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OBESITY AND TYPE 2 DIABETES

Epidemiology 

Currently, one of the major worldwide health issues is the increasing number of people 

with obesity. This is primarily caused by changes in dietary habits, such as the increased 

intake of high-calorie foods, and a decrease in physical activity. Obesity is defined as a 

body mass index (BMI; calculated as bodyweight (kg)/height (m)2) of 30 kg/m2 or more. 

According to the World Health Organization (WHO) the prevalence of obesity has more 

than doubled since 1980 and it is estimated that almost 500 million adults worldwide 

are obese.1 In the Netherlands 13% of men and 14% of women are currently obese.2 

Furthermore, obesity is already present in 2% of children and adolescents aged 2 to 21 

years.3 Since obesity is one of the major risk factors for type 2 diabetes mellitus (T2DM), a 

steep increase in T2DM prevalence is seen as well. In 2012, more than 371 million people 

worldwide had diabetes (~90% of them having type 2 diabetes) and it is estimated that 

by 2030 this will have risen to 552 million.4

Morbidity, mortality and costs

The rise in obesity and T2DM is of great concern, as both conditions are associated with 

increased morbidity and mortality. Aside from the risk on T2DM, obesity is associated 

with a higher incidence of hypertension, cardiovascular disease (CVD), gallstones, liver 

disease, infertility, sleep apnea, muscoskeletal complaints and certain types of cancer.5,6 

Furthermore, obese subjects have a higher all-cause mortality rate.7 

Diabetes is also associated with several serious complications such as neuropathy, 

microvascular complications (retinopathy and nephropathy) and macrovascular compli-

cations (CVD). In most high-income countries, diabetes is a leading cause of blindness, 

end-stage renal disease, lower limb amputation and CVD. These complications are as-

sociated with increased mortality; it is estimated that worldwide every seven seconds a 

person dies from the consequences of diabetes.4,8 In patients with T2DM, up to 70% of 

deaths are attributed to CVD.8,9 For unclear reasons there is a greater excess risk of mor-

tality from coronary artery disease in diabetic women than in diabetic men. Compared 

with their non-diabetic counterparts, the mortality rate from CVD is more than twice as 

high in men with diabetes and more than four times as high in diabetic women.10,11 

Treatment of T2DM and its complications also puts a high burden on healthcare costs. 

The average medical expenditure is 2.3 times higher in diabetes patients compared to 

persons without diabetes. In 2011 diabetes healthcare expenditures accounted for 11% 

of total healthcare costs in the world.4,8,12

Apart from the impact on morbidity and health care costs, T2DM has also been 

shown to result in a decreased quality of life (QoL) as compared to healthy controls.13,14 

A reduction in QoL not only influences individual well-being and that of their direct en-
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vironment, but may also have an impact on participation in the working process, social 

functioning, compliance to therapy and therefore on socioeconomic costs, making it a 

very important aspect of the disease.

PATHOPHYSIOLOGY OF T2DM

T2DM is a chronic disease characterized by disturbances in glucose homeostasis, even-

tually leading to hyperglycemia. Normally, blood glucose concentrations are maintained 

within a narrow range since low as well as elevated blood glucose levels are hazardous. 

Brain function depends on glucose, and severe hypoglycemia can lead to seizures, 

coma and death. Hyperglycemia on the other hand can lead to acute complications 

such as dehydration, and in the long term can result in the aforementioned micro- and 

macrovascular complications. Blood glucose levels are tightly regulated by balancing 

endogenous glucose production (EGP), which predominantly occurs in the liver (± 90%), 

and the uptake of glucose by peripheral tissues. Insulin is the most important hormone 

involved in glucose homeostasis. It is secreted by pancreatic ß-cells mainly in response 

to increased blood glucose levels, and it reduces plasma glucose by stimulating glu-

cose disposal in peripheral tissues and inhibiting EGP.15 In patients with T2DM, these 

processes are disturbed.

The underlying cause of T2DM is both complex and multifactorial. There seems 

to be a strong genetic component of the disease; the risk for T2DM is 3.5-fold higher 

among offspring with a single diabetic parent and even 6-fold higher if both parents 

have T2DM.16 Furthermore, there is a high concordance rate of T2DM in monozygotic 

twins.17,18 Around 40 genes have currently been identified that are associated with T2DM. 

However, variants in these genes have a modest effect size. For example, the variants 

with the greatest effects result in approximately twofold the lifetime risk of T2DM in 

persons carrying two copies of the risk allele as compared to persons with none. Most of 

the currently identified genes are related to insulin secretion.19,20

Obesity is also one of the major factors in the pathophysiology of T2DM, as over 80% 

of T2DM patients are overweight or obese.21,22 Especially the increase in truncal (visceral 

and abdominal subcutaneous) adipose tissue (‘male-type adiposity’), as reflected by 

an increase in waist circumference, seems to be detrimental for T2DM development. In 

addition, physical inactivity has also been recognized as a risk factor for T2DM.23

Ultimately, T2DM develops when a combination of these genetic and environmental 

factors result in insulin resistance of target tissues and diminished insulin secretion by 

pancreatic ß-cells. Insulin resistance is present early in the course of T2DM development. 

Glucose tolerance, however, remains near-normal for over a long period of time because 

the pancreatic ß-cells are able to compensate by increasing insulin output. Eventually, 



General introduction 13

insulin secretion capacity is unable to overcome the insulin resistance of peripheral tis-

sues and glucose tolerance deteriorates, ultimately resulting in overt T2DM.15,24,25 As this 

thesis mainly focuses on insulin resistance, the pathophysiology of insulin resistance will 

be discussed in more detail.

INSULIN RESISTANCE

Insulin resistance is a condition characterized by the reduced responsiveness of tissues 

to a given concentration of insulin, also referred to as a state of decreased insulin sen-

sitivity.25-27 Insulin sensitivity declines with increasing age and varies widely within the 

general population; within an age-group the most insulin-sensitive person can be four 

times more sensitive than the most resistant individual.24 

Insulin resistance may not necessarily be pathologic and can even be considered 

an evolutionary conserved adaptive response. For example, insulin resistance is seen 

after extreme diet-induced obesity in animals preparing for hibernation. This short-term 

insulin resistant state, which disappears after the winter fast, is thought to direct tissues 

to switch from glucose to fatty-acid metabolism to prevent starvation and does not have 

pathological consequences.28-30 A decrease in insulin sensitivity after a period of fasting 

is also seen in humans.31,32 Furthermore, in humans insulin resistance develops during 

pregnancy33 and infection34, resulting in a decreased nutrient uptake by non-priority 

tissues and thereby reserving glucose for important processes such as brain function, 

immune system activation and fetal development. The capacity to develop insulin 

resistance can thus be considered a beneficial adaptive response, which is conserved 

after millions of years of evolution, aiding in the survival of infections and famine, and 

supporting reproduction. However, in our current environment, where food is abundant 

and physical activity is no longer strictly necessary, insulin resistance can become 

chronic and have many detrimental consequences.30,35 

Insulin resistance is currently very prevalent in the general population and it often 

goes unnoticed since it will not result in T2DM as long as ß-cells are able to compen-

sate by increasing their insulin secretion capacity. It can be acquired, as is the case in 

subjects with obesity, the most important risk factor for insulin resistance. It is however 

also present in virtually all T2DM patients, obese as well as lean, and in these cases it 

seems to have a strong genetic component as well.24,26 Insulin resistance is an indepen-

dent predictor of not only future T2DM development, but also other serious diseases 

such as CVD, hypertension, stroke and cancer.36,37 The exact pathophysiology of insulin 

resistance is currently not completely understood, but several tissues are known to be 

involved (Figure 1). 
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Skeletal muscle

Skeletal muscle is the main site of insulin-stimulated glucose uptake and is therefore 

considered one of the most important tissues involved in whole-body insulin resistance. 

During hyperinsulinemia, it is estimated that around 80% of glucose disposal occurs 

in skeletal muscle.38 Insulin activates a complex cascade of phosphorylation/dephos-

phorylation reactions, also called the insulin signaling cascade, eventually resulting in 

the uptake of glucose by the cell.39 When glucose is taken up by the cell, it can either 

be oxidized or stored in the form of glycogen, also referred to as non-oxidative glucose 

disposal (NOGD). It seems that an impairment in NOGD is the primary defect responsible 

for skeletal muscle insulin resistance. Glycogen synthesis is approximately 60% lower 

in T2DM patients as compared to healthy lean controls.40 Furthermore, a decrease in 

glycogen synthesis is seen early in T2DM development and is already present in normal 

glucose tolerant offspring of T2DM patients.41 

Insulin 

resistance 

Genetics 
Familial predisposition Skeletal muscle 

Ectopic fat deposition 

 glucose uptake  

 glycogen synthesis 

Adipose tissue 
Adipocyte dysfunction 

 secretion  

    - FFA’s 

    - adipokines 

    - cytokines 

Pancreatic β-cells 
Hyperinsulinemia 

β-cell dysfunction 

Liver 
Ectopic fat deposition 

 EGP 
Environmental factors 
 nutrient intake  

 physical inactivity } obesity 

Figure 1. Multifactorial pathophysiology of insulin resistance
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Currently, a number of defects in the insulin signaling cascade that can ultimately 

result in impaired glucose uptake and glycogen synthesis have been described in insulin 

resistant subjects. Even so, much remains to be elucidated because of the complexity 

of the cascade.39 One of the mechanisms that is known to disturb processes within the 

signaling cascade is lipotoxicity by ectopic fat storage in myocytes (discussed in detail 

under ‘Adipose tissue’). With the exception of athletes, intramyocellular lipid (IMCL) ac-

cumulation is inversely related to skeletal muscle insulin sensitivity and is increased in 

obesity and T2DM.42 

Because of the aforementioned fact that skeletal muscle accounts for the major part 

of glucose uptake under hyperinsulinemic conditions, its role in whole-body insulin 

resistance is widely acknowledged. However, whether it is the primary defect in the 

pathophysiology of insulin resistance is still under debate, as other tissues are currently 

also thought to be involved.

Adipose tissue

Adipose tissue accounts for only ~10-20% of whole-body glucose uptake.43 Still, accu-

mulating evidence suggests an important role for adipose tissue in the pathophysiology 

of insulin resistance. 

Humans have two major adipose tissue compartments, subcutaneous adipose tissue 

(SAT) and visceral adipose tissue (VAT). SAT is present directly under the skin and it ac-

counts for the major part of adipose tissue in the body. VAT is found intra-abdominally 

and comprises only 7–18% of total body fat.44-46 Studies suggested that an increase in 

VAT is associated with insulin resistance and that SAT may even be protective against 

obesity-related insulin resistance.44,47-50 This led to the hypothesis that VAT accumulation 

is of importance in insulin resistance development, possibly explained by the fact that 

VAT has a higher lipolytic activity and directly secretes free fatty acids (FFAs) into the 

portal system, resulting in hepatic insulin resistance.51 Yet, VAT is responsible for only 

10-15% of the total FFA flux. Also, other studies showed that truncal SAT is inversely 

related with insulin sensitivity.46,52 Moreover, although obesity is the most important 

risk factor for the development of insulin resistance and T2DM, approximately 20% of 

obese subjects remain metabolically healthy, whereas ~18% of lean individuals develop 

metabolic abnormalities.53 Therefore it is hypothesized that adipose tissue dysfunc-

tion, independent of bodyweight or fat mass, plays a crucial role in the pathogenesis 

of insulin resistance.43,54 Enlargement (hypertrophy) of adipocytes, a sign of adipocyte 

dysfunction, is frequently seen in obesity, but also in pre-diabetic subjects and T2DM 

patients. It is associated with insulin resistance independent of BMI and an independent 

predictor for the development of T2DM.54-56

One of the most important functions of adipocytes is to serve as a buffer for the 

daily influx of fat by storing FFAs as triglycerides. When adipocytes are overloaded, they 
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become hypertrophic and are thought of as dysfunctional as they are no longer able to 

store lipids. This leads to overexposure of other tissues to FFAs and results in the storage 

of triglycerides in non-adipose tissues (liver, skeletal muscle, heart), also called ectopic 

fat deposition.42,54 This ectopic storage of fat disturbs cellular function, also called ‘li-

potoxicity’. Lipotoxicity can impair the insulin signaling cascade and thereby result in 

hepatic and skeletal muscle insulin resistance.42

The idea that this impaired adipocyte buffer capacity can lead to decreased insulin 

sensitivity of target tissues is further supported by the fact that patients suffering from 

lipodystrophy, a group of rare diseases characterized by the partial or total lack of SAT, 

display severe insulin resistance and hepatic steatosis.57 Lipoatrophic mice also display 

severe insulin resistance and increased lipid content of the liver and skeletal muscle. 

Transplantation of fat tissue into these mice restores insulin sensitivity and reverses 

ectopic fat storage.58,59 

Apart from its function in the storage of lipids, adipose tissue also actively secretes 

cytokines and proteins called adipokines. Adipocyte size seems to be an important 

determinant of adipokine secretion. Enlarged adipocytes are characterized by increased 

secretion of leptin, resistin, ASP and other proteins, and a decreased production of 

adiponectin, which are all linked to insulin resistance.54,60 Furthermore, pro-inflamma-

tory cytokines that are associated with insulin resistance, such as tumor necrosis factor 

(TNF)-α and interleukin (IL)-6, are also secreted in excess. It is thought that macrophages 

that infiltrate the adipose tissue are the major source of these inflammatory factors. 

Macrophage infiltration of adipose tissue is increased in obesity and is positively associ-

ated with adipocyte size.61,62 Obesity as well as T2DM are well known to be associated 

with a chronic low-grade inflammatory state.63 Pro-inflammatory cytokines can induce 

insulin resistance in different tissues by inhibiting the insulin signaling cascade.64 

Thus, adipose tissue dysfunction, caused by either obesity or other (environmental or 

genetic) factors, results in ectopic fat depositions, disturbed adipokine production and 

increased pro-inflammatory cytokine secretion and this may induce, or at least maintain, 

whole-body insulin resistance (Figure 2). 

Liver

The liver is the major source of EGP. Glucose is produced by converting stored glycogen 

into glucose (glycogenolysis) and by the generation of glucose from other substrates, 

such as amino acids, glycerol and lactate (gluconeogenesis). EGP is particularly impor-

tant in the post-absorptive state when it provides the brain with glucose, as it is not 

capable of storing glucose itself. The liver also stores and consumes glucose and lipids 

and is involved in lipid synthesis. 

In the liver, as well as in skeletal muscle, lipotoxicity by ectopic fat depositions re-

sults in insulin resistance by impairing the insulin signaling cascade.42 Hepatic insulin 
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resistance leads to decreased glucose uptake and impaired insulin-mediated inhibition 

of hepatic EGP. In the fasting state, the increase in EGP is the primary determinant of 

elevations in fasting blood glucose levels in T2DM patients. Furthermore, it also contrib-

utes to postprandial hyperglycemia.65,66 The increased delivery of FFAs to the liver not 

only leads to ectopic fat deposition, but also results in increased glucose production 

because of higher substrate delivery, higher very low-density lipoprotein (VLDL) output 

and reduced insulin clearence.54

In several studies hepatic fat content was not only associated with hepatic but 

also peripheral (skeletal muscle and adipose tissue) insulin resistance.47-50,67-69 Hepatic 

fat accumulation can lead to chronic inflammation of the liver, and this could possibly 

induce or aggravate peripheral insulin resistance via the secretion of pro-inflammatory 

cytokines.66 

environment 

 energy intake 

 physical activity 

obesity 

(excess adipose tissue) 

INSULIN RESISTANCE 

lipodystrophy 

(adipose tissue deficiency) 

adipocyte hypertrophy 

( hypoxia,  vascularization, 

macrophage infiltration, 

inflammation) 

genes 

 lipid buffering capacity 

 FFA release 

+ 

ectopic fat depositions 

Liver, skeletal muscle, heart 

disturbed adipokine secretion 

 adiponectin, leptin. resistin, ASP  

 cytokine secretion 

 TNF-α , IL-6  

Figure 2. Adipocyte dysfunction

Adipose tissue dysfunction may play a crucial role in the pathogenesis of insulin resistance. Adipocyte hypertrophy can 

be considered a pathophysiologic response to genetic, environmental, and behavioral factors such as excess energy 

intake and decreased physical activity. When adipocytes become too large, hypoxia and endoplasmatic reticulum (ER) 

stress occur and this may trigger the activation of stress and inflammatory pathways. Dysfunctional adipocytes produce 

excess inflammatory cytokines and adipokines and attract immune cells, leading to a state of chronic inflammation. 

Furthermore, stressed and hypertrophic adipocytes are less capable of taking up free fatty acids (FFAs), leading to ectopic 

fat depositions and thereby insulin resistance.
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Pancreatic ß-cells

There is some evidence that the compensatory hyperinsulinemia, which is considered 

an adaptive response of the ß-cell to overcome insulin resistance, can aggravate insulin 

resistance itself.27,70 Normally, insulin is secreted in a pulsatile fashion; it is estimated 

that as much as 70% of total insulin delivery comes from this pulsed output.71 However, 

in T2DM patients these pulses are markedly attenuated and total insulin secretion is 

higher.72 Interestingly, abnormal oscillatory insulin secretion is already seen in off-

spring of T2DM patients.73 It is well known that hormones that are normally secreted 

intermittently, can desensitize target cells when hormone levels are persistently high 

(for example gonadotropin-releasing hormone (GnRH)).27,70 Hyperinsulinemia has been 

shown to result in insulin resistance in mice74 as well as in humans.75 The idea that hyper-

insulinemia can lead to insulin resistance is supported by the fact that patients with an 

insulin producing tumor (insulinoma), display signs of insulin resistance which resolve 

after removal of the tumor.27,70

In conclusion, although the exact primary defect in insulin resistance remains to be 

elucidated, several mechanisms in different tissues are currently known to induce and/

or aggravate the insulin resistant state in obesity and T2DM.

INSULIN RESISTANCE IN SOUTH ASIANS 

The risk of developing T2DM is exceptionally high among native South Asians, as well 

as in migrants of South Asian descent (originating from the Indian subcontinent; India, 

Pakistan, Bangladesh, Nepal and Sri Lanka).76,77 In the Netherlands, most South Asians 

are Hindustani Surinamese who migrated from the former Dutch colony Surinam, and 

whose ancestors came from the Indian subcontinent. Of all ethnic minorities living in 

the Netherlands, Hindustani Surinamese have the highest prevalence rate of T2DM, 

which is estimated to be almost 5-fold higher than in ethnic Dutch.78,79 In addition to 

the increased prevalence, South Asians develop diabetes at a much younger age and 

at a lower BMI than Caucasians.76,77,80,81 It seems that the mechanism responsible for 

the increased incidence of T2DM in South Asians is insulin resistance and not impaired 

insulin secretion.82-86 Since South Asians represent over 20% of the world’s population, 

the extremely high prevalence of T2DM is becoming a major health and socioeconomic 

burden. The cause of this excess risk is still not completely understood. In Chapter 2 the 

underlying mechanisms involved in the higher prevalence of insulin resistance in South 

Asians will be reviewed extensively. 
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THERAPEUTIC STRATEGIES IN T2DM AND INSULIN RESISTANCE

Treatment of T2DM can consist of improving insulin sensitivity or increasing the avail-

able insulin concentration. The latter can be achieved by medical therapy using insulin 

secretagogues or exogenous insulin.87 Insulin sensitivity can be enhanced by caloric 

restriction88, weight loss89,90, exercise91, or with medication.87 

Pharmacological interventions 

According to the guidelines of the Dutch general practitioners association (Nederlands 

Huisartsen Genootschap), the first drug of choice for the treatment of T2DM is metfor-

min, a biguanide.92 Metformin lowers blood glucose levels by reducing hepatic EGP 

and improving insulin sensitivity without increasing the risk of hypoglycemia, and is 

considered weight-neutral. When metformin is no longer sufficient in controlling blood 

glucose levels, usually a sulfonylurea (an insulin secretagogue) is added. Sulfonylureas 

stimulate insulin release from pancreatic ß-cells. They increase the risk of hypoglycemia 

and are associated with modest weight gain. Alternatively, another class of oral glucose-

lowering medications, the thiazolidinediones (TZDs), can be considered. TZDs activate 

the peroxisome proliferator–activated receptor (PPAR) γ, which results in an improve-

ment of insulin sensitivity in skeletal muscle and a reduction in hepatic EGP. TZDs are 

not associated with increased hypoglycemia risk, but have other side effects such as 

weight gain, fluid retention leading to edema and an increased risk of fractures.87 TZDs 

are therefore currently not often prescribed.

In time, oral therapy frequently fails to effectively reduce hyperglycemia because of 

the progressive β-cell dysfunction and insulin replacement therapy is therefore often 

required. At first, only intermediate or long-acting (‘basal’) insulin once daily is added. 

However, this is seldom adequate to reach treatment goals. Therefore insulin doses 

are often increased, or multiple daily injections with short-acting (‘prandial’) insulin 

are added.93 Unfortunately, insulin therapy is associated with risk of hypoglycemia and 

significant weight gain. Severely obese (BMI > 35 kg/m2) T2DM patients often require 

high doses of insulin due to grave insulin resistance and this will eventually result in a 

vicious cycle of increasing insulin requirement and persistent weight gain.94,95 

Because of the influence of body weight on insulin sensitivity and the fact that T2DM 

is also associated with hypertension, dyslipidemia and CVD, there is much interest in 

pharmacological interventions that not only lower blood glucose, but also have benefi-

cial effects on weight loss and cardiovascular risk factors. Over the past decade, drugs 

that influence the incretin system have been introduced.96 Incretins are gut hormones 

that stimulate insulin secretion after oral glucose administration. One of the most im-

portant incretins is glucagon like peptide (GLP)-1. GLP-1 is made in the enteroendocrine 

L cells in the distal ileum and colon and increases within minutes after eating. GLP-1 low-
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ers blood glucose levels by increasing glucose-dependent insulin secretion, suppress-

ing glucagon secretion, inhibiting gastric emptying, and reducing appetite and food 

intake.97 Injectable GLP-1 receptor agonists, for example exenatide and liraglutide, have 

been developed and are currently used as add-on therapy in obese patients with T2DM 

on oral hypoglycemic drugs. They reduce HbA1c and result in a significant amount of 

weight loss.98-101 Furthermore, there is some evidence that GLP-1 receptor agonists lower 

blood pressure and lipid levels, and are cardioprotective.102

The search for new pharmacologic interventions still continues. A possible new op-

tion in the treatment of T2DM may be topiramate. Topiramate is a neuro-therapeutic 

agent which is currently used for selected seizure disorders and migraine prophylaxis. 

In healthy obese subjects, topiramate treatment leads to a dose-dependent reduction 

in body-weight.103-106 In animals it has an insulin-sensitizing effect and improves ß-cell 

dysfunction, independently of a decrease in food intake and weight loss.107-110 In obese 

T2DM patients it lowers HbA1c and 2-h plasma glucose levels.111-113 However, whether 

these effects on glucose metabolism are also independent of body weight loss in 

humans is currently unknown. Also, phytosphingosine, one of the sphingolipids and 

a constituent of plants, fruits and yeasts, might be of interest. In mice dietary supple-

mentation with 1% phytosphingosine decreased plasma cholesterol and TG levels and 

seemed to positively affect insulin sensitivity.114 It is not known whether addition of 

phytosphingosine to the diet is also beneficial for humans.

 Currently, medical therapy is only initiated in patients with overt T2DM. It remains 

the question however, whether patients with insulin resistance or impaired glucose 

tolerance (IGT) should be treated to prevent the onset of T2DM. In several randomized 

controlled trials in individuals at high risk of developing T2DM lifestyle intervention (i.e. 

diet and/or exercise) as well as metformin treatment resulted in a significant reduction 

in the incidence of T2DM.115-118 The fact that lifestyle modification was as effective as 

metformin treatment, and in one study even more effective117, highlights the impor-

tance of weight loss as therapeutic intervention in insulin resistance and T2DM.

Weight loss interventions

Weight reduction is one of the hallmarks of therapy in T2DM. Hypocaloric diets (< 1200 

kcal/day) generally lead to moderate weight loss (5-10% loss of body weight), but this 

already improves insulin action, dyslipidemia and hypertension.119-122 Still, in T2DM 

patients, substantial weight loss is needed to improve peripheral insulin sensitivity.123 

Very low calorie diets (VLCD), containing ≤ 800 kcal/day, can be used to achieve such 

a substantial amount of weight loss. On average, in obese subjects a VLCD results in a 

reduction in body weight of 20 kg after 12 to 16 weeks. In T2DM, treatment with a VLCD 

leads to an improvement of hepatic as well as peripheral insulin sensitivity85,86 and the 
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mobilization of ectopic fat depositions.89,90,124 Unfortunately, long-term maintenance of 

weight loss is difficult.

One of the interventions that is known to result in more sustained weight loss (up 

to 20 years) is bariatric surgery.125 The most widely applied methods of bariatric surgery 

are laparoscopic adjustable gastric banding (LAGB), a purely restrictive procedure, and 

Roux-en-Y gastric bypass (RYGB), a combined restrictive and malabsorptive procedure. 

The Swedish Obese Subjects (SOS) study showed that surgically-induced weight loss 

in obese subjects was associated with a long-term reduction in overall mortality126 

and a decreased incidence of diabetes127 and cardiovascular events.128,129 Furthermore, 

bariatric surgery in T2DM patients improves glycemic control and even leads to diabetes 

remission in ~70-80% of these patients after 2 years-follow up.130,131 Bariatric surgery has 

been shown to improve liver, adipose tissue and skeletal muscle insulin sensitivity in 

obese non-diabetic as well as obese T2DM patients.132,133 

OUTLINE OF THE THESIS

Part I Insulin resistance: pathophysiology in South Asians

The first part of this thesis focuses on the excess risk of T2DM development in individuals 

of South Asian descent. In Chapter 2 the possible mechanisms leading to the increased 

incidence of insulin resistance in this ethnic group will be reviewed. In Chapter 3 we 

describe a study in which we performed a prolonged oral glucose tolerance test (OGTT) 

in healthy, young Caucasian and South Asian men. South Asians have higher insulin lev-

els during an OGTT than Caucasians, and these differences are still present 120 minutes 

after the glucose ingestion when the OGTT normally ends. Therefore we performed a 

prolonged OGTT (up to 360 minutes post glucose ingestion) to see if these higher levels 

of insulin persist for longer periods of time and if this will lead to reactive hypoglycemia 

later on. Reactive hypoglycemia is a condition characterized by a drop in glucose levels 

4-6 hours after a glucose load and is considered a sign of early latent diabetes.134-136 

Further, during the OGTT GLP-1 levels were measured to uncover a possible explanation 

for the increased insulin levels consistently found in healthy subjects of South Asian 

descent, since GLP-1 is known to stimulate insulin secretion from pancreatic β-cells in 

response to glucose.96 

Part II Insulin resistance: therapeutic strategies

The second part of this thesis focuses on the effects of pharmacological and weight loss 

interventions on insulin resistance and associated parameters.

In Chapter 4 we assessed the effect of topiramate treatment on insulin sensitivity 

and secretion in obese, insulin-resistant women in a randomized double-blind cross-
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over placebo-controlled study. To assess the effects of topiramate independent of 

weight loss, short-term (4 weeks) treatment was used. Insulin sensitivity and secretion 

were measured using a two-step hyperinsulinemic euglycemic clamp and a hypergly-

cemic clamp. In Chapter 5 we describe a retrospective study on the effect of adding a 

GLP-1 receptor agonist to existing insulin therapy in obese, highly insulin resistant T2DM 

patients. Main outcome parameters were changes in HbA1c, body weight and insulin 

dose during combination therapy. In Chapter 6, the effect of dietary supplementation 

with phytosphingosine on blood cholesterol levels and insulin sensitivity was assessed. 

Male subjects with the metabolic syndrome were included in a randomized double-

blind cross-over placebo-controlled study. Insulin sensitivity was measured with an 

intravenous glucose tolerance test (IVGTT).

In Chapter 7 and Chapter 8 results of a study assessing the effect of a 16-week VLCD, 

with or without exercise, in obese T2DM patients are described. Earlier we showed that 

this intervention resulted in an increase in liver, adipose tissue and skeletal muscle 

insulin sensitivity. The addition of exercise to the 16-week VLCD induced more fat loss 

and increased maximum aerobic capacity, but did not result in a higher insulin-stim-

ulated glucose disposal rate.137 Over the past few years wide-scale proteome analysis 

(‘proteomics’) has become available and has been applied in studies on obesity and 

T2DM.138,139 However, the plasma proteome of T2DM patients before and after a VLCD 

has not been studied. Changes in this profile after a diet, with or without exercise, could 

potentially help to further elucidate the physiology of weight loss and physical activity. 

Therefore proteomic (Chapter 7) analysis was performed in the VLCD-study. In addition, 

the plasma proteome profiles of the T2DM patients were compared to those of matched 

obese and lean controls to uncover proteins differentially expressed in T2DM patients 

as compared to the controls, searching for possible new biomarkers to identify patients 

at risk.

It is known that T2DM is associated with a decreased QoL. Some140-142, but not all143 

studies reported that weight loss results in an improved QoL. The effect of exercise on 

QoL has also not been fully elucidated.144,145 Therefore, in Chapter 8 we assessed whether 

the addition of exercise to the 16-week VLCD had a greater impact on QoL than the VLCD 

alone, both immediately and 18 months after the intervention. 

Diet-induced weight loss can result in ectopic fat mobilization and improvements 

in diastolic heart function.42,146 In Chapter 9 we studied the effect of surgically-induced 

weight loss on ectopic fat depositions and cardiac function, using magnetic resonance 

spectroscopy (MRS) and magnetic resonance imaging (MRI). Insulin-dependent T2DM 

patients were studied before and 16 weeks after a RYGB.

In Chapter 10 the results of the studies described in this thesis are summarized and 

discussed. 
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