

Center Street Garage Project

for the City of Berkeley

Prepared for:

City of Berkeley

Contact: Lorin Jensen, P.E. Public Works Department 1947 Center Street, Fourth Floor Berkeley, California 94704 510.981.6411

Prepared by:

PlaceWorks

Contact: Steve Bush, EIT Dr. Cathleen M. Fitzgerald, P.E. 1625 Shattuck Avenue, Suite 300 Berkeley, California 94709 510.848.3815 info@placeworks.com www.placeworks.com

Table of Contents

Secti	on		<u>Page</u>
1.	INTE	RODUCTION	1
2.	PRC	DJECT DESCRIPTION	3
3.	MET	THODOLOGY AND SIGNIFICANCE THRESHOLDS	7
4.	CON	ISTRUCTION EMISSIONS	9
5.	DISF	PERSION MODELING	11
6.	RIS	K CHARACTERIZATIONS	13
	6.1	CARCINOGENIC CHEMICAL RISK	
	6.2	NON-CARCINOGENIC HAZARDS	
	6.3	CRITERIA POLLUTANTS	
7.	CON	ICLUSIONS	17
8.	REF	ERENCES	21

ISCST3 Model Output Files

Risk Calculation Worksheets

Table of Contents

Appendix B. Appendix C.

List of Figures

Figure		Page
Figure 1	Project Location and ISCST3 Model Configuration	
	List of Tables	
Table		Page
Table 1	Construction Activity	
Table 2	Health Risk Assessment Results	17
Table 3	Construction Activity – Mitigated Scenario	19
Table 4	Health Risk Assessment Results – Mitigated Scenario	19
	List of Appendices	
Appendix A.	Emission Rate Calculations	

Page ii PlaceWorks

1. Introduction

The City of Berkeley is proposing to redevelop an existing parking garage with a new parking garage on a 0.80-acre parcel at 2025 Center Street in the City of Berkeley, Alameda County, California. The proposed Project would replace the existing five-story, 440-space parking garage with an eight-level, 783-space parking garage with micro-retail spaces, public accessible open space, secure bicycle parking and electric vehicle charging stations. Additionally, the Project would include garage operation space including offices, a break room, supply rooms, employee restrooms and storage.

The latest version of the BAAQMD CEQA Air Quality Guidelines requires projects to evaluate the impacts of construction activities on sensitive receptors (BAAQMD, 2012). Construction of the Project would take place starting in November 2015 and will include demolition, site preparation, grading, building construction, paving, and architectural coating (painting). The construction phase is estimated to take place over a period of 333 calendar days (238 work days) beginning in November 2015 and ending in November 2016.

The nearest off-site sensitive receptors (mixed-use multi-family residences) are located within 20 feet of the Project, adjacent to the Project site to the east along Center Street and adjacent to the site to the west along Addison Street. The residents at all of these locations could be potentially impacted from the proposed construction activities. Additionally, Berkeley City College is located approximately 70 feet south of the Project site, across Center Street, and Berkeley High School is located approximately 480 feet southwest of the Project site, at 1980 Allston Way. The students and adult staff at these school locations could also be potentially impacted from the proposed construction activities. Therefore, a site-specific construction health risk assessment (HRA) was prepared for the Project.

This construction HRA considers the health impact of construction operations at the Project site to sensitive receptors (adults and children in the nearby residences and students and staff of Berkeley City College and Berkeley High School) from diesel equipment exhaust and particulate matter (PM_{2.5}).

1. Introduction

This page intentionally left blank.

Page 2 PlaceWorks

2. Project Description

The Project site is located on a 0.80 acre site at 2025 Center Street in the City of Berkeley, Alameda County, California. The proposed Project would replace the existing five-story, 440-space parking garage with an eight-level, 783-space parking garage with micro-retail spaces, public accessible open space, secure bicycle parking and electric vehicle charging stations. Additionally, the Project would include garage operation space including offices, a break room, supply rooms, employee restrooms and storage. Construction of the Project is anticipated to begin in November 2015 and be completed in November 2016.

The existing garage is located in Downtown Berkeley within close proximity to a variety of land uses. On the Addison Street frontage, the Project site is adjoined by commercial uses to the east, and mixed-use commercial and residential uses to the west. On the Center Street frontage, the Project site is adjoined by restaurants as well as residential, institutional, and commercial uses. Berkeley City College is located across Center Street from the existing garage. Berkeley High School is located approximately 480 feet southwest of the Project site, at 1980 Allston Way.

The project site and vicinity are depicted in Figure 1.

2. Project Description

This page intentionally left blank.

Page 4 PlaceWorks

Date: February 2015

2. Project Description

This page intentionally left blank.

Page 6 PlaceWorks

3. Methodology and Significance Thresholds

The purpose of the construction HRA is to evaluate the potential health impacts from diesel particulate matter (DPM) and particulate matter less than 2.5 microns (PM_{2.5}) emitted during construction activities associated with the proposed project. Construction sources evaluated in this HRA include off-road construction equipment, such as excavators, graders, forklifts, pavers, rollers, dozers, tractors/loaders/backhoes, concrete saws, crushing/processing equipment, air compressors, generators, cement and mortar mixers, cranes, caisson drill rig, and water trucks.

The BAAQMD's 2010 adopted "Thresholds of Significance" for local community risk impacts were challenged in a lawsuit and subsequently rescinded. However, lead agencies can determine that these are appropriate air quality thresholds for projects they review. The 2010 BAAQMD thresholds that were used for this project are shown below:

- Non-compliance with a qualified risk reduction plan
- Excess cancer risk of more than 10 in a million
- Non-cancer hazard index (chronic or acute) greater than 1.0
- Incremental increase in average annual PM_{2.5} concentration of greater than 0.3 μg/m³

Since both the City of Berkeley and Alameda County do not currently have qualified risk reduction plans, a site-specific analysis of DPM and PM_{2.5} impacts on sensitive receptors was conducted. The methodology used in this HRA is consistent with the following BAAQMD and the Office of Environmental Health Hazard Assessment (OEHHA) guidance documents:

- BAAQMD, 2012. California Environmental Quality Act Air Quality Guidelines. May 2012.
- BAAQMD, 2011. Recommended Methods for Screening and Modeling Local Risks and Hazards. Version 2.0. May 2011
- OEHHA, 2012. Air Toxics Hot Spots Program Risk Assessment Guidelines. Revised Technical Support Document for Exposure Assessment and Stochastic Analysis. August, 2012.
- OEHHA, 2003. The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. August, 2003.

Potential exposures to DPM and PM_{2.5} from proposed project construction activities were evaluated for offsite sensitive receptors in close proximity to the Site, including the residences to the west and east, and staff and students at Berkeley City College to the south and at Berkeley High School to the southwest. Using air dispersion models, receptor concentrations were estimated and excess lifetime cancer risks and chronic noncancer hazard indexes were calculated. These risks were then compared to the significance thresholds identified in the BAAQMD CEQA guidelines.

3. Source Identification

This page intentionally left blank.

Page 8 PlaceWorks

4. Construction Emissions

Construction emissions were calculated as average daily emissions in pounds per day, using the proposed construction schedule and the latest version of California Emissions Estimation Model, known as CalEEMod Version 2013.2.2 (CAPCOA, 2013).

The project was assumed to take place over 377 calendar days (270 work days) beginning in November 2015 and ending in November 2016. The average daily emission rates from construction equipment used during the proposed Project were determined by dividing the annual average emissions for each construction year by the number of construction days per year. In addition, emissions from haul trucks traveling to and from the site within a 1,000-foot radius were included as off-site emissions. The modeled average daily emission rates for the construction scenario are summarized in Table 1. The CalEEMod construction emissions output and emission rate calculations are provided in Appendix A.

Table 1 Construction Activity

Parameter – Year	On-site Emissions (lbs/day)	Total Off-site Emissions (lbs/day)
DPM – 2015	1.97	0.16
DPM – 2016	2.90	0.06
PM _{2.5} - 2015	2.29	0.36
PM _{2.5} - 2016	2.83	0.34

Presented emission rates are average daily emissions, with BAAQMD's Best Management Practices (BMPs) for Fugitive Dust. Source: CalEEMod 2013.2.2.

4. Source Characterization

This page intentionally left blank.

Page 10 PlaceWorks

5. Dispersion Modeling

To assess the impact of emitted compounds on sensitive receptors near the Project, air quality modeling using the ISCST3 atmospheric dispersion model was performed. The model is a steady state Gaussian plume model and is an approved model by BAAQMD for estimating ground-level or flagpole-level impacts from point and fugitive sources in simple and complex terrain. The on-site construction emissions for the project were modeled as poly-area sources. Off-site construction emissions for project related truck traffic were modeled as adjacent volume sources.

The model requires additional input parameters, including chemical emission data and local meteorology. Inputs for the construction phase emission rates are those described in Section 4. Meteorological data obtained from the BAAQMD for the nearest met station (UC Richmond) and the three latest available years of record (2003-2005) were used to represent local weather conditions and prevailing winds.

DPM emissions were based on the CalEEMod construction runs, using annual exhaust PM₁₀ construction emissions presented in lbs/day. The PM_{2.5} emissions were taken from the CalEEMod PM_{2.5} total, which includes exhaust PM_{2.5} as well as fugitive dust PM_{2.5}. Off-site construction emissions from haul trucks were also obtained from the CalEEMod construction runs, proportioning the emissions for the haul truck trips of 20 miles to take into account the 0.26 mile route within 1,000 feet of the project site. An emission release height of 4.15 meters was used as representative of the stack exhaust height for off-road construction equipment and off-site haul trucks and an initial vertical dispersion parameter of 1.93 m was used, per CARB guidance (2000). The lateral dispersion parameter for the truck volume sources along Milvia Street and University Avenue was determined by dividing the width of the traveled roadway by 2.15.

The modeling analysis also considered the spatial distribution and elevation of each emitting source in relation to the sensitive receptors. To accommodate the model's Cartesian grid format, direction-dependent calculations were obtained by identifying the Universal Transverse Mercator (UTM) coordinates for each source location.

To determine contaminant impacts during construction hours, the model's scalar option was invoked to predict flagpole-level concentrations (1.5 m for ground-floor receptors, 6.1 m for second-floor receptors, and 9.14 m for third-floor receptors) for emissions generated between the hours of 7:00 AM and 4:00 PM, with a one-hour break for lunch between noon and 1:00 PM. In addition, a scalar factor was applied to the risk calculations to account for the number of days of construction activity per year.

For all modeling runs, a unit emission rate of 1 gm/sec was used. The unit emission rates were proportioned among either the volume sources for truck traffic, or proportioned over the poly-area sources for on-site construction emissions. The maximum ISCST3 concentrations from the output files were then multiplied by the emission rates calculated in Appendix A to obtain the maximum flagpole-level concentrations at the maximum exposed receptor (MER) near the Project site for each receptor type. Separate MER locations were

5. Exposure Quantification

determined for residential receptors, Berkeley City College, and Berkeley High School. The flagpole-level DPM and PM_{2.5} concentrations from the on-site and off-site sources used in the risk calculation spreadsheets are provided in Table C1 of Appendix C. The ISCST3 model output for the emission sources is presented in Appendix B. The configuration of the sources and the receptor locations is presented in Figure 1.

Page 12 PlaceWorks

6.1 CARCINOGENIC CHEMICAL RISK

The BAAQMD has established a threshold of ten in a million (10E–06) as a level posing no significant risk for exposures to carcinogens.

Health risks associated with exposure to carcinogenic compounds can be defined in terms of the probability of developing cancer as a result of exposure to a chemical at a given concentration. The cancer risk probability is determined by multiplying the chemical's annual concentration by its cancer potency factor (CPF), a measure of the carcinogenic potential of a chemical when a dose is received through the inhalation pathway. It is an upper-limit estimate of the probability of contracting cancer as a result of continuous exposure to an ambient concentration of one microgram per cubic meter (µg/m³) over a lifetime of 70 years.

Cancer risks were calculated using BAAQMD recommended methods for a residential receptor. For the inhalation pathway, contaminant dose is multiplied by the cancer potency factor in units of inverse dose expressed in milligrams per kilogram per day (mg/kg/day)-1 to derive the cancer risk estimate. To calculate the contaminant dose, the following equation was used:

Do se $AIR = (C_{air} \times EF \times ED \times [BR/BW] \times A \times CF) / AT$

Where:

dose by inhalation (mg/kg/day) Do se AIR C_{air} concentration of contaminant in air (µg/m³) EF exposure frequency (days/year) ED exposure duration (years - construction period) BR/BW daily breathing rate normalized to body weight (L/kg-day) Α inhalation absorption factor (default = 1) CFconversion factor (1x10-6, µg to mg, Lto m3) AT averaging time (days)

The inhalation absorption factor (A) is a unitless factor that is only used if the cancer potency factor included a correction for absorption across the lung. For this assessment, the default value of 1 was used. The daily breathing rate for an adult is 302 L/kg-day and for a child is 581 L/kg-day (BAAQMD, 2012). The residential exposure frequency (EF) is set at 350 days per year to allow for a two week period away from home each year (OEHHA, 2012). To represent the unique characteristics of school populations (e.g. Berkeley City College and Berkeley High School), the assessment employed the USEPA's guidance to develop viable dose estimates based on reasonable maximum exposure, defined as the "highest exposure that is reasonably expected to occur" for a given receptor population. Lifetime risk values for the student population were adjusted to account for an exposure of 180 days per year for 9 years. OEHHA does not support the use of current cancer potency factor to evaluate cancer risk for exposures of less than 9 years (OEHHA, 2003). To assess staff-related risk, exposures were adjusted to account for an employment period of 240 days per year

(OEHHA, 2012). The daily breathing rate for adult staff and adult students is 302 L/kg-day, and for high school students is 451 L/kg-day (OEHHA, 2003). The AT (averaging time) for lifetime cancer risks is 70 years for all cases.

OEHHA and BAAQMD procedures require the incorporation of age sensitivity factors (ASF) into the evaluation. The exposure duration (ED) and ASFs for the various age-groups are provided herein:

ED	<u>ASF</u>
0.25 years – third trimester	10
2 years for 0-2 age group	10
7 years for 2-9 age group	3
14 years for 2-16 age group	3
54 years for 16-70 age group	1

To calculate the overall cancer risk, the risk for each appropriate age group is calculated using appropriate age-sensitivity factors (ASFs), chemical-specific cancer potency factor (CPF) for each chemical of concern, and the fraction of time at home (FAH) as per the following equation:

$Cance\ rRisk_{AR} = Dose_{AR}x\ CPFx\ ASFx\ FAH$

The CPFs used in the assessment were obtained from OEHHA guidance. For DPM, a CPF of 1.1 mg/kg-day-1 was used.

The excess lifetime cancer risk to the maximally exposed receptor (MER) during the construction period was calculated, based on the factors provided above. For the adult resident exposure scenario, an ASF of 1.7 was applied to the calculated cancer risk number to give the estimated excess cancer risk over a 70-year lifetime. For the child resident exposure scenario, a 9-year exposure period was used, as per BAAQMD and OEHHA guidance (BAAQMD, 2012). In addition, an ASF of 4.7 was applied to the excess cancer risk number to account for the increased sensitivity of children to air pollutants during the 9-year exposure period. Finally, a fraction of time at home (FAH) was applied, as per OEHHA guidance (OEHHA, 2012). For the unmitigated scenario, a FAH factor of 1 was assumed. The calculated risk for high school students is multiplied by an ASF weighting factor of 3 (for children ages 2 to 16) to account for early life sensitivity to pollutant exposures (OEHHA, 2012). For adult staff and adult students, an ASF of 1.0 was applied to the excess cancer risk.

The calculated results are provided in Appendix C.

Page 14 PlaceWorks

6.2 NON-CARCINOGENIC HAZARDS

An evaluation of the potential non-cancer effects of chronic chemical exposures was also conducted. Adverse health effects are evaluated by comparing the annual receptor level (flagpole) concentration of each chemical compound with the appropriate reference exposure limit (REL). Available RELs promulgated by OEHHA were considered in the assessment.

To quantify non-carcinogenic impacts, the hazard index approach was used. The hazard index assumes that chronic sub-threshold exposures adversely affect a specific organ or organ system (toxicological endpoint). For each discrete chemical exposure, target organs presented in regulatory guidance were used. To calculate the hazard index, each chemical concentration or dose is divided by the appropriate toxicity value. For compounds affecting the same toxicological endpoint, this ratio is summed. Where the total equals or exceeds one, a health hazard is presumed to exist. In a manner consistent with the assessment of carcinogenic exposures, REL/RfC (reference concentration) values were converted to units expressed in mg/kg/day to accommodate the above intake algorithm.

The chronic hazard analysis for DPM is provided in Appendix C. The calculations contain the relevant exposure concentrations and corresponding reference dose values used in the evaluation of non-carcinogenic exposures.

6.3 CRITERIA POLLUTANTS

The BAAQMD has recently incorporated $PM_{2.5}$ into the District's CEQA significance thresholds due to recent studies that show adverse health impacts from exposure to this pollutant. An incremental increase of greater than $0.3 \, \mu g/m^3$ for the annual average $PM_{2.5}$ concentration is considered to be a significant impact. The modeling results for $PM_{2.5}$ are summarized in Table 2 and Table 4; the model runs are provided in Appendix B.

This page intentionally left blank.

Page 16 PlaceWorks

The residential health risk values are based on the maximum modeled receptor concentration over the construction exposure period, conservatively assuming a 24-hour outdoor exposure and averaged over a 70-year lifetime. According to the modeling results, the overall MER is an off-site multi-family residence immediately east of the Project. Results of the HRA indicate that the maximum adult incremental cancer risk during the construction phase of the Project at the residential MER is 8.6 per million, which is less than the significance threshold of 10 per million. However, the incremental cancer risk for the child exposure scenario was estimated to be 45 per million, which exceeds than the significance threshold of 10 per million. Therefore, mitigation measures are warranted. For adult students and staff at Berkeley City College, and adult staff and students at Berkeley High School, the incremental cancer risk did not exceed BAAQMD's significance threshold.

For non-carcinogenic effects, the hazard index identified for each toxicological endpoint totaled less than one for all receptors. Therefore, chronic non-carcinogenic hazards are within acceptable limits. Lastly, the PM_{2.5} annual concentrations generated by construction emissions during 2016 are greater than the BAAQMD significance threshold at the residential MER location and at Berkeley City College. The unmitigated health risk results for all receptors are summarized in Table 2.

Table 2 Health Risk Assessment Results

Cancer Risk (per million)	Chronic Hazard Index	PM _{2.5} (µg/m³)
8.6	0.22	1.0
45	0.22	1.0
2.4	0.15	0.69
0.5	0.01	0.04
0.15	0.01	0.04
10	1.0	0.3
Yes	No	Yes
	(per million) 8.6 45 2.4 0.5 0.15 10	(per million) Chronic Hazard Index 8.6 0.22 45 0.22 2.4 0.15 0.5 0.01 0.15 0.01 10 1.0

It should be noted that these health impacts were based on conservative (i.e., health protective) assumptions. The USEPA (2005) and OEHHA (2012) note that conservative assumptions used in a risk assessment are intended to ensure that the estimated risks do not underestimate the actual risks. Therefore, the estimated risks do not necessarily represent actual risks experienced by populations at or near a site. The use of conservative assumptions tends to produce upper-bound estimates of risk and usually overestimate exposure

and thus risk. For this resident-based risk assessment, the following conservative assumptions were used:

- To determine the MER for the unmitigated scenario, as reported in Table 2, it was assumed that children and/or adults stood outside of their residence for 24 hours per day, 350 days/year for 9 years (children) or 70 years (adults). In reality, it is likely that children and adults typically will spend just over one hour per day outdoors at their residences (CARB, 1991), which would result in a lower estimated risk value.
- For the unmitigated scenario, it was assumed that children and adults remained at home one hundred percent of the time (i.e., fraction of time at home of 1.0). In reality, it is likely that children and adults would only spend a fraction of time at home (FAH), which would result in a lower estimated risk value. OEHHA (2012) recommends the following FAH values for estimating health risk values:

Age Range	<u>FAH</u>
Third Trimester – 2	0.85
2-16	0.72
16-70	0.73

■ The calculated risk for pregnant women and children from 0-2 years was multiplied by a factor of 10 (age sensitivity factor) and the calculated risk for children from 2-16 years was multiplied by a factor of 3 to account for early life exposure and uncertainty in child vs. adult exposure impacts. Thus, the estimated risks are conservative.

Nevertheless, because the carcinogenic risks for the child scenario and maximum annual PM_{2.5} concentrations are predicted to be above the significance thresholds, mitigation measures are warranted. The following mitigation measures are proposed:

• During the construction phase, the construction contractor shall be required to use equipment retrofitted with Level 3 Diesel Particulate Filters for construction equipment with engines rated 50 horsepower and greater. Level 3 Diesel Particulate Filters are capable of reducing particulate matter emissions by 85 percent (SCAQMD, 2009). A list of construction equipment by type and model year shall be maintained by the construction contractor onsite. The construction contractor shall ensure that all construction equipment is properly serviced and maintained to the manufacturer's standards to reduce operational emissions, and shall limit nonessential idling of construction equipment to no more than five consecutive minutes or less in compliance with California Air Resources Board's Rule 2449. Prior to issuance of any construction permits, the construction contractor shall submit a copy of construction equipment log to the City of Berkeley Department of Planning and Development for verification of this requirement. The City of Berkeley Building and Safety Division Official or their designee shall verify compliance that these measures have been implemented during normal construction site inspections.

The modeled average daily emission rates for the construction scenario with mitigation are summarized in Table 3.

Page 18 PlaceWorks

Table 3 Construction Activity – Mitigated Scenario

Parameter – Year	On-site Emissions (lbs/day)	Total Off-site Emissions (lbs/day)
DPM – 2015	0.37	0.16
DPM – 2016	0.68	0.06
PM _{2.5} - 2015	0.74	0.36
PM _{2.5} - 2016	0.67	0.34

Mitigation includes Level 3 Diesel Particulate Filters for equipment 50 HP or greater and BAAQMD's Best Management Practices (BMPs) for Fugitive Dust. Presented emission rates are average daily emissions.

Source: CalEEMod 2013.2.2.

Assuming a resident or child would spend only a fraction of time at home (0.73 for the adult exposure scenario and 0.75 for the child scenario; OEHHA, 2012), the mitigated risk values were calculated and results are summarized in Table 4. The results indicate that with mitigation, the excess cancer risk for the adult and child exposure scenarios would be less than the threshold values for off-site receptors. Additionally, the PM_{2.5} annual concentrations would be below the significance threshold with mitigation for all receptor types. Therefore, with the mitigation measures described above, the Project would have a less than significant impact with respect to excess cancer risk, chronic non-hazard impacts, and PM_{2.5} emissions for off-site sensitive receptors during the construction period.

Table 4 Health Risk Assessment Results – Mitigated Scenario

Receptor	Cancer Risk (per million)	Chronic Hazard Index	PM _{2.5} (µg/m³)
Adult Resident	1.4	0.05	0.24
Child Resident	7.8	0.05	0.24
Berkeley City College Adult Student/Staff	0.5	0.04	0.16
Berkeley High School Student	0.1	0.002	0.01
Berkeley High School Staff	0.03	0.002	0.01
BAAQMD Threshold	10	1.0	0.3
Exceeds Threshold	No	No	No

Mitigation includes Level 3 Diesel Particulate Filters for equipment 50 HP or greater.

Sources: (Lakes AERMOD View, 8.8.1, 2014).

This page intentionally left blank.

Page 20 PlaceWorks

8. References

EPA-450/2-78-027R.

8. References

This page intentionally left blank.

Page 22 PlaceWorks

Appendix A. Emission Rate Calculations

February 2015 PlaceWorks

Appendix

This page intentionally left blank.

PlaceWorks February 2015

Construction Emissions - DPM and PM2.5 Input to ISCST3 Model

Onsite Construction Emissions		DPM ¹	PM _{2.5} ²
2015 Onsite	Average Daily Emissions (lbs/day)	1.97	2.29
Emissions	Average Daily Emissions (lbs/hr)	2.46E-01	2.86E-01
	Emission Rate (g/s)	3.10E-02	3.60E-02
2016 Onsite	Average Daily Emissions (lbs/day)	2.90	2.83
Emissions	Average Daily Emissions (lbs/hr)	3.62E-01	3.53E-01
	Emission Rate (g/s)	4.56E-02	4.45E-02

Note: Onsite emissions assumed to be evenly distributed over entire construction area.

Offsite Construction Emissions		DPM ¹	PM _{2.5} ²
2015 Offsite	Haul Length Daily Emissions (lbs/day)	0.16	0.36
Emissions	Hauling Emissions w/in 1,000 ft (lbs/day) ³	2.06E-03	4.63E-03
	Emission Rate (lbs/hr)	2.57E-04	5.79E-04
	Emission Rate (g/s)	3.24E-05	7.29E-05
2016 Offsite	Haul Length Daily Emissions (lbs/day)	0.06	0.34
Emissions	Hauling Emissions w/in 1,000 ft (lbs/day) ³	8.27E-04	4.37E-03
	Emission Rate (lbs/hr)	1.03E-04	5.46E-04
	Emission Rate (g/s)	1.30E-05	6.88E-05

0.26

Note: Offsite emissions evenly distributed over 38 modeled volume sources.

Hours per work day (7:00 AM to 4:00 PM, 1-hour lunch break)

Year	Total calendar days per year	Scalar ⁴
2015	44	0.12
2016	333	0.91
Default Hauling Length (miles)		20

¹DPM emissions taken as PM₁₀ exhaust emissions from CalEEMod average daily emissions.

Haul Length within 1,000 ft of Site (mile)

² PM_{2.5} emissions taken as total PM_{2.5} (exhaust and fugitive dust) emissions from CalEEMod average daily emissions.

³ Emissions from CalEEMod offsite average daily emissions, which is based on haul truck trips of 20 miles (model default) to evaluate emissions from 0.26 mile route within 1,000 feet of project site.

⁴ Scalar for days per year is the fraction of construction days per calendar year (365 days). Number of construction days is 32 in 2015 and 238 in 2016, due to no operations occurring on the weekends. This is accounted for in the ISCST3 model using SHRDOW module.

Construction Emissions - DPM and PM2.5 Input to ISCST3 Model with Mitigation (Level 3 DPF)

Onsite Co	onstruction Emissions - Mitigated	DPM ¹	PM _{2.5} ²
2015 Onsite	Average Daily Emissions (lbs/day)	0.37	0.74
Emissions	Average Daily Emissions (lbs/hr)	4.63E-02	9.27E-02
	Emission Rate (g/s)	5.84E-03	1.17E-02
2016 Onsite	Average Daily Emissions (lbs/day)	0.68	0.67
Emissions	Average Daily Emissions (lbs/hr)	8.46E-02	8.33E-02
	Emission Rate (g/s)	1.07E-02	1.05E-02

Note: Onsite emissions assumed to be evenly distributed over entire construction area.

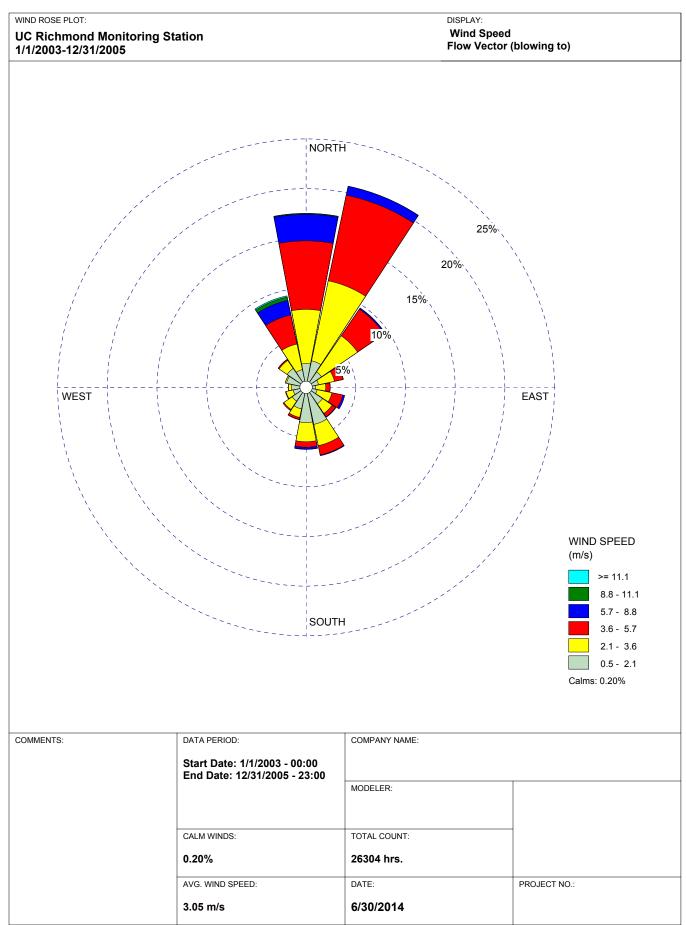
Offsite Construction Emissions - Mitigated		DPM ¹	PM _{2.5} ²
2015 Offsite	Haul Length Daily Emissions (lbs/day)	0.16	0.36
Emissions	Hauling Emissions w/in 1,000 ft (lbs/day) ³	2.06E-03	4.63E-03
	Emission Rate (lbs/hr)	2.57E-04	5.79E-04
	Emission Rate (g/s)	3.24E-05	7.29E-05
2016 Offsite	Haul Length Daily Emissions (lbs/day)	0.06	0.34
Emissions	Hauling Emissions w/in 1,000 ft (lbs/day) ³	8.27E-04	4.37E-03
	Emission Rate (lbs/hr)	1.03E-04	5.46E-04
	Emission Rate (g/s)	1.30E-05	6.88E-05

Note: Offsite emissions evenly distributed over 38 modeled volume sources.

Hours per work day (7:00 AM to 4:00 PM, 1-hour lunch break)	8
---	---

Year	Total calendar days per year	Scalar 4
2015	44	0.12
2016	333	0.91
Default Hauling Length (n	20	
Haul Length within 1,000 ft of Site (mile)		0.26

¹ DPM emissions taken as PM₁₀ exhaust emissions from CalEEMod average daily emissions.


Number of construction days is 32 in 2015 and 238 in 2016, due to no operations occurring on the weekends.

This is accounted for in the ISCST3 model using SHRDOW module.

² PM_{2.5} emissions taken as total PM_{2.5} (exhaust and fugitive dust) emissions from CalEEMod average daily emissions.

³ Emissions from CalEEMod offsite average daily emissions, which is based on haul truck trips of 20 miles (model default) to evaluate emissions from 0.26 mile route within 1,000 feet of project site.

⁴ Scalar for days per year is the fraction of construction days per calendar year (365 days).

BAAQMD Meteorological Site

Sensors: ws,wd,temp

solar insolation

Files for Downloading

Name: UC Richmond Site ID: 2950	Year	ASCII	300 m mixing height	600 m mixing height
Start Date: 7/1/1999 End Date: current	2005	metdata2950-05met.zip	metdata2950-05300.zip	metdata2950-05600.zip
Operator: BAAQMD	2004	metdata2950-04met.zip	metdata2950-04300.zip	metdata2950-04600.zip
Latitude: 37.9148 Longitude: 122.3379	2003	metdata2950-03met.zip	metdata2950-03300.zip	metdata2950-03600.zip
Elevation: 1 m	2002	metdata2950-02met.zip	Α	Α
Wind Height: 10 m	2001	metdata2950-01met.zip	metdata2950-013ra.zip	metdata2950-016ra.zip
UTM - East: 558.194 UTM - North: 4196.566	2000	metdata2950-00met.zip	metdata2950-003ra.zip	metdata2950-006ra.zip
County: Contra Costa	Note: An "A"	instead of a filename for any	, given year in the ASCII col	umn signifies the data are

Note: An "A" instead of a filename for any given year in the ASCII column signifies the data are missing. An "A" in the ISCST3 columns indicates the data are either missing or do not meet the

EPA 90% data capture rate required for regulatory modeling applications.

1 of 1 6/30/2014 4:07 PM

Appendix

Appendix B. ISCST3 Model Output Files

February 2015 PlaceWorks

Appendix

This page intentionally left blank.

PlaceWorks February 2015

```
01/29/15
*** Construction HRA
                                                                                                     ***
                                                                                                              13:19:24
**MODELOPTs:
                                                                                                               PAGE 1
CONC
                    URBAN FLAT FLGPOL DFAULT
                                      *** MODEL SETUP OPTIONS SUMMARY
**Intermediate Terrain Processing is Selected
**Model Is Setup For Calculation of Average CONCentration Values.
 -- SCAVENGING/DEPOSITION LOGIC --
**Model Uses NO DRY DEPLETION. DDPLETE = F
**Model Uses NO WET DEPLETION. WDPLETE = F
**NO WET SCAVENGING Data Provided.
**NO GAS DRY DEPOSITION Data Provided.
**Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations
**Model Uses URBAN Dispersion.
**Model Uses Regulatory DEFAULT Options:
          1. Final Plume Rise.
          2. Stack-tip Downwash.
          3. Buoyancy-induced Dispersion.
          4. Use Calms Processing Routine.
          5. Not Use Missing Data Processing Routine.
          6. Default Wind Profile Exponents.
          7. Default Vertical Potential Temperature Gradients.
          8. "Upper Bound" Values for Supersquat Buildings.
          9. No Exponential Decay for URBAN/Non-SO2
**Model Assumes Receptors on FLAT Terrain.
**Model Accepts FLAGPOLE Receptor Heights.
**Model Calculates ANNUAL Averages Only
**This Run Includes: 39 Source(s); 2 Source Group(s); and
                                                               109 Receptor(s)
**The Model Assumes A Pollutant Type of: OTHER
**Model Set To Continue RUNning After the Setup Testing.
**Output Options Selected:
        Model Outputs Tables of ANNUAL Averages by Receptor
        Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
                                                           m for Missing Hours
```

b for Both Calm and Missing Hours

**Misc. Inputs: Anem. Hgt. (m) = 10.00; Decay Coef. = 0.000; Rot. Angle = 0.0

Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07
Output Units = MICROGRAMS/M**3

**Approximate Storage Requirements of Model = 1.3 MB of RAM.

**MODELOPTs:

CONC URBAN FLAT FLGPOL DFAULT

*** VOLUME SOURCE DATA ***

* * *

* * *

01/29/15

13:19:24 PAGE 2

ID	PART. CATS.	EMISSION RATE (GRAMS/SEC)	X (METERS)	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		
- 0 0 0 0 4 4 5		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	564000				- 10	4 00		
L0000115	0	0.26316E-01	564203.9	4191748.5	0.0	4.15			SHRDOW	
L0000116	0	0.26316E-01	564193.1	4191746.8	0.0	4.15	5.12		SHRDOW	
L0000117	0	0.26316E-01 0.26316E-01 0.26316E-01	564182.2	4191744.8	0.0	4.15	5.12	1.93	SHRDOW	
		0.26316E-01	564171.4	4191743.0	0.0	4.15	5.12		SHRDOW	
L0000119	0		564160.6	4191741.2	0.0	4.15	5.12		SHRDOW	
L0000120	0	0.26316E-01 0.26316E-01	564149.7	4191739.3	0.0	4.15	5.12		SHRDOW	
L0000121	0	0.26316E-01	564146.4	4191747.5	0.0	4.15	5.12		SHRDOW	
L0000122	0		564145.2	4191758.3	0.0	4.15	5.12		SHRDOW	
L0000123	0		564144.0	4191769.2	0.0	4.15 4.15	5.12		SHRDOW	
L0000124	0	0.26316E-01	564142.9	4191780.2	0.0	4.15	5.12		SHRDOW	
L0000125	0				0.0	4.15	5.12		SHRDOW	
L0000126	0		564140.5	4191802.0	0.0	4.15 4.15 4.15	5.12		SHRDOW	
L0000127	0	0.26316E-01 0.26316E-01	564139.4	4191813.0	0.0	4.15	5.12		SHRDOW	
L0000128					0.0	4.15	5.12		SHRDOW	
L0000129	0	0.26316E-01				4.15	5.12		SHRDOW	
L0000130	0		564133.7	4191843.0	0.0	4.15 4.15	5.12		SHRDOW	
L0000131	0	0.26316E-01	564122.9	4191841.3	0.0	4.15	5.12		SHRDOW	
L0000132	0	0.26316E-01	564112.0	4191839.5	0.0	4.15	5.12		SHRDOW	
L0000133	0	0.26316E-01 0.26316E-01 0.26316E-01 0.26316E-01	564101.1	4191837.8	0.0	4.15	5.12		SHRDOW	
L0000134	0	0.26316E-01	564090.2	4191836.0	0.0	4.15	5.12		SHRDOW	
L0000135	0	0.26316E-01	564079.4	4191834.3	0.0	4.15	5.12		SHRDOW	
L0000136	0	0.26316E-01	564068.6	4191832.5	0.0	4.15	5.12		SHRDOW	
L0000137	0	0.26316E-01 0.26316E-01	564057.7	4191830.8	0.0	4.15 4.15	5.12	1.93	SHRDOW	
L0000138	0				0.0	4.15	5.12	1.93	SHRDOW	
L0000139	0				0.0	4.15	5.12	1.93	SHRDOW	
L0000140	0	0.26316E-01 0.26316E-01	564025.1	4191825.5	0.0	4.15 4.15	5.12		SHRDOW	
L0000141	0	0.26316E-01	564014.2	4191823.8	0.0	4.15	5.12		SHRDOW	
L0000142	0	0.26316E-01				4.15	5.12		SHRDOW	
L0000143	0	0.26316E-01	563992.6	4191820.2	0.0	4.15 4.15	5.12		SHRDOW	
L0000144	0	0.26316E-01	563981.7	4191818.5	0.0	4.15	5.12	1.93	SHRDOW	
L0000145	0	0.26316E-01	563970.8	4191816.8	0.0	4.15	5.12	1.93	SHRDOW	
L0000146	0	0.26316E-01	563959.9	4191815.0	0.0	4.15	5.12	1.93	SHRDOW	
L0000147	0	0.26316E-01				4.15 4.15	5.12	1.93	SHRDOW	
L0000148						4.15	5.12	1.93	SHRDOW	
L0000149	0	0.26316E-01	563927.4	4191809.8	0.0	4.15	5.12	1.93	SHRDOW	
L0000150	0	0.26316E-01	563916.5	4191808.0	0.0	4.15	5.12	1.93	SHRDOW	
L0000151	0	0.26316E-01	563905.7	4191806.2	0.0	4.15	5.12	1.93	SHRDOW	
L0000152	0	0.26316E-01 0.26316E-01 0.26316E-01	563894.8	4191804.5	0.0	4.15	5.12	1.93	SHRDOW	

*** ISCST3 - VERSI	ON 02035 ***	*** Center St Garage	* * *	01/29/15
		*** Construction HRA	* * *	13:19:24
**MODELOPTs:				PAGE 3
CONC	URBAN FLAT	FLGPOL DFAULT		
00.10	01.5111 1 2211	220102 211021		

*** AREAPOLY SOURCE DATA ***

	NUMBER	EMISSION RAT	E LOCATION	N OF AREA	BASE	RELEASE	NUMBER	INIT.	EMISSION RATE	
SOURCE	PART.	(GRAMS/SEC	X	Y	ELEV.	HEIGHT	OF VERTS.	SZ	SCALAR VARY	
ID	CATS.	/METER**2)	(METERS)	(METERS)	(METERS)	(METERS)		(METERS)	BY	
1	0	0.32000E-03	564187.9 43	191732.0	0.0	4.15	9	1.93	SHRDOW	

CONC URBAN FLAT FLGPOL DFAULT

*** SOURCE IDS DEFINING SOURCE GROUPS ***

GROUP ID SOURCE IDs

1 1 ,

2 L0000115, L0000116, L0000117, L0000118, L0000119, L0000120, L0000121, L0000122, L0000123, L0000124, L0000125, L0000126, L0000127, L0000128, L0000129, L0000130, L0000131, L0000132, L0000133, L0000134, L0000135, L0000136, L0000137, L0000138, L0000139, L0000140, L0000141, L0000142, L0000143, L0000144, L0000145, L0000146, L0000147, L0000148, L0000149, L0000150, L0000151, L0000152,

**MODELOPTs:

CONC URBAN FLAT FLGPOL DFAULT

* SOURCE EMISSION RATE SCALARS WHICH VARY SEASONALLY, DIURNALLY AND BY DAY OF WEEK (SHRDOW) *

01/29/15

13:19:24

PAGE 5

	E ID = 1	;			AREAPOLY										
HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR
						SEASON	 N = WINTER;	DAY	OF WEEK =	WEEKD	 AY				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.1000E+01
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.0000E+00	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASON	N = SPRING;	DAY	OF WEEK =	WEEKD	AY				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.1000E+01
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.0000E+00	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASON	N = SUMMER;	DAY	OF WEEK =	WEEKD					
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.1000E+01
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.0000E+00	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
							N = FALL;		OF WEEK =						
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.1000E+01
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.0000E+00	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
	0000-100		0000-100		0000-100		N = WINTER;		OF WEEK =			_	0000-100		0000-100
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00 N = SPRING;	21	.0000E+00 OF WEEK =	22	.0000E+00	23	.0000E+00	24	.0000E+00
1	.0000E+00	2	.0000E+00	3	.0000E+00	SEASON 4	N = SPRING; $0.000E+00$	DAI 5	.0000E+00	SATUR.	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	3 11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
Ι/	.00006+00	10	.0000E+00	1.5	.0000E+00		N = SUMMER;		OF WEEK =			23	.0000E+00	24	.0000E+00
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
- '	.00002.00		.00002.00		.00002.00		I = FALL;		OF WEEK =			20	.00002100		.00002.00
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASON	N = WINTER;	DAY	OF WEEK =	SUNDA	Y				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASON	N = SPRING;	DAY	OF WEEK =	SUNDA					
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00

						SEASO	N = SUMMER;	DAY	OF WEEK =	SUNDA	Y				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASO	N = FALL;	DAY	OF WEEK =	SUNDA	Y				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00

*** 01/29/15 *** Construction HRA *** 13:19:24 PAGE 6

**MODELOPTs:

URBAN FLAT FLGPOL DFAULT CONC

* SOURCE EMISSION RATE SCALARS WHICH VARY SEASONALLY, DIURNALLY AND BY DAY OF WEEK (SHRDOW) *

			hrough L00												
HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	SCALAR
						SEASON	: I = WINTER;	DAY	OF WEEK =	WEEKD	 AY				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.1000E+01
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.0000E+00	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASON	I = SPRING;	DAY	OF WEEK =	WEEKD	AY				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.1000E+01
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.0000E+00	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASON	I = SUMMER;	DAY	OF WEEK =	WEEKD	AY				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.1000E+01
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.0000E+00	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASON	I = FALL ;	DAY	OF WEEK =	WEEKD	AY				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.1000E+01
9	.1000E+01	10	.1000E+01	11	.1000E+01	12	.1000E+01	13	.0000E+00	14	.1000E+01	15	.1000E+01	16	.1000E+01
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
							<pre>U = WINTER;</pre>	DAY	OF WEEK =						
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
							I = SPRING;		OF WEEK =						
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
							I = SUMMER;		OF WEEK =						
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
							I = FALL;		OF WEEK =			_			
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
	0000-100				0000-100		J = WINTER;		OF WEEK =			_	0000-100		0000-100
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
1	0000=.00	0	0000=.00	2	0000=.00		I = SPRING;		OF WEEK =			-	0000=.00	0	0000=.00
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	1/	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASON	I = SUMMER;	DAY	OF WEEK =	SUNDA	ĭ				

1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00
						SEASO	N = FALL;	DAY	OF WEEK =	SUNDA	Y				
1	.0000E+00	2	.0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6	.0000E+00	7	.0000E+00	8	.0000E+00
9	.0000E+00	10	.0000E+00	11	.0000E+00	12	.0000E+00	13	.0000E+00	14	.0000E+00	15	.0000E+00	16	.0000E+00
17	.0000E+00	18	.0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22	.0000E+00	23	.0000E+00	24	.0000E+00

**MODELOPTs:

CONC URBAN FLAT FLGPOL DFAULT

*** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZFLAG) (METERS)

* * *

01/29/15

13:19:24

PAGE 44

(564245.5, 4191664.0,	0.0,	9.1);	(564253.2, 4191666.0, 0.0, 9.1)
(564263.6, 4191667.8,	0.0,	9.1);	(564284.6, 4191701.0, 0.0, 9.1)
(564243.8, 4191673.0,	0.0,	9.1);	(564253.8, 4191673.0, 0.0, 9.1)
(564263.8, 4191673.0,	0.0,	9.1);	(564273.8, 4191673.0, 0.0, 9.1)
(564283.8, 4191673.0,	0.0,	9.1);	(564293.8, 4191673.0, 0.0, 9.1)
(564303.8, 4191673.0,	0.0,	9.1);	(564243.8, 4191683.0, 0.0, 9.1)
(564253.8, 4191683.0,	0.0,	9.1);	(564263.8, 4191683.0, 0.0, 9.1)
(564273.8, 4191683.0,	0.0,	9.1);	(564283.8, 4191683.0, 0.0, 9.1)
(564293.8, 4191683.0,	0.0,	9.1);	(564301.9, 4191683.2, 0.0, 9.1)
(564243.8, 4191693.0,	0.0,	9.1);	(564253.8, 4191693.0, 0.0, 9.1)
(564263.8, 4191693.0,	0.0,	9.1);	(564273.8, 4191693.0, 0.0, 9.1)
(564283.8, 4191693.0,	0.0,	9.1);	(564293.8, 4191693.0, 0.0, 9.1)
(564273.6, 4191700.2,	0.0,	9.1);	(564293.8, 4191703.0, 0.0, 9.1)
(564238.7, 4191688.5,	0.0,	9.1);	(564162.2, 4191714.0, 0.0, 9.1)
(564172.2, 4191714.0,	0.0,	9.1);	(564182.2, 4191716.5, 0.0, 9.1)
(564157.0, 4191718.2,	0.0,	9.1);	(564162.2, 4191724.0, 0.0, 9.1)
(564172.2, 4191724.0,	0.0,	9.1);	(564182.2, 4191724.0, 0.0, 9.1)
(564176.5, 4191729.2,	0.0,	9.1);	(564319.4, 4191713.8, 0.0, 9.1)
(564329.4, 4191713.8,	0.0,	9.1);	(564319.4, 4191723.8, 0.0, 9.1)
(564329.4, 4191723.8,	0.0,	9.1);	(564339.4, 4191723.8, 0.0, 9.1)
(564319.4, 4191733.8,	0.0,	9.1);	(564329.4, 4191733.8, 0.0, 9.1)
(564339.4, 4191733.8,	0.0,	9.1);	(564319.4, 4191743.8, 0.0, 9.1)
(564329.4, 4191743.8,	0.0,	9.1);	(564339.4, 4191743.8, 0.0, 9.1)
(564319.4, 4191750.5,	0.0,	9.1);	(564329.4, 4191753.8, 0.0, 9.1)
(564339.4, 4191753.8,	0.0,	9.1);	(564312.7, 4191749.5, 0.0, 9.1)
(564315.1, 4191728.0,	0.0,	9.1);	(564172.8, 4191830.5, 0.0, 6.1)
(564172.8, 4191817.8,	0.0,	6.1);	(564174.1, 4191808.2, 0.0, 6.1)
(564175.9, 4191796.8,	0.0,	6.1);	(563882.5, 4191825.5, 0.0, 6.1)
(563892.5, 4191825.5,	0.0,	6.1);	(563902.5, 4191825.5, 0.0, 6.1)
(563912.5, 4191825.5,	0.0,	6.1);	(563922.5, 4191825.5, 0.0, 6.1)
(563882.5, 4191835.5,	0.0,	6.1);	(563892.5, 4191835.5, 0.0, 6.1)
(563902.5, 4191835.5,	0.0,	6.1);	(563912.5, 4191835.5, 0.0, 6.1)
(563922.5, 4191835.5,	0.0,	6.1);	(563882.5, 4191845.5, 0.0, 6.1)
(563892.5, 4191845.5,	0.0,	6.1);	(563902.5, 4191845.5, 0.0, 6.1)
(563912.5, 4191845.5,	0.0,	6.1);	(563922.5, 4191845.5, 0.0, 6.1)
(563882.5, 4191855.5,	0.0,	6.1);	(563892.5, 4191855.5, 0.0, 6.1)
(563902.5, 4191855.5,	0.0,	6.1);	(563912.5, 4191855.5, 0.0, 6.1)
(563922.5, 4191855.5,	0.0,	6.1);	(563902.5, 4191865.5, 0.0, 6.1)
(563912.5, 4191865.5,	0.0,	6.1);	(563922.5, 4191865.5, 0.0, 6.1)
(563902.5, 4191875.5,	0.0,	6.1);	(563912.5, 4191875.5, 0.0, 6.1)
(563922.5, 4191875.5,	0.0,	6.1);	(564003.8, 4191730.5, 0.0, 1.5)

(563940.5,	4191484.2,	0.0,	1.5);	(563942.3	4191469.0,	0.0,	1.5);
(563945.3,	4191452.8,	0.0,	1.5);	(563893.9	4191477.0,	0.0,	1.5);
(563889.6,	4191468.5,	0.0,	1.5);	(563890.8	4191454.5,	0.0,	1.5);
(563945.9,	4191440.5,	0.0,	1.5);	(563916.2	4191722.0,	0.0,	1.5);
(563904.2,	4191718.5,	0.0,	1.5);	(563894.5	4191716.5,	0.0,	1.5);
(563883.6,	4191713.0,	0.0,	1.5);	(564138.4	4191503.5,	0.0,	1.5);
(564143.2,	4191467.2,	0.0,	1.5);	(564146.9	4191414.0,	0.0,	1.5);
(564093.0,	4191495.8,	0.0,	1.5);	(564040.4	4191490.3,	0.0,	1.5);
(563996.8,	4191484.2,	0.0,	1.5);	(564207.4	4191622.0,	0.0,	1.5);
(564209.9,	4191608.0,	0.0,	1.5);	(564224.0	4191624.5,	0.0,	1.5);
(564246.9,	4191632.5,	0.0,	1.5);	(564249.0	4191623.5,	0.0,	1.5);
(564250.9,	4191612.3,	0.0,	1.5);	(564225.6	4191616.5,	0.0,	1.5);
(564236.5,	4191626.0,	0.0,	1.5);	(564236.8	4191609.2,	0.0,	1.5);
(564259.4,	4191623.3,	0.0,	1.5);				

**MODELOPTs:

CONC

URBAN FLAT FLGPOL DFAULT

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO)

* * *

01/29/15

13:19:24

PAGE 46

1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1			

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***

(METERS/SEC)

1.54, 3.09, 5.14, 8.23, 10.80,

*** WIND PROFILE EXPONENTS ***

STABILITY		WINI	D SPEED CATEGORY	7		
CATEGORY	1	2	3	4	5	6
A	.15000E+00	.15000E+00	.15000E+00	.15000E+00	.15000E+00	.15000E+00
В	.15000E+00	.15000E+00	.15000E+00	.15000E+00	.15000E+00	.15000E+00
С	.20000E+00	.20000E+00	.20000E+00	.20000E+00	.20000E+00	.20000E+00
D	.25000E+00	.25000E+00	.25000E+00	.25000E+00	.25000E+00	.25000E+00
E	.30000E+00	.30000E+00	.30000E+00	.30000E+00	.30000E+00	.30000E+00
F	.30000E+00	.30000E+00	.30000E+00	.30000E+00	.30000E+00	.30000E+00

*** VERTICAL POTENTIAL TEMPERATURE GRADIENTS *** (DEGREES KELVIN PER METER)

STABILITY		WINI	SPEED CATEGORY	ď		
CATEGORY	1	2	3	4	5	6
A	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
В	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
С	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
D	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
E	.20000E-01	.20000E-01	.20000E-01	.20000E-01	.20000E-01	.20000E-01
F	.35000E-01	.35000E-01	.35000E-01	.35000E-01	.35000E-01	.35000E-01

CONC URBAN FLAT FLGPOL DFAULT

*** THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

FILE: C:\!METFI~1\BAAQMD~1\UCR033~1.ASC

FORMAT: (4I2,2F9.4,F6.1,I2,2F7.1,f9.4,f10.1,f8.4,i4,f7.2)

SURFACE STATION NO.: 2950 UPPER AIR STATION NO.: 2950
NAME: UNKNOWN NAME: UNKNOWN

YEAR: 2003 YEAR: 2003

	FLOW	SPEED	TEMP	STAB	MIXING H	EIGHT (M)		M-O LENGTH	z-0	IPCODE	E PRATE
YR MN DY HR	VECTOR	(M/S)	(K)	CLASS	RURAL	URBAN	(M/S)	(M)	(M)		(mm/HR)
03 01 01 01	157.1	1.00	279.9	6	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 02	192.2	1.00	279.5	6	300.0	300.0	0.0000	0.0	0.0000		0.00
03 01 01 03	182.4	1.07	279.3	5	300.0	300.0	0.0000	0.0	0.0000		0.00
03 01 01 04	142.7	1.30	278.9	6	300.0	300.0	0.0000	0.0	0.0000		0.00
03 01 01 05	167.5	1.16	278.5	5	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 06	140.0	1.30	278.4	5	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 07	141.0	1.21	278.9	6	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 08	223.4	1.83	280.4	6	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 09	228.8	1.21	281.7	5	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 10	266.6	2.15	282.8	4	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 11	251.1	2.06	284.0	3	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 12	196.5	2.82	285.3	2	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 13	194.7	3.62	286.0	3	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 14	208.0	2.41	287.0	2	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 15	216.8	2.24	286.9	2	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 16	228.3	2.46	286.8	1	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 17	242.0	2.10	285.7	2	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 18	236.2	1.92	285.1	3	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 19	240.7	1.65	284.6	4	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 20	272.2	2.06	284.7	5	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 21	261.8	1.65	284.7	6	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 22	285.9	1.79	284.5	6	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 23	233.5	2.10	284.7	6	300.0	300.0	0.0000	0.0	0.0000	0	0.00
03 01 01 24	177.0	1.83	284.1	6	300.0	300.0	0.0000	0.0	0.0000	0	0.00

*** NOTES: STABILITY CLASS 1=A, 2=B, 3=C, 4=D, 5=E AND 6=F.
FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING.

URBAN FLAT FLGPOL DFAULT

*** Construction HRA
**MODELOPTs:

CONC

*** THE ANNUAL (3 YRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: 1 ***
INCLUDING SOURCE(S): 1 ,

01/29/15

13:19:24

PAGE 48

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

** CONC OF OTHER IN MICROGRAMS/M**3 *

X-COORD (M)	Y-COORD (M)	CONC	X-COORD (M)	Y-COORD (M)	CONC	
564245.50	4191664.00	11.62135	564253.25		9.34628	
564263.62	4191667.75	7.11800	564284.56	4191701.00	5.93385	
564243.81	4191673.00	14.73877	564253.81	4191673.00	10.09545	
564263.81	4191673.00	7.48323	564273.81	4191673.00	5.79050	
564283.81	4191673.00	7.48323 4.60902	564293.81	4191673.00	3.75436	
564303.81	4191673.00	3.11923	564243.81	4191683.00	18.39199	
564253.81	4191683.00	11.98763	564263.81	4191683.00	8.52152	
564273.81	4191683.00	6.45010	564283.81	4191683.00	5.06294	
564293.81	4191683.00	4.07987	564301.94	4191683.25	3.48544	
564243.81	4191693.00	21.41067	564253.81	4191693.00	14.08438	
564263.81	4191693.00	9.78467	564273.81	4191693.00	7.23483	
564283.81	4191693.00	5 59685	564293.81	4191693.00	4.46819	
564273.63	4191700.25	7.89422	564293.81	4191703.00	4.85881	
<mark>564238.69</mark>	4191688.50	24.72900 Resi	dential Max 564162.25	4191714.00	3.79273	
564172.25	4191714.00	5.17455	564182.25	4191716.50	7.77430	
564157.00	4191718.25	3.19204	564162.25	4191724.00	3.54622	
564172.25	4191724.00	4.95094	564182.25	4191724.00	7.76592	
564176.50	4191729.25	5.88796	564319.44	4191713.75	3.15186	
564329.44	4191713.75	2.66334	564319.44	4191723.75	3.34555	
564329.44	4191723.75		564339.44	4191723.75		
564319.44	4191733.75	3.53450	564329.44	4191733.75	2.96639	
564339.44	4191733.75	2.52829	564319.44	4191743.75		
564329.44	4191743.75	3.10042	564339.44	4191743.75	2.63416	
564319.44	4191750.50	3.81058	564329.44	4191753.75		
564339.44	4191753.75	2.72646	564312.69	4191749.50	4.32941	
564315.06	4191728.00	3.71679	564172.75	4191830.50	5.07782	
564172.75	4191817.75	5.67359	564174.06	4191808.25	6.35043	
564175.94	4191796.75	7.36457	563882.50	4191825.50		
563892.50	4191825.50	0.17966	563902.50	4191825.50		
563912.50	4191825.50	0.20929	563922.50	4191825.50	0.22708	
563882.50	4191835.50	0.17321	563892.50	4191835.50	0.18663	
563902.50	4191835.50	0.20170	563912.50	4191835.50	0.21860	
563922.50	4191835.50	0.23753	563882.50	4191845.50	0.18053	
563892.50	4191845.50	0.19488	563902.50	4191845.50	0.21084	
563912.50	4191845.50	0.22855	563922.50	4191845.50		
563882.50	4191855.50	0.18855	563892.50	4191855.50		
563902.50	4191855.50	0.22001	563912.50	4191855.50	0.23807	

563922.50	4191855.50	0.25775	563	902.50 4193	1865.50 0.2	22839			
563912.50	4191865.50	0.24630	563	922.50 4193	1865.50 0.2	26552			
563902.50	4191875.50	0.23528	563	912.50 4193	1875.50 0.2	25258			
563922.50	4191875.50	0.27081	564	003.75 4193	1730.50 0.4	18987			
563940.50	4191484.25	0.35143	563	942.31 4193	1469.00 0.3	34418			
563945.31	4191452.75	0.33843	563	893.88 4193	1477.00 0.2	27346			
563889.62	4191468.50	0.26339	563	890.81 4193	1454.50 0.2	25786			
563945.94	4191440.50	0.33050	563	916.25 4193	1722.00 0.2	28184			
563904.19	4191718.50	0.26534	563	894.50 4193	1716.50 0.2	25229			
563883.56	4191713.00	0.23894	564	138.38 4193	1503.50 1.0)4967 Berkeley	High S	chool 1	<u>Max</u>
564143.25	4191467.25	0.80791	564	146.88 4193	1414.00 0.6	50225			
564093.00	4191495.75	0.84617	564	040.38 4193	1490.25 0.6	53818			
563996.75	4191484.25	0.48700	5642	207.38 4193	1622.00 12.6	53402			
564209.88	4191608.00	9.71392	5643	224.00 4193	1624.50 17.0)1254 Berkeley	City C	ollege	Max
564246.88	4191632.50	15.39784	5642	249.00 4191	1623.50 12.8	34499			
564250.94	4191612.25	10.54765	5642	225.62 4191	1616.50 14.3	31199			
564236.50	4191626.00	16.81191	5642	236.75 4191	1609.25 12.1	L6590			
564259.38	4191623.25	9.77541							

**MODELOPTs:

CONC URBAN FLAT FLGPOL DFAULT

*** THE ANNUAL (3 YRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: 2 ***

INCLUDING SOURCE(S): L0000115, L0000116, L0000117, L0000118, L0000119, L0000120, L0000121,

L0000122, L0000123, L0000124, L0000125, L0000126, L0000127, L0000128, L0000129, L0000130, L0000131, L0000132, L0000133,

L0000134, L0000135, L0000136, L0000137, L0000138, L0000139, L0000140, L0000141, L0000142, L0000143, L0000144, . . . ,

01/29/15

13:19:24

PAGE 50

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

** CONC OF OTHER IN MICROGRAMS/M**3

X-COORD (M)	Y-COORD (M)	CONC	X-COORD (M)	Y-COORD (M)	CONC	
564245.50	4191664.00	1.52509	564253.25	4191666.00	1.37585	
564263.62	4191667.75	1.19638	564284.56	4191701.00	0.94049	
564243.81	4191673.00	1.60671	564253.81	4191673.00	1.38538	
564263.81	4191673.00	1.20184	564273.81	4191673.00	1.05072	
564283.81	4191673.00	0.92612	564293.81	4191673.00	0.82301	
564303.81	4191673.00	0.73730	564243.81	4191683.00	1.65012	
564253.81	4191683.00	1.40948	564263.81	4191683.00	1.21550	
564273.81	4191683.00	1.05918	564283.81	4191683.00	0.93250	
564293.81	4191683.00	0.82903	564301.94	4191683.25	0.75862	
564243.81	4191693.00	1.68613	564253.81	4191693.00	1.42900	
564263.81	4191693.00	1.22737	564273.81	4191693.00	1.06817	
564283.81	4191693.00	0.94081	564293.81	4191693.00	0.83731	
564273.63	4191700.25	1.07852	564293.81	4191703.00	0.84704	
564238.69	4191688.50	1.82228 Resid		4191714.00	5.81865	
564172.25	4191714.00	5.54225	564182.25	4191716.50	5.21037	
564157.00	4191718.25	6.21325	564162.25	4191724.00	6.77527	
564172.25	4191724.00	6.28057	564182.25	4191724.00	5.65875	
564176.50	4191729.25	6.27614	564319.44	4191713.75	0.65756	
564329.44	4191713.75	0.59937	564319.44	4191723.75	0.66507	
564329.44	4191723.75	0.60611	564339.44	4191723.75	0.55525	
564319.44	4191733.75	0.67748	564329.44	4191733.75	0.61700	
564339.44	4191733.75	0.56478	564319.44	4191743.75	0.69657	
564329.44	4191743.75	0.63305	564339.44	4191743.75	0.57826	
564319.44	4191750.50	0.71294	564329.44	4191753.75	0.65352	
564339.44	4191753.75	0.59505	564312.69	4191749.50	0.76128	
564315.06	4191728.00	0.69866	564172.75	4191830.50	10.19569	
564172.75	4191817.75	10.77127	564174.06	4191808.25	10.98796	
564175.94	4191796.75	11.32896	563882.50	4191825.50	2.61157	
563892.50	4191825.50	5.21249	563902.50	4191825.50	8.30860	
563912.50	4191825.50	10.54692	563922.50	4191825.50	11.93919	
563882.50	4191835.50	2.50328	563892.50	4191835.50	4.24845	
563902.50	4191835.50	6.37107	563912.50	4191835.50	8.18175	
563922.50	4191835.50	9.49723	563882.50	4191845.50	2.34857	
563892.50	4191845.50	3.60592	563902.50	4191845.50	5.12642	
563912.50	4191845.50	6.55503	563922.50	4191845.50	7.70035	

563882.50	4191855.50	2.18680	563892.50	4191855.50	3.13437
563902.50	4191855.50	4.26599	563912.50	4191855.50	5.38695
563922.50	4191855.50	6.35764	563902.50	4191865.50	3.63967
563912.50	4191865.50	4.52836	563922.50	4191865.50	5.33870
563902.50	4191875.50	3.16639	563912.50	4191875.50	3.88071
563922.50	4191875.50	4.55699	564003.75	4191730.50	3.10213
563940.50	4191484.25	0.45768	563942.31	4191469.00	0.42970
563945.31	4191452.75	0.40416	563893.88	4191477.00	0.35633
563889.62	4191468.50	0.33772	563890.81	4191454.50	0.32149
563945.94	4191440.50	0.38381	563916.25	4191722.00	2.09018
563904.19	4191718.50	1.74422	563894.50	4191716.50	1.50388
563883.56	4191713.00	1.26333	564138.38	4191503.50	0.85650 Berkeley High School Max
564143.25	4191467.25	0.72482	564146.88	4191414.00	0.57763
564093.00	4191495.75	0.72840	564040.38	4191490.25	0.64053
563996.75	4191484.25	0.56234	564207.38	4191622.00	1.99670
564209.88	4191608.00	1.76158	564224.00	4191624.50	1.79112 Berkeley City College Max
564246.88	4191632.50	1.47894	564249.00	4191623.50	1.38120
564250.94	4191612.25	1.28221	564225.62	4191616.50	1.67166
564236.50	4191626.00	1.60014	564236.75	4191609.25	1.44771
564259.38	4191623.25	1.23189			

CONC URBAN FLAT FLGPOL DFAULT

*** THE SUMMARY OF MAXIMUM ANNUAL (3 YRS) RESULTS ***

** CONC OF OTHER IN MICROGRAMS/M**3

GROUP ID		AVERAGE CONC	REC	CEPTOR (XR, YR,	ZELEV, ZFLA	G) OF TYPE	NETWORK GRID-ID
1 1ST HIG	HEST VALUE IS	24.72900 AT (564238.69,	4191688.50,	0.00,	9.14) DC	NA Residential Max
2ND HIG	HEST VALUE IS	21.41067 AT (564243.81,	4191693.00,	0.00,	9.14) DC	NA
3RD HIG	HEST VALUE IS	18.39199 AT (564243.81,	4191683.00,	0.00,	9.14) DC	NA
4TH HIG	HEST VALUE IS	17.01254 AT (564224.00,	4191624.50,	0.00,	1.50) DC	NA Berkeley City College Max
5TH HIG	HEST VALUE IS	16.81191 AT (564236.50,	4191626.00,	0.00,	1.50) DC	NA
6TH HIG	HEST VALUE IS	15.39784 AT (564246.88,	4191632.50,	0.00,	1.50) DC	NA
7TH HIG	HEST VALUE IS	14.73877 AT (564243.81,	4191673.00,	0.00,	9.14) DC	NA
8TH HIG	HEST VALUE IS	14.31199 AT (564225.62,	4191616.50,	0.00,	1.50) DC	NA
9TH HIG	HEST VALUE IS	14.08438 AT (564253.81,	4191693.00,	0.00,	9.14) DC	NA
10TH HIG	HEST VALUE IS	12.84499 AT (564249.00,	4191623.50,	0.00,	1.50) DC	NA
2 1ST HIG	HEST VALUE IS	11.93919 AT (563922.50,	4191825.50,	0.00,	6.10) DC	NA
2ND HIG	HEST VALUE IS	11.32896 AT (564175.94,	4191796.75,	0.00,	6.10) DC	NA
3RD HIG	HEST VALUE IS	10.98796 AT (564174.06,	4191808.25,	0.00,	6.10) DC	NA
4TH HIG	HEST VALUE IS	10.77127 AT (564172.75,	4191817.75,	0.00,	6.10) DC	NA
5TH HIG	HEST VALUE IS	10.54692 AT (563912.50,	4191825.50,	0.00,	6.10) DC	NA
6TH HIG	HEST VALUE IS	10.19569 AT (564172.75,	4191830.50,	0.00,	6.10) DC	NA
7TH HIG	HEST VALUE IS	9.49723 AT (563922.50,	4191835.50,	0.00,	6.10) DC	NA
8TH HIG	HEST VALUE IS	8.30860 AT (563902.50,	4191825.50,	0.00,	6.10) DC	NA
9TH HIG	HEST VALUE IS	8.18175 AT (563912.50,	4191835.50,	0.00,	6.10) DC	NA
10TH HIG	HEST VALUE IS	7.70035 AT (563922.50,	4191845.50,	0.00,	6.10) DC	NA

*** RECEPTOR TYPES: GC = GRIDCART

GP = GRIDPOLR

DC = DISCCART

DP = DISCPOLR

BD = BOUNDARY

*** ISCST3 - VERSION 02035 ***
**MODELOPTs: CONC URBAN FLAT FLGPOL DFAULT
*** Message Summary : ISCST3 Model Execution ***
Summary of Total Messages
A Total of 0 Fatal Error Message(s) A Total of 0 Warning Message(s) A Total of 52 Informational Message(s)
A Total of 52 Calm Hours Identified
****** FATAL ERROR MESSAGES ****** *** NONE ***
****** WARNING MESSAGES ****** *** NONE ***

01/29/15

13:19:24 PAGE 53

*** ISCST3 - VERSION 02035 ***
**MODELOPTs: CONC URBAN FLAT FLGPOL DFAULT
*** Message Summary : ISCST3 Model Execution ***
Summary of Total Messages
A Total of 0 Fatal Error Message(s) A Total of 0 Warning Message(s) A Total of 52 Informational Message(s)
A Total of 52 Calm Hours Identified
****** FATAL ERROR MESSAGES ****** *** NONE ***
****** WARNING MESSAGES ****** *** NONE ***

01/29/15

13:19:24 PAGE 53

Appendix

Appendix C. Risk Calculation Worksheets

February 2015 PlaceWorks

Appendix

This page intentionally left blank.

PlaceWorks February 2015

Table C1 Model Output Calculations

UNMITIGATI	ED SCENARIO									
Source	ISCST3 Output ¹	Pollutant	Emission Rates ²	Scalar ³	MER Concentration ⁴					
	Annual Average		Average Daily		Annual Average					
	$(\mu g/m^3)$		(g/s)		$(\mu g/m^3)$					
(a)	(c)	(b)	(d)	(e)	(f)					
RECEPTOR: RESIDENCES										
2015 Onsite	24.7	DPM	3.10E-02	0.121	9.25E-02					
		$PM_{2.5}$	3.60E-02	0.121	1.07E-01					
2015 Offsite	1.82	DPM	3.24E-05	0.121	7.11E-06					
		$PM_{2.5}$	7.29E-05	0.121	1.60E-05					
2016 Onsite	24.7	DPM	4.56E-02	0.912	1.03E+00					
		$PM_{2.5}$	4.45E-02	0.912	1.00E+00					
2016 Offsite	1.82	DPM	1.30E-05	0.912	2.17E-05					
		$PM_{2.5}$	6.88E-05	0.912	1.14E-04					
			LEY CITY COLLI		-					
2015 Onsite	17.0	DPM	3.10E-02	0.121	6.36E-02					
		$PM_{2.5}$	3.60E-02	0.121	7.39E-02					
2015 Offsite	1.79	DPM	3.24E-05	0.121	6.99E-06					
		PM _{2.5}	7.29E-05	0.121	1.57E-05					
2016 Onsite	17.0	DPM	4.56E-02	0.912	7.08E-01					
		PM _{2.5}	4.45E-02	0.912	6.91E-01					
2016 Offsite	1.79	DPM	1.30E-05	0.912	2.13E-05					
		$PM_{2.5}$	6.88E-05	0.912	1.12E-04					
			LEY HIGH SCHO							
2015 Onsite	1.05	DPM	3.10E-02	0.121	3.92E-03					
		$PM_{2.5}$	3.60E-02	0.121	4.56E-03					
2015 Offsite	0.86	DPM	3.24E-05	0.121	3.34E-06					
		PM _{2.5}	7.29E-05	0.121	7.53E-06					
2016 Onsite	1.05	DPM	4.56E-02	0.912	4.37E-02					
		PM _{2.5}	4.45E-02	0.912	4.26E-02					
2016 Offsite	0.86	DPM	1.30E-05	0.912	1.02E-05					
		$PM_{2.5}$	6.88E-05	0.912	5.38E-05					

¹ ISCST3 Output based on unit emission rates for sources (1 g/s).

 $^{^2\,}$ Emission Rates from Emission Rate Calculations (Appendix A - Input to ISCST3 Model).

 $^{^3}$ Scalar applied to adjust yearly ISCST3 concentrations to actual number of days construction emissions occur.

⁴ Maximum exposed receptor (MER) pollutant concentration.

Table C1 Model Output Calculations

MITIGATED	SCENARIO - Le	vel 3 Diesel Partic	culate Filters for E	quipment 50 hp o	r greater					
Source	ISCST3 Output ¹	Pollutant	Emission Rates ²	Scalar ³	MER Concentration ⁴					
	Annual Average		Average Daily		Annual Average					
	$(\mu g/m^3)$		(g/s)		$(\mu g/m^3)$					
(a)	(c)	(b)	(d)	(e)	(f)					
RECEPTOR: RESIDENCES										
2015 Onsite	24.7	DPM	5.84E-03	0.121	1.74E-02					
		$PM_{2.5}$	1.17E-02	0.121	3.48E-02					
2015 Offsite	1.82	DPM	3.24E-05	0.121	7.11E-06					
		$PM_{2.5}$	7.29E-05	0.121	1.60E-05					
2016 Onsite	24.7	DPM	1.07E-02	0.912	2.40E-01					
		$PM_{2.5}$	1.05E-02	0.912	2.37E-01					
2016 Offsite	1.82	DPM	1.30E-05	0.912	2.17E-05					
		$PM_{2.5}$	6.88E-05	0.912	1.14E-04					
		EPTOR: BERKEI	LEY CITY COLL							
2015 Onsite	17.0	DPM	5.84E-03	0.121	1.20E-02					
		$PM_{2.5}$	1.17E-02	0.121	2.39E-02					
2015 Offsite	1.79	DPM	3.24E-05	0.121	6.99E-06					
		$PM_{2.5}$	7.29E-05	0.121	1.57E-05					
2016 Onsite	17.0	DPM	1.07E-02	0.912	1.65E-01					
		$PM_{2.5}$	1.05E-02	0.912	1.63E-01					
2016 Offsite	1.79	DPM	1.30E-05	0.912	2.13E-05					
		$PM_{2.5}$	6.88E-05	0.912	1.12E-04					
			LEY HIGH SCHO							
2015 Onsite	1.05	DPM	5.84E-03	0.121	7.39E-04					
		$PM_{2.5}$	1.17E-02	0.121	1.48E-03					
2015 Offsite	0.86	DPM	3.24E-05	0.121	3.34E-06					
		$PM_{2.5}$	7.29E-05	0.121	7.53E-06					
2016 Onsite	1.05	DPM	1.07E-02	0.912	1.02E-02					
		$PM_{2.5}$	1.05E-02	0.912	1.00E-02					
2016 Offsite	0.86	DPM	1.30E-05	0.912	1.02E-05					
		$PM_{2.5}$	6.88E-05	0.912	5.38E-05					

¹ ISCST3 Output based on unit emission rates for sources (1 g/s).

 $^{^2\,}$ Emission Rates from Emission Rate Calculations (Appendix A - Input to ISCST3 Model).

 $^{^3}$ Scalar applied to adjust yearly ISCST3 concentrations to actual number of days construction emissions occur.

⁴ Maximum exposed receptor (MER) pollutant concentration.

Construction Risk Assessment - Table C2 Adult Resident Exposure Scenario - 70 Years Unmitigated Scenario

Source	MER	Weight	Contaminant	C	Carcinogenic Risk						Nonca	rcinogenic	Hazards/	/ Toxicolo	gical End	points*				
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)	(t)	(u)
2015 On-Site Emissions	9.25E-02	1.00E+00	Diesel Particulate	1.1E+00	3.8E-07	4.2E-07	5.0E+00												1.8E-02	
2015 Truck Route	7.11E-06	1.00E+00	Diesel Particulate	1.1E+00	2.9E-11	3.2E-11	5.0E+00												1.4E-06	
2016 On-Site Emissions	1.03E+00	1.00E+00	Diesel Particulate	1.1E+00	4.3E-06	4.7E-06	5.0E+00												2.1E-01	
2016 Truck Route	2.17E-05	1.00E+00	Diesel Particulate	1.1E+00	9.0E-11	9.9E-11	5.0E+00												4.3E-06	
	BAA	QMD Cancer	TOTAL Risk Adjustment Factor - 70 Adjusted Cancer Risk)-year Adult So	enaric	5.1E-06 1.7 8.6E-06	ı	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.22	0.0

* Key to Toxicologica	al Endpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	daily breathing rate (L/kg-day) - adult residen	302
CARDIO	Cardiovascular	inhalation absorption factor	1.0
DEV	Developmental	exposure frequency (days/year) - residents	350
ENDO	Endocrine	exposure duration (years) - 2015	1.0
EYE	Eye	exposure duration (years) - 2016	1.0
HEME	Hematologic		
IMM	Immune	averaging time (days) - 70 year duration	25,550
KID	Kidney	fraction of time at home	1.0
NERV	Nervous		
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.11
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	1.00

Construction Risk Assessment - Table C3 Adult Resident Exposure Scenario - 70 Years With Mitigation (Level 3 Diesel Particulate Filters)

Source	MER	Weight	Contaminant	C	arcinogenic Ri	sk					Noncar	rcinogenic	Hazards/	Toxicolog	gical Endp	oints*				
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													l
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)	(t)	(u)
2015 On-Site Emissions	1.74E-02	1.00E+00	Diesel Particulate	1.1E+00	7.2E-08	5.8E-08	5.0E+00												3.5E-03	L
2015 Truck Route	7.11E-06	1.00E+00	Diesel Particulate	1.1E+00	2.9E-11	2.4E-11	5.0E+00												1.4E-06	
2016 On-Site Emissions	2.40E-01	1.00E+00	Diesel Particulate	1.1E+00	9.7E-07	7.8E-07	5.0E+00												4.8E-02	
2016 Truck Route	2.17E-05	1.00E+00	Diesel Particulate	1.1E+00	8.8E-11	7.1E-11	5.0E+00												4.3E-06	
			TOTAL			8 4E-07		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	DAA	OMD Compose	Risk Adjustment Factor - 70	ricon Adult Co	amani.	0.4E-U/		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
	DAA	QIVID Cancer		-year Adult Sc	enanc	1./														
			Adjusted Cancer Risk			1.4E-06														

* Key to Toxicological	Endpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	daily breathing rate (L/kg-day) - adult residen	302
CARDIO	Cardiovascular	inhalation absorption factor	1.0
DEV	Developmental	exposure frequency (days/year) - residents	350
ENDO	Endocrine	exposure duration (years) - 2015	1.0
EYE	Eye	exposure duration (years) - 2016	1.0
HEME	Hematologic		
IMM	Immune	averaging time (days) - 70 year duration	25,550
KID	Kidney	fraction of time at home	0.73
NERV	Nervous		
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.03
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	0.24

Construction Risk Assessment - Table C4 Child Resident Exposure Scenario - 9 Years Unmitigated Scenario

Source	MER	Weight	Contaminant	C	arcinogenic Ri	sk					Noncar	rcinogenic	Hazards	Toxicolog	gical Endp	oints*				
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)	(t)	(u)
2015 On-Site Emissions	9.25E-02	1.00E+00	Diesel Particulate	1.1E+00	7.4E-07	8.1E-07	5.0E+00												1.8E-02	
2015 Truck Route	7.11E-06	1.00E+00	Diesel Particulate	1.1E+00	5.7E-11	6.2E-11	5.0E+00												1.4E-06	
2016 On-Site Emissions	1.03E+00	1.00E+00	Diesel Particulate	1.1E+00	8.0E-06	8.8E-06	5.0E+00												2.1E-01	
2016 Truck Route	2.17E-05	1.00E+00	Diesel Particulate	1.1E+00	1.7E-10	1.9E-10	5.0E+00												4.3E-06	
			TOTAL			9.6E-06		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.22	0.0
	BA	AQMD Cancer	Risk Adjustment Factor - 9	-year Child Sco	enaric	4.7														
			Adjusted Cancer Risk			4.5E-05														
İ																				

* Key to Toxicological	Endpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	daily breathing rate (L/kg-day) - adult residen	581
CARDIO	Cardiovascular	inhalation absorption factor	1.0
DEV	Developmental	exposure frequency (days/year) - residents	350
ENDO	Endocrine	exposure duration (years) - 2015	1.0
EYE	Eye	exposure duration (years) - 2016	1.0
HEME	Hematologic		
IMM	Immune	averaging time (days) - 70 year duration	25,550
KID	Kidney	fraction of time at home	1.0
NERV	Nervous		
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.11
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	1.00

Construction Risk Assessment - Table C5 Child Resident Exposure Scenario - 9 Years With Mitigation (Level 3 Diesel Particulate Filters)

Source	MER	Weight	Contaminant	C	arcinogenic Ri	sk					Nonca	rcinogenic	Hazards/	Toxicolog	gical End	oints*				
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													1
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(p)	(q)	(r)	(s)	(t)	(u)
2015 On-Site Emissions	1.74E-02	1.00E+00	Diesel Particulate	1.1E+00	1.4E-07	1.1E-07	5.0E+00												3.5E-03	1
2015 Truck Route	7.11E-06	1.00E+00	Diesel Particulate	1.1E+00	5.7E-11	4.7E-11	5.0E+00												1.4E-06	i
2016 On-Site Emissions	2.40E-01	1.00E+00	Diesel Particulate	1.1E+00	1.9E-06	1.5E-06	5.0E+00												4.8E-02	i
2016 Truck Route	2.17E-05	1.00E+00	Diesel Particulate	1.1E+00	1.7E-10	1.4E-10	5.0E+00												4.3E-06	i .
			momut			4.500.06													0.05	
			TOTAL			1.7E-06		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	BA	AQMD Cancer	r Risk Adjustment Factor - 9	 -year Child Sce 	enaric	4.7														
			Adjusted Cancer Risk			7.8E-06														

* Key to Toxicological E	Indpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	daily breathing rate (L/kg-day) - adult residen	581
CARDIO	Cardiovascular	inhalation absorption factor	1.0
DEV	Developmental	exposure frequency (days/year) - residents	350
ENDO	Endocrine	exposure duration (years) - 2015	1.0
EYE	Eye	exposure duration (years) - 2016	1.0
HEME	Hematologic		
IMM	Immune	averaging time (days) - 70 year duration	25,550
KID	Kidney	fraction of time at home	0.75
NERV	Nervous		
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.03
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	0.24

Construction Risk Assessment - Table C6 Berkeley City College Exposure Scenario Unmitigated Scenario

Source	MER	Weight	Contaminant	C	arcinogenic Ri	sk					Noncar	rcinogenic	Hazards/	Toxicolog	gical End	oints*			s) (t) 1.3E-02 1.4E-06 1.4E-01 4.3E-06			
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN		
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													i		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(p)	(q)	(r)	(s)	(t)	(u)		
2015 On-Site Emissions	6.36E-02	1.00E+00	Diesel Particulate	1.1E+00	1.8E-07	2.0E-07	5.0E+00												1.3E-02	in .		
2015 Truck Route	6.99E-06	1.00E+00	Diesel Particulate	1.1E+00	2.0E-11	2.2E-11	5.0E+00												1.4E-06			
2016 On-Site Emissions	7.08E-01	1.00E+00	Diesel Particulate	1.1E+00	2.0E-06	2.2E-06	5.0E+00												1.4E-01			
2016 Truck Route	2.13E-05	1.00E+00	Diesel Particulate	1.1E+00	6.0E-11	6.6E-11	5.0E+00												4.3E-06			
			TOTAL			2.4E-06		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00		
	BAAQ	MD Cancer Ri	sk Adjustment Factor - Adul	lt Student/Staff	Scenaric	1.0																
			Adjusted Cancer Risk			2.4E-06																

* Key to Toxicological E	ndpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	daily breathing rate (L/kg-day) - adult student/staff	302
CARDIO	Cardiovascular	inhalation absorption factor	1.0
DEV	Developmental	exposure frequency (days/year) - adult student/staff	240
ENDO	Endocrine	exposure duration (years) - 2015	1.0
EYE	Eye	exposure duration (years) - 2016	1.0
HEME	Hematologic		
IMM	Immune	averaging time (days) - 70 year duration	25,550
KID	Kidney		
NERV	Nervous		
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.07
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	0.69

Construction Risk Assessment - Table C7 Berkeley City College Exposure Scenario With Mitigation (Level 3 Diesel Particulate Filters)

Source	MER	Weight	Contaminant	C	arcinogenic Ri	isk					Noncar	rcinogenic	Hazards/	Toxicolog	gical Endr	oints*				
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(o)	(p)	(g)	(r)	(s)	(t)	(u)
2015 On-Site Emissions	1.20E-02	1.00E+00	Diesel Particulate	1.1E+00	3.4E-08	3.7E-08	5.0E+00												2.4E-03	
2015 Truck Route	6.99E-06	1.00E+00	Diesel Particulate	1.1E+00	2.0E-11	2.2E-11	5.0E+00												1.4E-06	
2016 On-Site Emissions	1.65E-01	1.00E+00	Diesel Particulate	1.1E+00	4.6E-07	5.1E-07	5.0E+00												3.3E-02	
2016 Truck Route	2.13E-05	1.00E+00	Diesel Particulate	1.1E+00	5.9E-11	6.5E-11	5.0E+00												4.3E-06	
			TOTAL			5.4E-07		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00
	BAAQ	MD Cancer Ri	sk Adjustment Factor - Adul	t Student/Staff	Scenaric	1.0														
			Adjusted Cancer Risk			5.4E-07														

* Key to Toxicologi	cal Endpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	daily breathing rate (L/kg-day) - adult student/staff	302
CARDIO	Cardiovascular	inhalation absorption factor	1.0
DEV	Developmental	exposure frequency (days/year) - adult student/staff	240
ENDO	Endocrine	exposure duration (years) - 2015	1.0
EYE	Eye	exposure duration (years) - 2016	1.0
HEME	Hematologic		
IMM	Immune	averaging time (days) - 70 year duration	25,550
KID	Kidney		
NERV	Nervous		
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.02
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	0.16

Construction Risk Assessment - Table C8 Berkeley High School - Student Exposure Scenario Unmitigated Scenario

Source	MER	Weight	Contaminant	C	arcinogenic Ri	sk					Noncar	rcinogenic	Hazards/	Toxicolog	ical End	points*				
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)	(t)	(u)
2015 On-Site Emissions	3.92E-03	1.00E+00	Diesel Particulate	1.1E+00	1.2E-08	1.4E-08	5.0E+00												7.8E-04	
2015 Truck Route	3.34E-06	1.00E+00	Diesel Particulate	1.1E+00	1.1E-11	1.2E-11	5.0E+00												6.7E-07	
2016 On-Site Emissions	4.37E-02	1.00E+00	Diesel Particulate	1.1E+00	1.4E-07	1.5E-07	5.0E+00												8.7E-03	
2016 Truck Route	1.02E-05	1.00E+00	Diesel Particulate	1.1E+00	3.2E-11	3.6E-11	5.0E+00												2.0E-06	
			TOTAL			1.7E-07		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	BAAQN	AD Cancer Ris	sk Adjustment Factor - High	School Student	t Scenaric	3.0														
			Adjusted Cancer Risk			5.0E-07														
İ			-																	

* Key to Toxicological En	ndpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	body weight (kg) - high school student	61.2
CARDIO	Cardiovascular	daily breathing rate (M/day) - high school studen	27.6
DEV	Developmental	daily breathing rate (L/kg-day) - high school studen	451
ENDO	Endocrine	inhalation absorption factor	1.0
EYE	Eye	exposure frequency (days/year) - high school studen	180
HEME	Hematologic	exposure duration (years) - 2015	1.0
IMM	Immune	exposure duration (years) - 2016	1.0
KID	Kidney		
NERV	Nervous	averaging time (days) - 70 year duration	25,550
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.005
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	0.04

Construction Risk Assessment - Table C9 Berkeley High School - Student Exposure Scenario With Mitigation (Level 3 Diesel Particulate Filters)

Source	MER	Weight	Contaminant	C	arcinogenic Ri	sk					Nonca	Noncarcinogenic Hazards/ Toxicological Endpoints ⁴								
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													l
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)	(t)	(u)
2015 On-Site Emissions	7.39E-04	1.00E+00	Diesel Particulate	1.1E+00	2.3E-09	2.6E-09	5.0E+00												1.5E-04	l
2015 Truck Route	3.34E-06	1.00E+00	Diesel Particulate	1.1E+00	1.1E-11	1.2E-11	5.0E+00												6.7E-07	i
2016 On-Site Emissions	1.02E-02	1.00E+00	Diesel Particulate	1.1E+00	3.2E-08	3.5E-08	5.0E+00												2.0E-03	i
2016 Truck Route	1.02E-05	1.00E+00	Diesel Particulate	1.1E+00	3.2E-11	3.5E-11	5.0E+00												2.0E-06	
			TOTAL			3.8E-08		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.002	0.00
	DAAON	(D. C D:		C-11 C414	· C			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.002	0.00
BAAQMD Cancer Risk Adjustment Factor - High School Student Scenaric					3.0															
			Adjusted Cancer Risk			1.1E-07														

* Key to Toxicological	Endpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	body weight (kg) - high school student	61.2
CARDIO	Cardiovascular	daily breathing rate (M/day) - high school studen	27.6
DEV	Developmental	daily breathing rate (L/kg-day) - high school studen	451
ENDO	Endocrine	inhalation absorption factor	1.0
EYE	Eye	exposure frequency (days/year) - high school studen	180
HEME	Hematologic	exposure duration (years) - 2015	1.0
IMM	Immune	exposure duration (years) - 2016	1.0
KID	Kidney		
NERV	Nervous	averaging time (days) - 70 year duration	25,550
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.001
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	0.01

Construction Risk Assessment - Table C10 Berkeley High School - Staff Exposure Scenario Unmitigated Scenario

Source	MER	Weight	Contaminant	C	Carcinogenic Risk Noncarcinogenic Hazards/ Toxicological Endpoints ⁴															
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													l
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(p)	(q)	(r)	(s)	(t)	(u)
2015 On-Site Emissions	3.92E-03	1.00E+00	Diesel Particulate	1.1E+00	1.1E-08	1.2E-08	5.0E+00												7.8E-04	
2015 Truck Route	3.34E-06	1.00E+00	Diesel Particulate	1.1E+00	9.5E-12	1.0E-11	5.0E+00												6.7E-07	
2016 On-Site Emissions	4.37E-02	1.00E+00	Diesel Particulate	1.1E+00	1.2E-07	1.4E-07	5.0E+00												8.7E-03	
2016 Truck Route	1.02E-05	1.00E+00	Diesel Particulate	1.1E+00	2.9E-11	3.2E-11	5.0E+00												2.0E-06	
			TOTAL			1.5E-07		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	BA	AQMD Cance	r Risk Adjustment Factor - A	Adult Staff Sce	naric	1.0														
			Adjusted Cancer Risk			1.5E-07														
			-																	

* Key to Toxicologica	al Endpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	daily breathing rate (L/kg-day) - adult staff	302
CARDIO	Cardiovascular	inhalation absorption factor	1.0
DEV	Developmental	exposure frequency (days/year) - adult staff	240
ENDO	Endocrine	exposure duration (years) - 2015	1.0
EYE	Eye	exposure duration (years) - 2016	1.0
HEME	Hematologic		
IMM	Immune	averaging time (days) - 70 year duration	25,550
KID	Kidney		
NERV	Nervous		
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.005
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	0.04

Construction Risk Assessment - Table C11 Berkeley High School - Staff Exposure Scenario With Mitigation (Level 3 Diesel Particulate Filters)

Source	MER	Weight	Contaminant	C	arcinogenic Ri	sk					Nonca	rcinogenic	Hazards/	Toxicolog	gical Endr	oints*							
	Concentration	Fraction		CPF	DOSE **	RISK	REL	ALI	BONE	CARDIO	DEV	ENDO	EYE	HEME	IMM	KID	NERV	REPRO	RESP	SKIN			
	$(\mu g/m^3)$			(mg/kg/day) ⁻¹	(mg/kg/day)		$(\mu g/m^3)$													l			
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)	(t)	(u)			
2015 On-Site Emissions	7.39E-04	1.00E+00	Diesel Particulate	1.1E+00	2.1E-09	2.3E-09	5.0E+00												1.5E-04	l			
2015 Truck Route	3.34E-06	1.00E+00	Diesel Particulate	1.1E+00	9.5E-12	1.0E-11	5.0E+00												6.7E-07				
2016 On-Site Emissions	1.02E-02	1.00E+00	Diesel Particulate	1.1E+00	2.9E-08	3.2E-08	5.0E+00												2.0E-03				
2016 Truck Route	1.02E-05	1.00E+00	Diesel Particulate	1.1E+00	2.9E-11	3.2E-11	5.0E+00												2.0E-06				
			TOTAL			3.4E-08		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.002	0.00			
BAAQMD Cancer Risk Adjustment Factor - Adult Staff Scenaric					1.0																		
			Adjusted Cancer Risk			3.4E-08																	

* Key to Toxicologic	cal Endpoints	** Exposure factors used to calculate dose	
ALI	Alimentary		
BONE	Bone	daily breathing rate (L/kg-day) - adult staff	302
CARDIO	Cardiovascular	inhalation absorption factor	1.0
DEV	Developmental	exposure frequency (days/year) - adult staff	240
ENDO	Endocrine	exposure duration (years) - 2015	1.0
EYE	Eye	exposure duration (years) - 2016	1.0
HEME	Hematologic		
IMM	Immune	averaging time (days) - 70 year duration	25,550
KID	Kidney		
NERV	Nervous		
REPRO	Reproductive		
RESP	Respiratory	2015 maximum annual PM2.5 concentration (µg/m³)	0.001
SKIN	Skin	2016 maximum annual PM2.5 concentration (µg/m³)	0.01