
1

ECE/COMP SCI 352

DIGITAL SYSTEM

FUNDAMENTALS

DESIGN PROJECT 2
Due: Beginning of Class On Wednesday, April 11

BINARY LOGIC TRAINER OVERVIEW

The exterior view of the BLT is shown in Figure 1. In addition to the Power/Reset button, the BLT has two digit but-

tons, 0 and 1, for entering binary digits, and 10 operation buttons: CLEAR, ENTER, ADD, SUB, INC, DEC, NOT,

AND, XOR, and OR. There is a 2-digit hexadecimal LCD display for displaying input entries and results. In addi-

tion, there is a minus sign (–) which appears for negative results and an overflow indicator (OVF) which appears

when an overflow occurs.

The entered operands and results are bytes (eight bits). The result has a ninth bit that for value 0 appears as a blank

(for plus) and for value 1 as a minus sign to the left of the two hexadecimal digits that display the byte. Thus, the

result is in 9-bit sign-magnitude form. The entered operands are unsigned positive values. Operands are entered one

bit at a time beginning with the most significant bit. If fewer than eight bits are entered, the byte is filled with zeros to

the left of the entered bits. If more that eight bits are entered, the most recently entered eight bits before either

ENTER or an operation button is pushed are used. 

In this project, you are to design the datapath for the BLT (Binary Logic Trainer), a simple, clearly 

unmarketable, digital appliance. This datapath will consist of the eight operation ALU designed in Project 

1 along with additional datapath logic and register storage. You will design the additional datapath logic 

and registers and then interconnect them to form the datapath. The goals of this project are to:

1. Improve your understanding of material covered in class, and 

2. To provide a datapath module to be combined with a control module to implement the core 

processing logic for the BLT. 

This project is to be submitted and will be graded. It is to be performed by teams of two (not three or 

more) students to permit a more significant project and foster collaboration on difficult parts and in 

Mentor Graphics usage. The team is not to copy designs, simulations files, or other results from other 

student teams. However, sharing knowledge and tips on how to use Mentor Graphics with other teams is 

allowed and encouraged.

As a part of the project report, a table is to be included that reports in detail what parts of the project 

were performed by each team member; the table to be completed and submitted is included at the end of 

this write-up. Ordinarily the same grade will be given to each team member, but if there is a significant 

imbalance in overall contribution, individual grades will be given. 

This project write-up is organized as follows. Initially, we give a general overview of the BLT followed by a 

specification of the datapath itself. Next we give the general steps to follow in the design and specify 

what is to be included in the project report. You are strongly encourage to study this entire write-up 

before beginning the project.



2

The BLT uses a somewhat unusual entry

approach for operands and operations compared

to a normal calculator. In a normal calculator,

binary operations are infix, i. e., an operation

appears between the two operands to which it is

applied. For example, in a string of calculations,

to add B to the result obtained so far, the entry

order is +, B. In the BLT, binary operations are

postfix, i. e., an operation appears after the oper-

and to which it is applied. For example to add B

to the result obtained so far, the entry order is:

B, ADD

Because of the postfix notation, after either a

POWER/RESET or CLEAR operation, it is nec-

essary to have a means for terminating the entry

of the first operand entered. This termination is

done by using the ENTER operation, for exam-

ple:

A, ENTER

An example of entries for a binary computation with the displayed value after each entry in parentheses:

CLEAR (00), 1 (01), 0(02), 1(05), 0(0A), ENTER (0A), 1(01), 0(02), 0(04), 0(08), 0(10), SUB (– 06), 1(01),

0(02), 1(05), AND (04), DEC (011)

In detail, the buttons have the following functions:

POWER/RESET toggles the power on and off and, when the power is turned on, performs an asynchronous

reset of the storage elements in the BLT. 

ENTER enters the first operand to be processed. 

0 enters a 0 value into an operand.

1 enters a 1 value into an operand.

CLEAR clears both the result and the input operand and returns BLT to its initial state. It is distinguished from

POWER/RESET in two ways. It does not affect the power and the clear operation is synchronous rather than

asynchronous.

ADD adds the entered operand to the result to produce a signed result and an OVF indication if overflow occurs.

The result can be positive or negative.

SUB subtracts the entered operand from the result to produce a signed result and an OVF indication if overflow

occurs. The result can be positive or negative.

INC adds 1 to the result to produce a signed result and an OVF indication if overflow occurs. The result can be

positive or negative.

DEC subtracts 1 from the result to produce a signed result and an OVF indication if overflow occurs. The result

can be positive or negative.

NOT “1’s complements” the result, sets the sign to “blank,” and resets the OVF indication.

AND “ands” the entered operand with the result, sets the sign to “blank,” and resets the OVF indication.

XOR “exclusive-ors” the entered operand with result, sets the sign to “blank,” and resets the OVF indication.

OR “ors” the entered operand with the result, sets the sign to “blank,” and resets the OVF indication.

FIGURE 1

BLT - Exterior View

0

ENTER

ADD

POWER/RESET

1

0 0F F–OVF

SUB

INC DEC

NOT

ORXOR

AND

CLEAR



3

The top level of the design of the BLT appears in Figure 2.

In Project 2, you will complete the design of the CORE LOGIC. The I/O Logic and Circuitry is specified func-

tionally as follows and is not to be designed! This description of the interface to the outside world will give you a

sense of what is required to interface to the outside world and permit you to understand the environment for the

CORE LOGIC.

The external pushbuttons and the display connect to the I/O Logic and Circuitry which does the following:

1) Provides a clock signal, CK. This clock operates much faster than the entries occur.

2) Provides a master reset signal, RESET, that is activated when the power is turned on.

3) Debounces and otherwise conditions signals from the pushbuttons,

4) Produces a signal DATA or a signal OPTR when specific pushbuttons are released. These signals are synchronized

with CK and last for exactly one clock cycle from a positive edge of CK. DATA is active (=1) for 0 or 1 pushbuttons,

and OPTR is active (= 1) for the eight operation pushbuttons ADD through OR.

5) Produces DATA_IN values 0 and 1 that are synchronous with the CK and valid for exactly one clock cycle from a

positive edge of CK. These signals are valid only when DATA is active (=1).

6) Produces core inputs CLEAR, ENTER, and ADD through OR that are synchronous with CK and are valid for

exactly one clock cycle from a positive edge of CK. ADD through OR values are valid only when OPTR is active (=

1).

ENTER
CLEAR

POWER/
RESET

Display

0
1

I/0 Logic and Circuitry

CORE LOGIC

CONTROL

RESET

DATA_IN

CK

ENTER

DATA

OPTR

SUB

ADD

PLI

DATAPATH

CLI

DISP(7:0)

0 0F F–ERR

ADD

SUB

INC

DEC

NOT

AND

XOR

OR

INC

DEC

NOT

AND

XOR

OR

SLI

CLA

LDA

MODE

PASS_B

S(2:0)

OVF

MINUS_OUT

CLEAR

FIGURE 2

BLT - CORE LOGIC



4

7) 5) Takes the 8-bit output DISP(7:0) from the CORE LOGIC and provides the display decoders and drivers for

driving the two hex-digit displays, and 

8) takes MINUS_OUT and OVF from the CORE LOGIC and provides the display drivers.

The CORE LOGIC is divided into two pieces, the DATAPATH and the CONTROL. You will design the DATA-

PATH in Project 2, and the CONTROL and BLT CORE LOGIC in Project 3.

FIGURE 3

Datapath - Block Diagram
DISP(7:0)

SLI

LDA

S(2:0)

OVF

CLI

PLI

CLA

PASS_B

MODE

CK

RESET
DATA_IN

REG_IN 
Parallel_in

Parallel_out

Serial_in

8-bit PI-SI-PO Shift Register
Asyn. Reset & Sync. CLEAR

Clear
Reset

Load

Shift_Left

alu8
8-bit ALUCB8

A B

R

Selective 2’s
Complementer
twos_comp

CMP_OUT

CMP_IN

CMP

MUX

A B

CK

RESET ACC 
ACC_IN

Asyn. Reset & Sync. CLEAR

Clear
Reset

Load

Y

8-bit Register

8-bit 2-to-1 Multiplexer
A B

Y

MUX

Datapath

Control

8-bit 2-to-1 Multiplexer

ACC_OUT

MODE

CK

RESET

MINUS
OVF

CLA
CB8

S_ALU(2:0)

CMP

7 0

MINUS_OUT

S

S

DAT_CNTL

S2

S1

S0 LDA



5

DATAPATH SPECIFICATION 

In this part of the project, you are to design the byte-wide DATAPATH for the BLT. Note that the DATAPATH con-

tains seven components: two registers with different functions: REG_IN and ACC, an 8-bit ALU: alu8, a 2’s com-

plementer: twoscomp, two copies of an 8-bit 2-to-1 multiplexer: MUX, and the datapath control, DAT_CNTL.

Within the datapath control are two flip-flops: MINUS and OVF, which store the sign and overflow signals, respec-

tively. Clearly, your design should be hierarchical with these seven components interconnected to form the DATAP-

ATH. In designing these components, you may use any of the components available in the Mentor genlib library; by

looking for components already available in the library or subcomponents that can be used to easily build a compo-

nent, you can save yourselves considerable effort. Next, the function of each of the datapath components is specified. 

MUX – 8-bit 2-to-1 Multiplexer:

This multiplexer is an 8-bit version of the 2-to-1 line multiplexer shown in Figure 3-21, p. 121 of Mano and Kime.

For PASS_B = 1, input B is placed on Y. Otherwise, input A is placed on Y.

alu8 – 8-bit ALU with 8 Functions:

The ALU designed in Project 1.

twos_comp – Selective 8-bit 2’s Complementer:

For CMP = 1, the 2’s complement of CMP_IN is placed on CMP_OUT. Otherwise, CMP_OUT = CMP_IN.

ACC - 8-bit Register with Asynchronous Reset and Synchronous Clear: 

The function of this register consisting of eight D flip-flops is described in the following table.

Note that all eight possible combinations of RESET, CLA, and LDA are included in the table. RESET is the only

active operation that can be performed without use of the Positive Edge on CK.

REG_IN - 8-bit Shift Register with Asynchronous Reset, Synchronous 

Clear, Load, and Shift Left Operations:

The function of this register consisting of eight D flip-flops is described in the following table. 

Note that all sixteen possible combinations of RESET, CLI, and PLI, and SLI are included in the table. RESET is the

only active operation that can be performed without use of the Positive Edge on CK.

OPERATION RESET CLA LDA CK

ACC_OUT

(after operation)

Asynchronous Reset 1 — — — 00000000

Synchronous Reset 0 1 — Positive Edge 00000000

Load 0 0 1 Positive Edge ACC_IN(7:0)

Hold 0 0 0 Positive Edge ACC_OUT(7:0)



6

DAT_CNRL – Datapath Control:

The datapath control contains combinational logic and two flip-flops. The flip-flops store the sign of the current

result (MINUS) and the overflow status (OVF) of the most recent operation (OVF). In addition to the logic to drive

these two flip-flops, the datapath control also determines the following: 1) whether to complement the output of alu8

and 2) the value of the result sign (blank = 0, – = 1) to be passed to the display. 

COMBINATIONAL LOGIC The actual ALU operation to be performed, whether or not the result from the ALU is to be

2’s complemented, the result sign, and the overflow indication are all defined by the rules of sign-magnitude opera-

tions with the sign of the “B” operand fixed to a positive value. For example, if the button pushed is ADD (S = 000),

and the “A” operand in ACC is negative, then the actual ALU operation is SUB (S_ALU = 001) causing a subtraction

of magnitude “B” from magnitude “A” to be performed. In this case, if a borrow occurs (CB8 = 1), the result must be

complemented (CMP = 1), the result sign will change, i. e., be positive (MINUS = 0), and overflow is impossible. A

similar analysis can be used to complete the table entries for the arithmetic operations. For all logic operations, by

definition, the actual ALU operation performed is unaffected by MINUS, and CMP = 0, SIGN = 0, and OVERFLOW

= 0. 

OPERATION RESET CLI PLI SLI CK

ACC_OUT

(after operation)

Asynchronous Reset 1 — — — — 00000000

Synchronous Reset 0 1 — — Positive Edge 00000000

Load 0 0 1 — Positive Edge ACC_IN(7:0)

Shift Left 0 0 0 1 Positive Edge ACC_OUT(6:0), Serial_in

Hold 0 0 0 — Positive Edge ACC_OUT(7:0)

S(2:0) MINUS CB8 S_ALU(2:0) CMP MINUS(t+1) = SIGN
OVF(t+1)

= OVERFLOW

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0 1 0

0 0 0 1 1 0 0 1 1 0 0

0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1

0 0 1 1 0 0 0 0

0 0 1 1 1 0 0 0 

0 1 0 0 0 0 1 0

0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 1

0 1 0 1 1 0 1 1

0 1 1 0 0 0 1 1

0 1 1 0 1 0 1 1

0 1 1 1 0 0 1 0

0 1 1 1 1 0 1 0

1 Y1 Y2*

*Y1 Y2 take on values 0 0, 0 1, 1 0, and 1 1, respectively for NOT, AND, XOR, and OR.

0 0 1 Y1 Y2



7

MINUS AND OVF FLIP-FLOPS These flip-flops have the same functional properties as those used in ACC. For

example, the MINUS flip-flop is specified in the following table.

In addition to the MINUS flip-flop, there is logic to control the display of MINUS. The signal MINUS_OUT is 0 for

MODE = 0 and is MINUS for MODE = 1.

DATAPATH DESIGN

Use the specifications above to obtain the data path components and the datapath. If a simulation of any component

designed indicates an OVF, rework the design until it functions correctly. Any schematics or traces that are not

easily readable with be given 0 points!

MUX – 8-bit 2-to-1 Multiplexer:

Design: Locate in genlib or design from parts in genlib the 8-bit 2_to_1 Multiplexer. Generate a symbol only if

needed.

Validation: Do only if you did a design.

Submission: Submit the schematic only if you did a design.

alu8 – 8-bit ALU with 8 Functions:

Design: The ALU designed in Project 1. Generate a symbol for the ALU design.

Validation: None.

Submission: None.

twos_comp – Selective 8-bit 2’s Complementer:

Design: Do this design by designing a bit cell module CMP_CELL such the bit cell module can be used with a ripple

carry between cells for form the 8-bit selective 2’s Complementer. The input to the cell should be CMP_IN, CMP,

CMP and CARRY_IN and the outputs from the cell should be CARRY_OUT and COMP_OUT. The CARRY_IN to

the least significant cell in the ripple carry structure should be 0 and the CARRY_OUT from the most significant cell

should be ignored.

Validation: Use Quicksim simulation to validate your design. Apply the following combinations to your cell and

provide annotated trace outputs. 

OPERATION RESET CLA LDA CK
MINUS (after 

operation)

Asynchronous Reset 1 — — — 00000000

Synchronous Reset 0 1 — Positive Edge 00000000

Load 0 0 1 Positive Edge SIGN

Hold 0 0 0 Positive Edge MINUS (before 

operation)

CMP_IN CMP

CMP_OUT

(expected)

F F 0 F F

F F 1 0 1

0 0 0 0 0

0 0 1 0 0



8

Submission: Your schematic for CMP_CELL, Your schematic for twos_comp, the output traces from your simula-

tion annotated to show correctness.

ACC - 8-bit Register with Asynchronous Reset and Synchronous Clear:

Design: Design a bit cell, ACC_CELL, of the register by using sequential circuit design techniques. Use a D flip-flop

with asynchronous reset from genlib as the storage element. Generate a symbol for ACC_CELL and combine 8 cells

in parallel to form the register ACC.

Validation: Apply the following sequence of operations to ACC using Quicksim simulation. Annotate the simula-

tion output to show that it is correct.

Submission: Your ACC_CELL schematic, your ACC schematic. Do NOT submit simulation traces.

REG_IN - 8-bit Shift Register with Asynchronous Reset, Synchronous 
Clear, Load, and Shift Left Operations:

Design: Copy the contents of your ACC_CELL into a sheet REG_IN_CELL and add additional logic, and add and

rename inputs and outputs to add the shift left function. Generate an ACC_CELL symbol. Combine 8 ACC_CELLS

to form REG_IN.

Validation: Apply the following sequence of operations to REG_IN using Quicksim simulation. Annotate the simu-

lation traces to show that it is correct.

0 1 0 0 1

0 1 1 F F

OPERATION RESET CLA LDA CK

ACC_OUT

(after operation)

Load 111111111 0 0 1 0->1 11111111

Asynchronous Reset 1 0 0 0 00000000

Hold 0 0 0 0->1 00000000

Load 11111111 0 0 1 0->1 11111111

Hold 0 0 0 0->1 11111111

Synchronous Reset 0 1 1 0->1 00000000

Load 11111111 0 0 1 0->1 11111111

Load 01010101 0 0 1 0->1 01010101

Load 10101010 0 0 1 0->1 10101010

OPERATION RESET CLI PLI SLI CK
ACC_OUT

(after operation)

Load 111111111 0 0 1 1 0->1 11111111

Asynchronous Reset 1 0 0 0 0 00000000

Hold 0 0 0 0 0->1 00000000

Load 11111111 0 0 1 1 0->1 11111111

CMP_IN CMP
CMP_OUT
(expected)



9

Submission: Your REG_IN_CELL schematic, your REG_IN schematic, and your annotated simulation traces.

DAT_CNTL – Datapath Control:

Design: Fill in the values for the six output variables in the last four columns of the table given for the Combinational

Logic which is repeated at the end of this writeup for your convenience. Find equations for the logic manually or by

using cafe (The equations are not very complex.) Use an ACC_CELL for the MINUS and OVF flip-flops. Draw the

schematic for DAT_CNTL

Validation: Copy the force file DAT_CNTL.force by 

cp ~ece352/public/DAT_CNTL.force

or from the course website and simulate your design with it. Annotate the simulation to show correctness of operation

by indicating what should happen for each input pattern. 

Submission: Completed truth table, equations, schematic, and annotated simulation traces for DAT_CNTL.

DATA PATH INTEGRATION

Design: Open a new sheet in da called DATAPATH and interconnect the components developed thus far to imple-

ment DATAPATH. Generate a symbol for DATAPATH.

Validation: Copy the force file DATA_PATH.force by 

cp ~ece352/public/DATA_PATH.force

or from the course website and simulate your design with it. Annotate the simulation to show correctness of operation

by indicating what should happen for each input pattern. 

Submission: Your DATAPATH schematic and annotated output traces.

Hold 0 0 0 0 0->1 11111111

Synchronous Reset 0 1 1 1 0->1 00000000

Load 11111111 0 0 1 1 0->1 11111111

Load 01010101 0 0 1 1 0->1 01010101

Load 10101010 0 0 1 1 0->1 10101010

Shift Left (Serial_in = 1) 0 0 0 1

Shift Left(Serial_in = 0 0 0 0 1

OPERATION RESET CLI PLI SLI CK

ACC_OUT

(after operation)



10

REPORT COVER PAGE (TO BE SUBMITTED)

ECE/COMP SCI 352

PROJECT 2 – SPRING 2001
TEAM MEMBERS:

1. NAME ___________________________________ 

2. NAME ___________________________________ 

TABLE OF CONTENTS
All items submitted must be in the order given below to assist us in grading. Special points 

will be deducted for items that are out of order. Also special points will be deducted for 

unreadable schematics or simulation traces.

ITEM GRADE

1. MUX 

a) Schematic (if necessary) _____

2. twos_comp

a) Schematic for CMP_CELL _____

b) Schematic for twos_comp _____

c) Annotated traces from simulation _____

3. ACC

a) Schematic for ACC_CELL _____

b) Schematic for ACC _____

4. REG_IN

a) Schematic for REG_IN_CELL _____

b) Schematic for REG_IN _____

c) Annotated traces from simulation _____

5. DAT_CNTL

a) Completed Truth Table DAT_CNTL Combination Logic _____

b) Equations for DAT_CNTL Combinational Logic _____

c) Schematic for DAT_CNTL _____

d) Annotated traces from simulation _____

6. DATA PATH INTEGRATION

a) Schematic for DATAPATH _____

b) Annotated traces from simulation _____

7. TEAM EFFORT REPORT

TOTAL _____

STUDENT NUMBERS: 

1. ________________________ _____

2. ________________________ _____



11

TEAM EFORT REPORT (TO BE SUBMITTED)

Submit: This page as the last page of your project report. Each row of the table containing the task contributions

must sum to 100%. 

Comments:

Team Member Names: 1. 2.

MUX: Design (if done) % %

MUX: Schematic Entry (if done) % %

twos_comp: Design % %

twos_comp: Schematic Entry % %

twos_comp: Validation % %

ACC: Design % %

ACC: Schematic Entry % %

ACC: Validation % %

REG_IN: Design % %

REG_IN: Schematic Entry % %

REG_IN: Validation % %

DAT_CNTL: Design % %

DAT_CNTL: Schematic Entry % %

DAT_CNTL: Validation % %

Data Path Integration: Design % %

Data Path Integration: Schematic Entry % %

Data Path Integration: Validation % %

Other: % %

Other: % %

Other: % %

TOTAL (of columns 1 and 2 must be 100%) % %



12

DAT_CNTL TRUTH TABLE (TO BE SUBMITTED)

S(2:0) MINUS CB8 S_ALU(2:0) CMP MINUS(t+1) = SIGN
OVF(t+1)

= OVERFLOW

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0 1 0

0 0 0 1 1 0 0 1 1 0 0

0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1

0 0 1 1 0 0 0 0

0 0 1 1 1 0 0 0 

0 1 0 0 0 0 1 0

0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 1

0 1 0 1 1 0 1 1

0 1 1 0 0 0 1 1

0 1 1 0 1 0 1 1

0 1 1 1 0 0 1 0

0 1 1 1 1 0 1 0

1 Y1 Y2*

*Y1 Y2 take on values 0 0, 0 1, 1 0, and 1 1, respectively for NOT, AND, XOR, and OR.

0 0 1 Y1 Y2


