the tangent into R. The dual

basis is defined by the relations gIðgJÞ ¼ dIJ . The

metric tensor of the surface can then be defined by

its covariant components (the components in the

basis fgI � gJg), which are the scalar products of

the convected basis vectors:

gIJ ¼ gI � gJ : ð6Þ

The metric tensor is actually the expression of the

Euclidean scalar product in the tangent space. The

tangent of the deformation map, the deformation

gradient, can be expressed as:

Fig. 2. Deformation map and its tangent map for surfaces in

3D.
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F ¼ g1 � I1 þ g2 � I2; ð7Þ

where fI1; I2g is the dual basis of fI1; I2g. Thus, a
vector W ¼ W III 2 TXX0 is transformed by the

deformation gradient into w ¼ FW ¼ W IgI 2
TUðXÞX. Therefore, the matrix representation of F

in the Cartesian/convected basis fgI � IJg is the

2� 2 identity matrix, the information about the

deformation being contained in the convected

basis vectors. We can also define the Green de-

formation tensor C ¼ FTF. Its components in the

Cartesian basis of X0 coincide with these of the

metric tensor in the convected basis presented in

Eq. (6).

The tensor C can be used to measure length,

angle and area changes due to the deformation in

terms of undeformed body quantities, i.e. C op-

erates in TX0. In particular the element of area of

X can be written in terms of the element of area of

X0 as dX ¼ J dX0 where the Jacobian is J ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gIJ

p
. Also, the stretch in the direction of a unit

vector E 2 TXX0 is K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � CðXÞE

p
.

3.1.2. The second fundamental form: the curvature

The unit normal to the surface X can be defined

as

n ¼ g1 � g2
kg1 � g2k

; ð8Þ

where k � k denotes the Euclidean norm. The sec-

ond fundamental form of the deformed body k can

be expressed in the basis fgI � gJg in terms of its

components:

kIJ ¼ n � gI;J ; ð9Þ
where gI ;J denotes the derivative of gI with respect

to X J . The normal curvature kn at a point x of the

surface X and in a given direction defined by the

unit vector v ¼ vIgI 2 TxX, is the minimum of

the curvatures of all the curves of X passing

through x tangent to v. It can be obtained as:

knðxÞ ¼ kIJv
IvJ : ð10Þ

Suppose the normal curvature of the deformed

body is to be computed at a point x ¼ UðXÞ 2 X in

a given direction V ¼ V III 2 TXX0 of the unde-

formed body. This direction corresponds in the

deformed body to v ¼ FV ¼ V IgI , where Eq. (7)

has been used. Therefore, after normalizing v, the

resulting expression for the normal curvature is:

knðxÞ ¼
kIJV

IV J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gMNV MV N

p ; ð11Þ

where the denominator corresponds to the Eu-

clidean norm of v.

3.1.3. The exponential map

A simple definition of the exponential map is

given in Morgan (1993) for a manifold M :

The exponential map expp at a point p in M

maps the tangent space TpM into M by send-

ing a vector v in TpM to the point in M a dis-

tance j v j along the geodesic from p in the

direction v.

The exponential map is invertible and differen-

tiable in a neighborhood of each regular point p of

the manifold. It can be defined because of the ex-

istence and uniqueness of geodesics at any point

given a direction in the tangent space. The expo-

nential map is defined here in abstract terms be-

cause its evaluation requires the knowledge of the

geodesics. In general, obtaining the geodesics in-

volves solving the geodesic differential equations.

These equations are a system of non-linear ordi-

nary differential equations whose unknowns are

the parametric coordinates of the geodesic, and

whose coefficients are the Christoffel symbols of

the surface. Finding the geodesics, and thus the

exponential map, is much simpler in some partic-

ular cases, as will be shown for the cylinder. More

details about the exponential map for surfaces can

be found in do Carmo (1976). Fig. 3 provides an

illustration of how the exponential map brings a

tangent vector to the surface.

Fig. 3. Illustration of the exponential Born rule; the geodesic at

x in the direction of w is represented by a dashed line.
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3.2. Exponential Born rule

In the present theory, the continuum solid

equivalent to the original single layer crystalline

film is a membrane without thickness. The nuclei

of the atomistic system lie on this surface and

consequently the lattice vectors are chords of the

surface. Let A denote an undeformed lattice vec-

tor. In the present setting, since the undeformed

body is planar, X0 and TX0 can be identified, and

consequently A can be transformed through the

deformation gradient. The result of the transfor-

mation w ¼ FA is simply the deformed lattice

vector we would obtain through the standard Born

rule. However the vector w is tangent to the de-

formed surface X, not a chord. Consider the fol-

lowing generalized kinematic rule, called the

exponential Born rule in the following:

a :¼ expUðXÞ �FA: ð12Þ

Described in words, this map takes a lattice vector

in the undeformed body A emanating from X and

transforms it into a vector w in the tangent of the

deformed body X at x ¼ UðXÞ. Then, this vector is
mapped from the tangent space to the deformed

surface through the exponential map, which

‘‘brings’’ the result of the standard Born rule back

to the surface, hence defining a chord (see Fig. 3

for an illustration of this procedure). Thus, the

exponential Born rule links the deformation of the

lattice vectors to the deformation of the contin-

uum object, since both the deformation gradient

and the exponential map are defined in terms of

the deformation map U.

This extended kinematic rule provides a theo-

retical framework for the application of crystal

elasticity to curved crystals, by rectifying the

shortcomings of the standard Born rule. Note

however that its practical implementation is not

straightforward, since the evaluation of the expo-

nential map requires the determination of the

geodesics, which in general entails the integration

of a system of two non-linear differential equa-

tions. This results in a computationally very

complex method that is necessarily non-local. Here

we present approximations to the exponential map

that render the model local and computationally

feasible.

4. Atomic chain in 2D

In this section, we illustrate the exponential

Born rule for the simplest case, an atomic chain

deforming in 2D. The resulting continuum model

is a hyper-elastic rope whose strain energy density

depends on the stretch and the curvature of the

continuum object. This constitutive model is based

exclusively on the atomistic description of the

chain. In this case the exponential map is ap-

proximated at each point by the exponential map

of the circle, for which a closed-form expression is

straightforward.

4.1. Atomic model

The strain energy of the atomic system is de-

scribed by means of bond stretch Vs and bond

angle Vh potentials. The strain potential energy of

the atomic chain can be written as a function of

the nuclear positions xi:

Pchainðx1; . . . ; xnÞ ¼
XnB

k¼1

VsðakÞ þ
XmB

l¼1

VhðhlÞ;

ð13Þ
where ak denotes the bond lengths, hl denotes the

angle that adjacent bonds form, and nB and mB are

the number of bonds and adjacent bonds, respec-

tively. This particular atomistic model is chosen

for simplicity, but the approach is not restricted to

this structure of the inter-atomic potential by any

means. The exponential Born rule provides a link

between the atomistic and the continuum defor-

mations, and can be combined with any atomistic

model of choice, not restricted to closest-neighbor

models.

4.2. Continuum model

As illustrated in Fig. 4, the undeformed body is

considered to be a 1D line segment that is allowed

to deform in 2D. Therefore, the deformation map

can be described as x ¼ UðX Þ ¼ U1ðX Þi1 þ U2ðX Þi2
with X 2 X0 � R and fi1; i2g the basis of R2. In this

case, the components of the deformation gradient

are ½F� ¼ ½U1
;X ;U

2
;X �

T
, and the Green deformation

tensor C is a scalar, whose square root is the

stretch K of the deformed rope:
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K ¼
ffiffiffiffi
C

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU1

;X Þ
2 þ ðU2

;X Þ
2

q
: ð14Þ

The normal curvature kn of the deformed rope can

be written as:

kn ¼
1

K3
ðU2

;XU
1
;XX � U1

;XU
2
;XX Þ; ð15Þ

and can be interpreted geometrically as the inverse

of the radius of curvature of the curve.

As we mentioned in Section 3.2, in order to

obtain a practical method the exponential Born

rule needs to be approximated. It is desirable that

the approximation of the exponential Born rule

leads to a local model, i.e. one in which the strain

energy depends on the local deformation of the

rope. The strategy followed to obtain such an ap-

proximation is to perform the exponential map at

each point, not of the original curve, but of a circle

of radius r ¼ 1=kn with the same normal as the

original curve (see Fig. 4). Thus, locally, this circle

replaces the original curve. The exponential map of

the circle is readily available in closed form.

The first part of the exponential Born rule maps

the lattice vector A of length A into a vector tan-

gent to the curve whose components are

½w� ¼ A½F�. Therefore, its length is

w ¼
ffiffiffiffi
C

p
A: ð16Þ

The exponential map of the circle is illustrated in

Fig. 5. The length of the tangent vector w is

‘‘walked’’ on the geodesic to obtain expUðXÞ w, and
therefore the chord a. Since the geodesic of the

circle is trivially the circle itself, the length of the

arc defined by the ends of a is w.

Let h denote the angle formed by two adjacent

deformed lattice vectors. Consider the triangle

formed by the ends of a and the center of the

circle. This triangle is isosceles, and its equal angles

are h=2. Therefore its third angle, the angle sub-

tended by the arc of length w, is c ¼ p� h. Con-

sequently, we can relate the length of the arc, w, to

the radius of the circle r ¼ 1=kn and the angle c:

w ¼ cr ¼ ðp� hÞ=kn: ð17Þ
Since the length of the unequal side of the triangle

can be easily computed as

a ¼ kak ¼ 2r sin
c

2
; ð18Þ

it follows that

a ¼ 2

kn
sin

knw

2
and h ¼ p� knw: ð19Þ

Note from Eqs. (16) and (19) that the quantities a

and h, which are the arguments of the atomistic

energy (see Eq. (13)), are expressed in terms of the

continuum deformation.

The next step is to consider a representative

crystallite of the atomistic system, which in this

case is a cell of length A including a single nucleus

in the undeformed crystal. In a homogenization

process, the energy of this deformed cell contain-

ing one bond and one angle between adjacent

bonds is identified to the strain energy density of

the continuum multiplied by the undeformed vol-

ume of the cell: A � W ðUÞ ¼ VsðaÞ þVhðhÞ. Since
our aim is to formulate a hyper-elastic continuum

model, the elastic potential W ðUÞ is a strain energy

per undeformed volume, in this case undeformed

Fig. 5. The exponential map of the circle defined at each point

of the curve by the unit normal and the normal curvature.

Fig. 4. Illustration of the continuum rope-like model for an

atomic chain deforming in 2D.
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length. The continuum strain energy density de-

pends on the deformation map U through the local

strain measures C and kn. Therefore, the hyper-

elastic potential of the continuum rope can be

written as:

W ðC; knÞ ¼
1

A
Vs 2=kn sinðkn

ffiffiffiffi
C

p
A=2Þ

h in

þVh p
h

� kn
ffiffiffiffi
C

p
A
io

: ð20Þ

The total strain energy of the continuum system

approximating the atomistic energy of Eq. (13) can

then be written as:

PropeðUÞ ¼
Z

X0

W ðC; knÞdX0: ð21Þ

By taking derivatives of the hyper-elastic potential

W with respect to the strain measures, Lagrangian

stress measures arise: the work conjugate to C is an

axial stress analogous to the second Piola–Kirch-

hoff stress tensor, and the conjugate of kn is a

bending moment-like stress. Second derivatives

lead to the axial, bending and coupled axial-

bending elastic tangent moduli.

4.3. Example and discussion

Suppose an initially rectilinear undeformed

rope of length nA is bent into a circle of radius r

with uniform stretch. The continuum stretch is

K ¼ 2pr=ðnAÞ, and the curvature is kn ¼ 1=r.
Since the atoms are postulated to lie on the

continuum surface, the corresponding equispaced

atomic chain containing n bonds is deformed into

a regular polygon of n sides whose circumcircle

has a radius r. The bond length and angle pre-

dicted by the continuum model (see Eqs. (16) and

(19)) are:

a ¼ 2r sin
p

n
and h ¼ p� 2p=n: ð22Þ

It is easy to see that these predictions coincide

exactly with the actual bond lengths and angles of

the atomic chain deformed into a regular polygon.

Therefore, the predicted energetics for this finite

deformation are also exact. Of course, for a gen-

eral deformation with non-constant stretch and

curvature, the local approximation of the expo-

nential Born rule will lead to approximate ener-

getics. The examples presented later demonstrate,

however, that this approximation is very accurate.

The inadequacy of the standard Born rule can

be illustrated easily in the present example. The

standard Born rule corresponds to taking a ¼
w ¼ FA. Suppose that our rectilinear 1D unde-

formed body is deformed into a circle without

stretch, i.e. K ¼ C ¼ 1. The application of the

standard Born rule leads to deformed lattice vec-

tors that are tangent to the rope. Consequently,

two lattice vectors emanating from the same nu-

cleus remain collinear after deformation, so the

angle they form is unchanged irrespective of the

bending of the rope. Furthermore, since the rope is

bent without stretch, the length of the deformed

lattice vectors also remains unchanged (see Eq.

(16)). Therefore, the energy of such a model will

remain unchanged, and the resulting rope has zero

bending stiffness.

However, the real lattice vectors do not remain

coplanar and their length changes due to the cur-

vature even if K ¼ C ¼ 1, since from Eq. (22) it

follows that for this isometric deformation

a ¼ nA=p sin
p

n
and h ¼ p� 2p=n: ð23Þ

Therefore, the energy of the atomic system will

change when deformed in this fashion. Thus, a

continuum model based on the standard Born rule

is blind to the fact that the rope is being bent, and

assigns zero energy change to the deformation, in

sharp contrast with the exponential Born rule,

which predicts the correct energetics.

Although an intuitive approach would associate

the continuum stretch to the stretch of the bonds,

and the continuum curvature to changes in bond

angles, the proposed model couples these defor-

mation modes. Indeed, the continuum bond length

a, which is the argument for the inter-atomic

stretch potential, depends both on C and kn in a

non-linear fashion. The same applies to the con-

tinuum bond angle h. This feature is essential and

makes the continuum model exact for deforma-

tions that map an initially straight chain into a

circular arc with constant stretch. Thus, as in the

case of the standard Born rule for bulk crystalline

materials, the resulting continuum model for the

rope is exact for homogeneous deformations.
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5. Atomistic description of carbon nanotubes

5.1. Crystal structure

The undeformed crystal is considered to be the

planar graphene sheet, which upon appropriate

rolling becomes a carbon nanotube (Saito et al.,

1992). This choice is very natural because the inter-

atomic potentials usually used for nanotubes have

their minimum in the planar configuration; fur-

thermore, the planar configuration facilitates the

description of the crystalline structure.

The honeycomb lattice of graphene is a Brav-

ais multi-lattice, also called a non-primitive or

composite lattice. A Bravais multi-lattice can be

seen as a collection of inter-penetrating simple

Bravais lattices, in the case of graphene, of two

simple lattices. The atomic sites can be obtained

from

Xn ¼ niB
i þ mP; i ¼ 1; 2; m ¼ 0; 1; ð24Þ

where Bi denote the basis vectors and P represents

the relative shift of the two simple lattices. In such

a lattice, in order to generate all the atomic posi-

tions, two basis sites are needed in addition to the

basis vectors (in a simple Bravais lattice, only one

site is needed). Fig. 6 illustrates the multi-lattice

structure of the honeycomb graphene crystal, and

provides the expressions for the bonds of the lat-

tice in terms of the basis vectors and the shift

vector. Note that one atomic site, say a black one,

and the basis vectors B1 and B2 are not enough to

construct the whole lattice, in particular the white

sites. In addition to that, either a white site or the

shift vector P is needed.

Suppose the shift vector is perturbed by an inner

displacement g. Then, as can be seen from Fig. 6,

the bonds of the crystal are also perturbed by the

same amount, and the energy of the perturbed

crystal is also changed. Note that although the

crystal is changed, neither of the simple lattices

deforms due to g. It is clear that such an internal

arrangement of the crystal cannot be captured by a

uniform deformation such as that introduced by

the Born rule. This fact has long been recognized

(Cousins, 1978; Weiner, 1983; Zanzotto, 1996),

and in classical crystal elasticity theory, the Born

rule is postulated to affect the basis vectors, while

the evolution of the shift vectors is viewed as an

internal rearrangement. This microstructure is

obtained by minimizing the energy with respect to

the shift vectors, for each given macroscopic––

continuum––deformation. Following Tadmor et al.

(1999), the inner displacements g are defined in the

reference crystal.

Thus, the undeformed bond network is char-

acterized by the three bond vectors of length A0

forming an angle of 2p=3 between them: Ai0,

i ¼ 1; 2; 3. The bond vectors affected by the inner

displacements are (see Fig. 6)

Ai ¼ Ai0 þ g: ð25Þ

Let also Ai ¼ kAik and consider the three unit

vectors

Ei ¼ 1

Ai
Ai; i ¼ 1; 2; 3: ð26Þ

The relative orientation of the original bond

vectors Ai0 with respect to the rolling direction

determines the chirality of the nanotube. For

instance, one of these vectors being parallel to

the nanotube axis gives rise to a zigzag nano-

tube. On the other hand, when one is per-

pendicular to the axis we have an arm-chair

nanotube.

5.2. Atomistic model

In the following, a particular instance of atomic

model is considered. Our interest here is to model

covalently bonded systems, and it is assumed that

Fig. 6. Honeycomb Bravais multi-lattice: basis vectors Bi, shift

vector P, inner displacements g and bond vectors Ak .
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the topology of the bond network does not

change, i.e. there is no bond breaking or forma-

tion. For such a system, the energy can be accu-

rately expressed in terms of the covalent bonds

geometry, i.e. their length and the angles concur-

rent bonds form:

E ¼ Eðri; hjÞ; ð27Þ
where ri denotes the lengths of the covalent bonds

and hj the angles of concurrent bonds. Such a

model considers only two-body/three-body inter-

actions. However, the present theory is applicable

to any atomistic model consistent with the Born–

Oppenheimer approximation, i.e. where the energy

can be obtained in terms the nuclear positions

exclusively.

Consider for example a two-body/three-body

expansion of the potential energy:

E ¼
X

i

VsðriÞ þ
X

k

Vhðhk; r1k ; r2kÞ; ð28Þ

where the first sum runs over the covalent bonds,

the second over the angles formed by covalent

bonds. Here, r1k and r2k denote the lengths of the

bonds that form the angle hk. The MM models

(Nevins et al., 1996) fall within this formalism.

Another instance of empirical potentials depen-

dent on bond lengths and angles are bond order

potentials, such as the potentials for hydrocarbons

proposed by Brenner (1990):

E ¼
X

i

½VRðriÞ � biðrji ; hjiÞVAðriÞ�; ð29Þ

where the sum is over the bonds, and the bond

order function bi depends on the lengths of all the

bonds connected to the ith bond, r
j
i , and on the

angles they form with the ith bond, hji . For sim-

plicity, in the following a two-body/three-body

potential is adopted.

For these atomic potentials in which the po-

tential energy at a nuclei––or bond––depends on

the lengths and angles directly adjacent to it,

closed form expressions for the continuum strain

energy density can be obtained. The predominant

short-range interactions of graphene also support

the use of a local continuum model. This contrasts

with the situation in other works (Tadmor et al.,

1996) where materials with longer range interac-

tions are considered.

6. Membrane theory for the transverse mechanics of

carbon nanotubes

In this section, a reduced model for the trans-

verse deformation of carbon nanotubes is devel-

oped. This continuum formulation models 3D

nanotubes under uniform deformation in the axial

direction, i.e. allowing only transversal deforma-

tion and uniform axial stretch. In this case, the

exponential map is approximated by the expo-

nential map of the cylinder. Additionally, a con-

tinuum version of van der Waals interactions, also

based on the atomistic description, is formulated.

Carbon nanotubes have very different longitu-

dinal and transverse behavior. In the transverse

direction, they are very flexible, and the effect of

van der Waals interactions becomes crucial. There

are many situations in which the transverse be-

havior is of interest, as for example in the study of

the transverse stability of single-walled or multi-

walled nanotubes, their interaction with sub-

strates, or the structure of nanoropes. A reduced

model for nanotubes may also be useful for

studying the properties of the recently synthesized

crystals of nanotubes––ordered arrays of nanotu-

bes with identical diameter and chirality on the

micron scale (Schlittler et al., 2001). Thus, apart

from being a simple realization of the proposed

extension of classical crystal elasticity to mem-

branes, the reduced model presented here is of

interest in its own right.

6.1. Kinematics

We consider deformations that are uniform

along the axis of the tube. These deformations can

be written as:

UðXÞ ¼ UðX 1;X 2Þ
¼ ½K1X

1;U2ðX 2Þ;U3ðX 2Þ�T; ð30Þ
where the x1 axis is parallel to the tube axis (see

Fig. 7). Along the X1 axis, K1 denotes the uniform

stretch. The Cartesian bases B2 ¼ fI1; I2g and

B3 ¼ fi1; i2; i3g of R2 and R3 are used.
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6.1.1. First fundamental form

The convected basis vectors are:

g1 ¼
oU

oX 1
; ½g1�B3

¼ ½K1; 0; 0�T;

g2 ¼
oU

oX 2
; ½g2�B3

¼ ½0; ðU2Þ0; ðU3Þ0�T:
ð31Þ

The covariant components of the first fundamental

form are therefore:

g11 ¼ ðK1Þ2; g12 ¼ g21 ¼ 0;

g22 ¼ ½ðU2Þ0�2 þ ½ðU3Þ0�2: ð32Þ
For convenience, we will use the notation g22 ¼
ðK2Þ2, where K2 can be viewed as a circumferential

stretch. Therefore, the components of the Green

deformation tensor are:

½C�
B2

¼ ðK1Þ2 0

0 ðK2Þ2

 �

: ð33Þ

The deformation gradient can be written as:

F ¼ g1 � I1 þ g2 � I2: ð34Þ
Therefore, a deformed tangent vector (before the

exponential map is applied) can be written as:

w ¼ FA ¼ AFE ¼ AðE1g1 þ E2g2Þ; ð35Þ
where E1 and E2 are the components in the basis

fI1; I2g of the unit vector E in the direction of A,

see Eq. (26). The stretch in the direction of E can

be written as:

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1Þ2ðE1Þ2 þ ðK2Þ2ðE2Þ2

q
: ð36Þ

6.1.2. Second fundamental form

It can be easily seen that the only non-zero

covariant component of the second fundamental

form is k22:

k22 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðU2Þ0�2 þ ½ðU3Þ0�2
q

� ½�ðU3Þ0ðU2Þ00 þ ðU2Þ0ðU3Þ00�: ð37Þ
The normal curvature in the circumferential di-

rection (normal to the X1 axis) is:

kn ¼
1

f½ðU2Þ0�2 þ ½ðU3Þ0�2g3=2

� ½�ðU3Þ0ðU2Þ00 þ ðU2Þ0ðU3Þ00�: ð38Þ
Note that 1=kn is the local radius of curvature of

the cylindrical surface and that the principal cur-

vatures of the surface are kn and 0.

6.1.3. Exponential map

In this case, the exponential map in the de-

formed body is approximated by the exponential

map in the cylinder defined by the unit normal, the

normal curvature kn, and whose axis is parallel to

the x1-axis (see Fig. 7).

Let us now obtain an expression for the image

through the exponential map of a tangent vector

w ¼ FA, and also an expression for the final de-

formed bond a. Consider the coordinate system

(u; v) for the tangent space at each point UðXÞ (see
Fig. 8). This system is such that the u-axis is par-

allel to the x1-axis. The length of the tangent vector

w is AK and the angle u it forms with the u-axis

follows from standard continuum mechanics rela-

tions:

cosu ¼ 1

KK1

E � CI1 ¼
K1

K
E1;

sinu ¼ 1

KK2

E � CI2 ¼
K2

K
E2: ð39Þ

In order to obtain a closed-form expression for the

exponential map in the cylinder, we consider the

following parametrization of the cylinder of radius

R ¼ 1=kn from (u; v) to R3:

xðu; vÞ ¼ u;R cos
v

R
;R sin

v

R

� 
: ð40Þ

Let xð0; 0Þ ¼ ð0;R; 0Þ be the position of the point

UðXÞ in this parametrization. Note that this

parametrization is an isometry from the plane into

the cylinder. Therefore, the geodesic in the cylinder

that passes through UðXÞ and is tangent to w is the

image of the straight line uðsÞ ¼ ðcosuÞs; vðsÞ ¼

Fig. 7. Illustration of the kinematics of the nanotube with

uniform deformation in the axial direction, and the cylinder

used to approximate the exponential map.
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ðsinuÞs parametrized by the arc length s in the

plane. The expression of this geodesic is:

xðsÞ ¼ ðcosuÞs;R cos
ðsinuÞs

R
;R sin

ðsinuÞs
R

� �
:

ð41Þ
Note that this curve is a straight line if

u ¼ 0modp, a circle if u ¼ pmodp and an helix

otherwise. This expression allows the exponential

map of w to be easily computed. Its components in

the auxiliary coordinate system are obtained sim-

ply by evaluating the above expression at s ¼ AK,

the length of w:

expUðXÞ w

¼ ðcosuÞAK;R cos
ðsinuÞAK

R
;R sin

ðsinuÞAK
R

� �
:

ð42Þ

Finally, the deformed bond vector a is defined by

the segment that goes from UðXÞ to expUðXÞ w. Its
components are:

a ¼ AK cosu;
1

kn
½cosðknAK sinuÞ

�
� 1�;

1

kn
sinðknAK sinuÞ

�
: ð43Þ

Let us introduce for convenience the function

FðxÞ ¼ sin x=x. The deformed lattice vector can be

rewritten as:

a ¼ p;

�
� knq

2

2
F

2 knq

2

� �
; qFðknqÞ

�
; ð44Þ

where p ¼ AK1E
1 and q ¼ AK2E

2. Note that when

the surface becomes planar, the argument of FðxÞ
tends to zero, where this function is continuous

and Fð0Þ ¼ 1. From a practical point of view, the

computation of this function and its derivatives

must be implemented carefully to prevent inaccu-

rate results or divide by zero errors. Here, a Taylor

series expansion is used when x is smaller than a

certain threshold.

There are three types of bonds in the graphene

lattice. The formulas above are applied to each of

these bond vectors Ai, i ¼ 1; 2; 3, and it can be

easily checked that the deformed lengths can be

written as:

kaik2 ¼ 4

k2n
sin2 knq

i

2

� �
þ ðpiÞ2: ð45Þ

These three vectors form three kind of angles. The

angle between two bonds ai and aj can be obtained

as follows:

cos hk ¼ ai � aj
kaikkajk ; ð46Þ

where fi; j; kg is an even permutation of f1; 2; 3g.
Thus, through an appropriate approximation of

the exponential Born rule for the present kine-

matic setting, the deformed geometric quantities

kaik and hk that occur in the atomistic potential

(see Eq. (27)) have been expressed in terms of

the continuum deformation, i.e. in terms of K1, K2

and kn.

6.2. Strain energy density

To develop an expression for the strain energy

density of the nanotube based on the inter-atomic

potentials, a homogenization process at the level

of the representative volume element (RVE) is

carried out. The strain energy density considered is

per unit undeformed area.

We argue now that the hexagonal cell of the

crystal is a RVE for the closest neighbor interac-

tion potentials considered. The area of the hex-

agonal cell in the undeformed graphene sheet is

S0 ¼ ð3
ffiffiffi
3

p
=2ÞA2

0. In each cell there is one bond of

each type and two angles of each type. Indeed, it is

easy to show from the expressions in the previous

section that, on the one hand, the length of the

Fig. 8. The exponential map in the cylinder defined at each

point of the surface by the unit normal, the normal curvature

and the direction of the axis.
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deformed bonds corresponding to Ai and to �Ai is
the same, and on the other hand the angle that the

deformed bonds corresponding to Ai and Aj form

is equal to the angle corresponding to �Ai and
�Aj. To see this, note––either graphically or al-

gebraically––that the deformed bond a corre-

sponding to an undeformed bond A and the

deformed bond a� corresponding to �A are re-

lated by a symmetry with respect to the line de-

fined by UðXÞ and n.
Therefore, the hyper-elastic potential for the

membrane W is obtained by comparison with the

energy of the deformed cell:

S0 � W ¼ Ecell

¼
X3

l¼1

VsðrlÞ þ 2
X3

k¼1

Vhðhk; ri; rjÞ; ð47Þ

where l runs over the three types of bonds, k over

the three types of angles, and fi; j; kg is an even

permutation of f1; 2; 3g. By substituting the

lengths and angles of Eqs. (45) and (46), which

depend on the continuum strain measures C and

kn, and recalling the dependence of the unde-

formed bond vectors on the inner displacements g

(see Eqs. (25) and (26)), we have:

W ðC; kn; gÞ ¼
1

S0

X3

l¼1

VsðkalkÞ
"

þ 2
X3

k¼1

Vhðhk; kaik; kajkÞ
#

; ð48Þ

where fi; j; kg is an even permutation of f1; 2; 3g.
Thus, the strain energy density depends not only

on the local deformation of the body, but also on

g. In this continuum setting, the inner displace-

ments should be viewed as an internal variable.

The standard treatment of this internal variable is

followed (Zanzotto, 1996; Tadmor et al., 1999).

Given a local continuum deformation state, the

energy is minimized with respect to the internal

configuration:

ĝgðC; knÞ ¼ arg min
g

W ðC; kn; gÞ
� �

) oW

og

����
ĝgðC;knÞ

¼ 0: ð49Þ

After this internal relaxation, the continuum hy-

per-elastic potential can be written exclusively in

terms of the strain measures C and kn:

W ¼ W ðC; kn; ĝgðC; knÞÞ ¼ bWW ðC; knÞ: ð50Þ
As noted by Tadmor et al. (1999), the derivatives

of the resulting strain energy density with respect

to the strain measures, for instance C, can be

computed as:

o bWW
oC

¼ oW

oC
þ oW

ogi
oĝgi

oC
: ð51Þ

But, using the fact that when evaluated at the re-

laxed inner displacements the second part of Eq.

(49) holds, we have the simpler expression:

o bWW
oC

¼ oW

oC

�����
ĝg

: ð52Þ

The same argument can be made for derivatives

with respect to kn.

If we consider a slab of cylinder of unit length,

1 � bWW can be also viewed as a strain energy density

per unit length. As shown in the following section,

this potential can be appropriately handled to

obtain models of reduced dimensionality analo-

gous to the plane strain and plane stress conditions

in 3D elasticity. The numerical examples will as-

sess to what degree this membrane mimics accu-

rately the atomic system. Let us now emphasize

and summarize some of the properties of the the-

ory developed:

• The continuum model for the one atom thick

crystalline film is a zero-thickness membrane,

in contrast with the usual shell models found

in the literature.

• The hyper-elastic potential is written in closed-

form, i.e. no local atomistic calculations are

required. The method can be viewed as con-

strained atomistics in which the constraints

are enforced analytically.

• The strain energy density of the membrane de-

pends on the Green deformation tensor and

the curvature of the membrane. Therefore, it

is frame-indifferent.

• The hyper-elastic potential inherits naturally

the symmetries of the original crystal, and in
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particular, the nanotube chirality is automati-

cally accounted for.

• This potential also accounts for local rearrange-

ments of the Bravais multi-lattice, by treating

the inner displacements.

• The continuum constitutive model has no other

input than the particular molecular theory con-

sidered. Although two-body and three-body po-

tentials have been used, the theory is not limited

to this particular atomistic description.

• The presented theory applies to finite deforma-

tions. Similarly to the case of the atomic chain,

the non-linear theory for the transverse defor-

mation of nanotubes mimics exactly the atomic

system for deformations with uniform strain

measures. Indeed, in this case the kinematics

of the exponential Born rule are exact, and

therefore so is the energy.

6.3. Non-bonded interactions and body forces

The non-bonded or van der Waals interactions

include the attractive London dispersion forces as

well as the overlap repulsion forces. These inter-

actions are usually treated by inter-atomic poten-

tials that only act between non-bonded pairs of

atoms. These diffuse interactions are critical in

many applications. For the molecular system we

have:

Vtot;nb ¼
X

i

X

j>i;j 62Bi
VnbðrijÞ

¼ 1

2

X

i

X

j 62Bi
VnbðrijÞ; ð53Þ

where Vnb is the non-bonded potential and Bi is

the set of atoms bonded to atom i. The second

version of the total non-bonded potential is pro-

vided because it simplifies the continuum formu-

lation. A simple argument involving two RVEs

containing two nuclei each allows us to write the

continuum counterpart as:

Pnb ¼
1

2

4

S20

�
Z

X0

Z

X0�BX
VnbðkUðXÞ � UðYÞkÞdX0Y dX0X ;

ð54Þ

where BX is a ball centered at X and with a radius

which is function of A0 to account for the fact that

this potential does not affect bonded atoms. Fi-

nally the numerical integration version is:

Pnb ¼
1

2

4

S20

X

i

X

j 62Bi
VnbðkUðXiÞ � UðXjÞkÞwiwj

¼ 4

S20

X

i

X

j>i;j 62Bi
VnbðkUðXiÞ � UðXjÞkÞwiwj;

ð55Þ
where wi denotes the integration weights and Xi
the sample points. Note that with the numerical

integration, the structure of the original potential,

which loops over interactions and not twice over

the domain, is recovered.

When external forces are applied on the nuclei

(e.g. electrostatic forces), the continuum counter-

part is a body force, and the corresponding ext-

ernal potential is:

Pext ¼
Z

X0

B � UdX0; ð56Þ

where B is the body force per unit undeformed

area. If the forces applied on the atomic system are

a certain constant force f acting on each atom,

then B is simply given by the expression:

B ¼ 2

S0
f: ð57Þ

6.4. Variational principle and stress measures

Considering the bonded potentials, the non-

bonded interactions and the body forces, the

total potential energy of a given deformation map

W is:

PðWÞ ¼ Pint �Pext þPnb

¼
Z

X0

bWW ðCðWÞ; knðWÞÞdX0

�
Z

X0

B �WdX0 þ
1

2

4

S20

�
Z

X0

Z

X0�BX
VnbðkWðXÞ �WðYÞkÞdX0Y dX0X :

ð58Þ
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The continuum statement of the problem of

finding stable equilibrium solutions is then given

by:

U ¼ arg inf
W2C

PðWÞ

 �

; ð59Þ

where C is the appropriate space of deformations

or trial functions accounting for essential bound-

ary conditions. According to the principle of sta-

tionary energy, the equilibrium solutions of the

system are stationary points of the potential en-

ergy functional, and they verify the principle of

virtual work:

0 ¼ dPðUÞ

¼
Z

X0

o bWW
oC

: dC

 

þ o bWW
okn

dkn

!

dX0

�
Z

X0

B � dUdX0 þ dPnb; ð60Þ

where dU denotes the virtual deformation. The

variations of the non-bonded continuum potential

can be written as:

dPnb ¼
1

2

4

S20

Z

X0

Z

X0�BX

V
0
nb

kUðXÞ � UðYÞk

� ½UðXÞ � UðYÞ�
� ½dUðXÞ � dUðYÞ�dX0Y dX0X : ð61Þ

Let us also define the stress measures, always

evaluated at the relaxed inner displacements ĝg.

Recalling the expression of the strain energy den-

sity in Eq. (48) and following a similar rationale to

that used to obtain Eq. (52), we obtain:

S ¼ 2
o bWW
oC

¼ 2
oW

oC

¼ 2

S0

X3

l¼1

V
0
s

okalk
oC

"

þ 2
X3

k¼1

oVh

oh

ohk

oC

�

þ oVh

or1
okaik
oC

þ oVh

or2
okajk
oC

�#

; ð62Þ

and

m ¼ o bWW
okn

¼ oW

okn

¼ 1

S0

X3

l¼1

V
0
s

okalk
okn

"

þ 2
X3

k¼1

oVh

oh

ohk

okn

�

þ oVh

or1
okaik
okn

þ oVh

or2
okajk
okn

�#

: ð63Þ

The in-plane stress S corresponds precisely to the

Second Piola–Kirchhoff stress, while m is a mo-

ment-like stress. Note that, because of the special

form of C (see Eq. (33)), S has only two non-zero

components, which are related to the tractions in

the axial and the circumferential directions. On the

other hand, m is here a scalar. The general theory

for arbitrary deformations is given in Arroyo and

Belytschko (2002). Note that, since the membrane

has no thickness, the units of S are force divided

by length, while m is expressed in units of force

(bending moment divided by length).

Using the Green strain tensor E ¼ 1=2ðC� IÞ,
we can rewrite the principle of virtual work as:

0 ¼
Z

X0

ðS : dEþ mdknÞdX0

�
Z

X0

B � dUdX0 þ dPnb: ð64Þ

Depending on the treatment of the axial stretch K1

(see Eq. (30)) different situations can be studied:

Plane strain: We can consider the situation in

which the value of K1 is prescribed. In this case,

the unknowns of the variational problem (64) are

U2 and U3 (see Eq. (30)). If K1 ¼ 1, a deformation

analogous to plane strain conditions is achieved.

This applies to very long or axially constrained

nanotubes. K1 can also be prescribed an arbitrary

value to study the transverse behavior of stretched

or compressed nanotubes; the behavior will change

due to the non-linearity of the model. In this sit-

uation, dK1 ¼ 0 and the axial component of the

membrane stress does not appear in the variational

principle. This means that the axial stress can be

computed a posteriori, but does not play a role in

the solution of the problem.

Plane stress: Alternatively, the axial component

of the membrane stress can be prescribed, for in-
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stance, to be zero. This would be the case of axially

unconstrained nanotubes. In this case, in addition

to U2 and U3, the axial stretch K1 becomes an

unknown of the problem.

7. Validation and representative simulations

In this section, numerical simulations of stable

configurations of carbon nanotubes in different

situations are reported. The reduced continuum

model described in the previous section is used and

the variational principle described in Eq. (64) is

discretized by Galerkin finite elements (FE).

Thus, the original discrete molecular system is re-

placed by a continuum model which is subse-

quently transformed by the FE method into

another discrete system. However, in principle we

are free to design the FE discretization so that

the FE model has fewer degrees of freedom than

the original system. Furthermore, since the con-

tinuum model is 2D, while the full atomistic

model is 3D, the computational cost is further

reduced.

First, the exponential Born rule-based contin-

uum model is validated by comparing FE simula-

tions based on it with full atomistic calculations.

In these comparisons the inter-atomic potentials

used in the MM simulations are used to construct

the continuum constitutive equation, and analo-

gous boundary conditions are considered in both

calculations. Since the continuum model is in-

tended to mimic the atomistic system, which is

viewed as ‘‘true’’, the term error should be un-

derstood as deviation form the atomistic model.

Simulations show that the agreement is excellent

with regard to the energetics as well as to the stable

configurations. Simulations of a model based on

the standard Born rule are also provided, illus-

trating the deficiencies of such a model. The ex-

ponential Born rule simulations also show that, for

the tested situations, the relaxation of the inner

displacements greatly affects the energetics but has

very little impact on the minimum energy config-

urations. The continuum model is then applied to

simulate several situations where the transverse

behavior of carbon nanotubes and the effect of van

der Waals interactions are important. A final ex-

ample of the generalization of the model to three

dimensions is presented, with a twisting test of a

[10,10] nanotube beyond the point of structural

instabilities.

The inter-atomic potentials fall into the general

form described in Eq. (28). The two-body potential

Vs is a Morse potential while the three-body po-

tential depends only on the angle Vh and is har-

monic with a sextic correction. The parameters are

taken from the MM2 model. The non-bonded in-

teractions are based on the classical Lennard-

Jones (6–12) potential.

The variational principle in Eq. (64) imposes

restrictions on the finite element interpolation

spaces. The virtual internal work term involves

variations on the curvature of the test functions,

and therefore the finite element space needs to be

H 2, i.e. have up to second square integrable de-

rivatives. This is why C
1 Hermite finite elements

are chosen. Note that the discretization of the

configuration described in Eq. (30) requires the

approximation of the scalar functions U2ð�Þ and

U3ð�Þ, i.e. the curve in R
2 described by these

functions needs to be parametrized with respect to

the finite element degrees of freedom. Each of

these functions is approximated by piecewise C
1

cubic polynomials, and therefore, each node I

carries four degrees of freedom: U2
I , U

3
I , ðU2Þ0I and

ðU3Þ0I . The internal and external work terms of the

variational principle are integrated using 3 Gauss

points per element, while the integration of the

non-bonded interactions term may require more

integration points depending on the size of the fi-

nite elements relative to the van der Waals equi-

librium distance. Four integration points are

required for this term in some of the simulations.

The BFGS quasi-Newton technique is used

both in the relaxation of the inner displacements

and in the global energy minimization. This iter-

ative method only requires gradients of the ob-

jective function and approximates the inverse of its

Hessian using information from the previous iter-

ations. For some of the larger examples involving

more than one nanotube, and when the initial

configuration is very far from equilibrium, dy-

namical relaxation is used to obtain a good first

guess which is further refined with the BFGS

minimization algorithm.
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7.1. Validation test

To validate the proposed reduced continuum

model, a FE discretized version is compared to a

MM model. A [32,0] zigzag carbon nanotube (the

standard description of carbon nanotubes in terms

of two integers is described by Saito et al. (1992)) is

considered (see Fig. 9(a)). The molecular model

used in the comparison has 384 nuclear positions,

that is 1152 degrees of freedom, while the FE

model has 20 nodes and consequently 80 degrees

of freedom. Note that the discrete FE model re-

duces the computational cost, not only because

large elements relative to the crystal cell size can be

used, but also because of its reduced dimensio-

nality.

The first configuration studied consists of sim-

ply rolling a graphene sheet into a tube in an iso-

metric transformation, without any kind of

relaxation. This configuration is called Original

tube in Table 1. The table shows the excellent

agreement between the energy obtained with the

molecular model and that obtained via the con-

tinuum model and FE. According to the last re-

mark of Section 6.2, the energy of the continuum

model should be exact in this situation. Note

however that the continuum membrane is discret-

ized using an approximation space that does not

reproduce exactly a circle, and thus introduces

discretization errors.

Then several ‘‘plane strain’’ situations are con-

sidered. This condition is enforced in the molecu-

lar model by prescribing to zero the nuclear

displacements in the direction of the axis of the

tube at the nuclei located at both ends of the tube.

In the continuum model, we simply enforce

K1 ¼ 1.

Also, two kinds of energy minimization are

considered. The first one freezes the inner dis-

placements to those of the graphene sheet in

equilibrium, i.e. in the continuum model by pre-

scribing g ¼ 0. In this particular example, invoking

symmetry considerations, this constrained mini-

mization can be easily implemented in the molec-

Fig. 9. (a) Actual molecular model used in comparison, (b) comparison of 20 element exponential Born rule continuum model with

MM and (c) results obtained with a model constructed from the standard Born rule.

Table 1

Comparison of 20 element model (C þ FE) with MM: energy in J/mol

g ¼ 0 Relaxed g

MM C þ FE Error (%) MM C þ FE Error (%)

Original tube 14.58 14.69 0.81

Relaxed tube 10.26 10.28 0.22 6.338 6.324 )0.22

Squeezed A 20.85 21.22 1.8 12.95 13.11 1.2

Squeezed B 48.56 49.17 1.3 30.68 30.46 )0.75
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ular model by prescribing to zero the displace-

ments of all the nuclei in the direction of the tube

axis. This incomplete analysis is performed to

highlight the effect of the inner relaxation. The

other analysis is an unconstrained structural op-

timization of all the nuclear positions. In the

continuum, the inner displacements are relaxed in

order to calculate bWW at each Gauss point.

The situations considered are:

Relaxed tube: The Original tube is relaxed

without any constraint other than the plane strain

conditions.

Squeezed A: Displacements at the ends of one

diameter of the tube are prescribed so that this

diameter of is squeezed to 3=4 of its original size.

Squeezed B: Displacements at the ends of one

diameter of the tube are prescribed so that this

diameter of is squeezed to 1=2 of its original size.

Table 1 presents the equilibrium energies for

both the MM and the Continuum FE simulations,

as well as the relative error of the FE calculation

with respect to MM. A positive value of error

means that the MM energy is lower than the FE

energy. Note that this error includes contributions

not only from the modelling of the discrete atomic

system as a membrane, but also from the FE dis-

cretization.

Fig. 9(b) compares the equilibrium configura-

tions for the continuum/FE model and the MM

model in the Squeezed B situation. Despite the

large deformations to which the tube is subjected,

the agreement is excellent. Table 1 shows that the

equilibrium energies obtained with the continuum

model are in all the cases very accurate approxi-

mations of the MM energies. The discrepancies are

in all the cases below 2%. The effect of the inner

relaxation in the magnitude of the energies is very

important. In this table 20 finite elements have

been used, while 32 hexagonal cells span the same

perimeter in the MM model. Therefore, we expect

the FE model to be more constrained and there-

fore yield higher equilibrium energies. This can be

noticed in the columns corresponding to frozen

inner displacements. However, when those are re-

laxed, the FE model reaches lower energies than

the molecular model, still remaining very accurate.

Probably the continuum treatment of the inner

displacements allows for this extra relaxation.

Although the effect of the inner relaxation in the

equilibrium energies is very important, in these

simulations its effect on the stable configurations is

negligible. This can be explained by noting that the

in-plane behavior of the model is very stiff, while

the flexural behavior is very compliant. Therefore,

a slight perturbation of in-plane deformation (the

inner rearrangements are an in-plane effect) has

dramatic influence on energy, but not in these

flexural-dominated optimal deformations. This

suggests that in these examples, the inner relax-

ation is nearly uncoupled from the bending de-

formation. This is not the case for other types of

deformation (Arroyo and Belytschko, 2002).

Table 2 shows the results obtained with 36 finite

elements. The errors obtained are smaller in all the

cases except in the Squeezed B situation with inner

relaxation. This indicates that in general the richer

discretization decreases the overall error, but also

that the finer mesh allows other modeling errors to

manifest themselves. Indeed, the error probably

increases in the last case because the continuum

model is more compliant than the molecular one

with regard to the inner displacements. However,

simulations carried out with even finer meshes in-

dicate that the results ‘‘converge’’ to a very accu-

rate result. Thus, even if the FE model is refined

beyond the unit cell size, the continuum model

Table 2

Comparison of 36 element model (C þ FE) with MM: energy in J/mol

g ¼ 0 Relaxed g

MM C þ FE Error (%) MM C þ FE Error (%)

Original tube 14.58 14.60 0.14

Relaxed tube 10.26 10.28 0.21 6.338 6.324 )0.22

Squeezed A 20.85 21.05 0.96 12.95 12.99 0.31

Squeezed B 48.56 49.01 0.93 30.68 30.34 )1.1
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apparently does not exhibit fine features that

cannot be present in the molecular model.

This excellent behavior contrasts with the situ-

ation encountered when a continuum model for

the membrane is directly constructed from the

Born rule without the proposed exponential ex-

tension. In this case the resulting hyper-elastic

potential is non-convex. Indeed, as discussed in

Section 4.3, the energy of such a model is invariant

under isometric deformations (bending without

stretch), i.e. the model has zero bending stiffness.

This reflects in a pathological mesh dependency in

the numerical implementation of such a model:

since the discrete FE space cannot represent all

isometric deformations, the discrete problem can

still be solved, but as the mesh is refined, the nu-

merical method picks solutions with increasingly

finer features. Fig. 9(c) illustrates this fact, and

sharper kinks in the numerical solution are ob-

served as the mesh is refined. The equilibrium en-

ergy of the FE solutions is almost zero, which is

not realistic. This is reminiscent of the situation

encountered in other materials, for which the

Fig. 13. Equilibrium configuration of a bundle of seven closely

packed [22,0] nanotubes.

Fig. 10. Which is more stable, circular or collapsed? (Answer:

for the [20,0] and [26,0] tubes, circular, and for the [32,0] and

[40,0] tubes, collapsed.)

Fig. 12. Equilibrium configurations for pairs of nanotubes in

van der Waals contact.

Fig. 11. Transverse stability of a multi-walled nanotube.
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strain energy density is physically con-convex,

leading to non-unique solutions with increasingly

fine features, as reported by Dacorogna (1989, p.

276) and references therein.

7.2. Transverse deformation simulations

The next simulations illustrate the application

of the continuum/FE model to the transverse me-

chanics of nanotubes in different situations. In

these applications, the computational cost of

analogous MM simulations would be much higher

than the cost of the presented calculations. This is

especially true with regards to the non-bonded

interactions.

The first example studies the stability of the

circular and the collapsed configurations of carbon

nanotubes. Because of the van der Waals attrac-

tion potential, the energy of the system is reduced

when two walls adhere. On the other hand, for the

wall of a nanotube to come in contact with itself,

significant elastic energy is required. This tradeoff

is probably responsible for the observation by Gao

et al. (1998) that below a certain radius, only the

circular configuration is stable. For greater radii,

the collapsed configuration is at least meta-stable.

Subsequently, another threshold radius separates

the nanotubes for which the circular configuration

is energetically favorable from those in which the

collapsed configuration is. Fig. 10 shows the sim-

ulations performed for several nanotubes. In this

and subsequent figures, the nodes shown are nodes

of the finite element mesh; they are not atoms. In

these calculations, the fully relaxed circular con-

figuration is deformed so that the wall of the

nanotube is brought in contact with itself at the

van der Waals equilibrium distance, and then

the energy is minimized. The sign of the difference

in energy between the circular configuration and

the relaxed configuration is also reported, i.e. a

positive difference means that the energy of the

configuration presented on the right is lower. In

some cases, the nanotube goes back to the original

configuration (this is the case of the [20,0] nano-

tube). This implies that the collapsed configuration

is not stable. The collapsed configuration is stable

for the [26,0] nanotube, but this only constitutes a

local minimum of the energy since the circular

configuration has lower energy. For the [32,0] and

[40,0] nanotubes, the collapsed configuration is the

energetically favorable structure. This is expected

because larger nanotubes are more flexible and

have more wall area to gain adhesion energy. Fig.

11 displays a similar analysis for a multi-walled

nanotube for which the collapsed configuration

yields lower energy .

A similar competition of elastic and adhesion

energy occurs when two nanotubes are brought to

the van der Waals equilibrium distance. Fig. 12

shows the equilibrium configurations obtained

when this numerical experiment is performed with

nanotubes of different sizes. Again, the larger na-

notubes have larger portions of flattened walls.

We also report a simulation of a bundle of na-

notubes under plane strain. Fig. 13 shows the

equilibrium configuration of the system. A TEM

image of such a nanorope has been reported by

Salvetat et al. (1999). Carbon nanotubes tend to be

closely packed in hexagonal lattices in the nano-

ropes and crystals of nanotubes (Thess et al., 1996;

Schlittler et al., 2001). As can be seen from Fig. 13,

the equilibrium configuration displays a flattening

of the nanotube walls, or partial polygonalization.

7.3. Three dimensional simulation

The theory presented has been used to con-

struct a membrane applicable in the general 3D

Fig. 14. Twisting of a [10,10] nanotube: deformed geometry for

twisting angles of 38�, 210� and 360�, and cross section of the

deformed membrane at the center of the tube for the above

three configurations.
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deformation of carbon nanotubes (Arroyo and

Belytschko, 2002). This more general membrane

can be discretized with subdivision finite elements,

and the structural instabilities reported in experi-

ments and atomistic simulations can be analyzed

at very low computational cost. The analysis of

twisting a [10,10] nanotube is provided in Fig. 14,

for a Tersoff-Brenner potential. Note that, the

deformed geometries have been post-processed,

and the computational mesh has about 18 ele-

ments around the perimeter. Each end of the

nanotube is incrementally rotated 360� in opposite

orientations.

The first snapshot of the deformation shows the

configuration when the first instability from a

uniform twisting occurs, and the corresponding

cross-section is shown at the bottom of the figure.

Further twisting causes the wall of the nanotube to

come in van der Waals contact with itself, as

clearly shown in the cross-section in the bottom of

Fig. 14. Beyond 210�, a secondary instability de-

velops, and the tube folds onto itself. From the

cross-section it is apparent that the van der Waals

interactions are responsible for this buckled mor-

phology. In the absence of these long-range forces,

the membrane inter-penetrates and the secondary

structure is not observed. This 3D membrane has

been shown to provide very accurate energetics

and deformed geometries even for very large de-

formations (Arroyo and Belytschko, 2002).

8. Conclusions

We have further explored a methodology to

construct continuum models for one-atom thick

crystalline films. The proposed model is a hyper-

elastic membrane whose elastic potential energy is

written in closed-form exclusively in terms of the

inter-atomic potentials that constitute the molec-

ular description of the system. The analysis of the

present work is based on the exponential the

Born rule (Arroyo and Belytschko, 2002), a ki-

nematic assumption linking the atomic and the

continuum deformations when the crystal is a

curved film. This extension is based on the ex-

ponential map. An illustrative example of an

atomic chain deforming in two dimensions has

been presented. The resulting simple rope-like

continuum model encompasses all of the funda-

mental ideas.

The general methodology then is particularized

to analyze the transverse mechanics of carbon

nanotubes. This model explicitly exploits the

symmetry of such a deformation, and leads to a

model of reduced dimensionality. The hyper-elas-

tic potential, as well as strain and stress measures

are provided, and a continuum formulation of the

non-bonded interactions is derived. The proposed

model is discretized using finite elements, yielding

an alternative simulation method that is faster

than atomistic calculations.

Several simulations highlighting the relevance

of van der Waals interactions in the transverse

mechanics of nanotubes are reported. The results

show that the continuum model based on the ex-

ponential Born rule very well approximates the

stable configurations and energies of the corre-

sponding MM model. Results agree with MM

calculations within 2% in the equilibrium energies.

This sharply contrasts with the non-physical re-

sults obtained from a model based on the standard

Born rule. We also show the important effect of the

inner rearrangements of the crystal structure on

the equilibrium energies. A full 3D simulation il-

lustrates the application of the present theory to

analyze the structural instabilities of nanotubes

observed in experiments and atomistic calcula-

tions.
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