
Polymer
Chemistry

PAPER

Cite this: Polym. Chem., 2016, 7, 184

Received 3rd September 2015,

Accepted 20th October 2015

DOI: 10.1039/c5py01418b

www.rsc.org/polymers

Processing and adjusting the hydrophilicity of
poly(oxymethylene) (co)polymers: nanoparticle
preparation and film formation†

Markus B. Bannwarth,‡a,c Rebecca Klein,‡b,c Sven Kurch,b Holger Frey,b

Katharina Landfestera and Frederik R. Wurm*a

Handling the insoluble POM: the preparation of nanoparticles based on hyperbranched-linear-hyper-

branched ABA triblock copolymers with variable hydrophilicity and composed of short hyperbranched

polyglycerol (hbPG) as the A-blocks and linear poly(oxymethylene) (POM) as a B-block is described. The

POM-hbPG-nanoparticles with diameters in the range of 190 to 250 nm were generated in a convenient

process, combining the solvent evaporation process with the miniemulsion technique, a water borne

handling for POM-copolymers. Furthermore, the film formation properties of the nanoparticles were

investigated by deposition on silicon and subsequent sintering, which leads to films with a thickness in the

μm-range that were investigated via SEM. The surface properties of these films were investigated via static

contact angle measurements at the liquid/vapor interface. The contact angle decreases from 67° for the

polymer film based on POM with two hydroxyl end groups to 29° for POM-copolymers with 16 hydroxyl

groups, confirming the influence of the polymer structure and size of the hbPG block on the surface pro-

perties. In summary, this work presents a possibility for a facile handling and film formation of the insolu-

ble POM, opening new applications, e.g., in coatings.

Introduction

Poly(oxymethylene) (POM) is an exceptional material due to its

excellent mechanical properties, such as high tensile strength

and remarkable impact strength, that result from the high

degree of crystallinity. A drawback accompanied with these

properties is its insolubility both in organic solvents and

water, which complicates processing of POM. The POM homo-

polymer, also called polyacetal, consists only of repeating

carbon–oxygen linkages and therefore is temperature- and acid

labile and degrades under the release of formaldehyde. In

contrast, the commercially available POM is a copolymer pro-

duced by cationic ring-opening polymerization of 1,3,5-triox-

ane and other cyclic ethers, such as ethylene oxide, 1,3-

dioxolane and 1,3-dioxepane. Due to this copolymer structure,

greatly improved thermal stability is achieved at the expense of

a slightly reduced degree of crystallinity.1–4

To the best of our knowledge, organic or aqueous disper-

sions of POM nanoparticles have not been prepared to date,

although this may be interesting for handling and processing

of POM. Several groups have prepared nanocomposites based

on POM and inorganic nanoparticles to ameliorate the pro-

perties of POM. Romero-Ibarra et al.5 blended POM with

BaSO4 nanoparticles to obtain X-ray opaque materials. The

combination with polyhedral oligomeric silsesquioxanes

(POSS) resulted in enhanced thermal stability.6,7 Due to the

flame-retardant and antioxidant properties and its brightness,

nanocomposites with TiO2 nanoparticles led to higher thermal

stability.8 Combination of POM with hydroxyapatite nano-

particles permits the use for bone tissue replacement.9–11

Furthermore, hybrid systems based on MoS2,
12–14 Al2O3,

15,16

ZnO,17,18 and clay19,20 nanoparticles and POM were produced.

In this work, polymer nanoparticles based on POM (co)poly-

mers have been prepared. A versatile method for the gen-

eration of a variety of nanoparticles is the miniemulsion

technique. This technique enables the formation of structured

polymeric nanoparticles and the encapsulation of solid or

liquid, organic or inorganic or hydrophilic or hydrophobic

materials into a polymeric carrier.21 In a typical oil-in-water

miniemulsion, an oil, a hydrophobic agent, an emulsifier and
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water are homogenized by high shear forces, resulting in

homogeneous and monodisperse droplets in the size range of

30 to 500 nm.22 For particle formation with preformed poly-

mers a combination of the emulsion/solvent evaporation

method23 and the miniemulsion technique can be used. In

this case, the droplets consist of a solution of the preformed

polymer and after evaporation of the solvent, a polymer dis-

persion is obtained.24–26

Recently reported28 preformed nonlinear ABA triblock copo-

lymers consisting of a linear POM block and hyperbranched

poly(glycerol) (hbPG) blocks are used for the miniemulsion/

solvent evaporation protocol to generate nanoparticles consist-

ing of hbPG-b-POM-b-hbPG copolymers. Various degrees of

polymerization of hbPG were studied with respect to the hydro-

philicity of the resulting polymeric nanoparticles. The particle

dispersion was drop-cast and sintered to smooth films onto a

silicon surface and investigated via static contact angle

measurements. A strong impact of the hbPG-segments on the

hydrophilicity of the POM surface was detected. The approach

allows facile handling and processing of the highly crystalline

and therefore insoluble POM as an alternative to injection

molding and extrusion. We demonstrate that sintering results

in films that retain the excellent mechanical properties of

POM, which is of significant interest for impact resistant

surfaces.

Experimental
Instrumentation

1H NMR spectra were recorded at 600 MHz at 37 °C on a

Bruker Avance III and are referenced internally to residual

proton signals of the deuterated solvent. SEC measurements in

HFIP containing 0.05 mol L−1 KFAc were performed on a Jasco

LC-NetII/ADC as an integrated instrument including a PS PFG

100 A column and a RI detector. Poly(methyl methacrylate)

provided by Polymer Standards Service was used as calibration

standard. DSC measurements were carried out on a Perkin-

Elmer DSC 8500 in the temperature range of −95 to 180 °C in

two heating runs, using heating rates of 10 K min−1 under

nitrogen. The hydrodynamic radius of the POM-nanoparticles

was determined via DLS measurements on a NICOMP Zetasi-

zer at a measurement angle of 90°. The dispersion obtained

after particle formation was diluted with cyclohexane (1 : 50)

and measured at 25 °C. Scanning electron microscopy (SEM)

was performed on a Hitachi SU8000 at an extractor voltage of

3.0 kV. To form a miniemulsion, a 1/2 inch tip Branson Soni-

fier W-450-Digital was used. Contact angle measurements were

performed on a Dataphysics Contact Angle System OCA using

MilliQ-water as interface agent.

Materials

Materials were used as received, if not stated otherwise. Triox-

ane, 1,3-dioxolane and triflic acid were obtained from Ticona

GmbH. Cesium hydroxide monohydrate and 1,1,1,3,3,3-hexa-

fluoro-2-isopropanol-d2 (HFIP-d2) were purchased from Acros.

Methanol, cyclohexane, benzene and sodium dodecyl sulfate

(SDS) were obtained from Sigma-Aldrich and HFIP from Apollo

Scientific Limited. Glycidol and dimethylacetamide (DMAc)

(99% Acros) were purified by distillation from CaH2 prior to

use. The surfactant poly[(ethylene-co-butylene)-b-(ethylene

oxide)] with Mw = 3700 g mol−1 for P(E/B) and Mw = 3600 g

mol−1 for PEO was synthesized as described elsewhere.27

Synthesis of poly(oxymethylene) (POM) and the ABA triblock

copolymers (hbPG-b-POM-b-hbPG)

The synthesis of POM and the corresponding ABA triblock

copolymers was performed according to literature.28 Characteri-

zation data of the linear poly(oxymethylene) (co)polymer

block: SEC (HFIP, PMMA-Std.): Mn = 10 700 g mol−1; PDI =

2.09. 1H NMR (HFIP-d2, 600 MHz): δ [ppm] = 5.20–5.00 (–CH2

polymer main chain); 5.00–4.95 (–CH2– dioxolane); 3.95–3.90

(–CH2– dioxolane), yield: 53%.

For the synthesis of the triblock copolymers, the linear

bishydroxy-functional POM macroinitiator was deprotonated

and a solution of glycidol was slowly added with a syringe

pump to perform the hypergrafting reactions on both ends.

The characterization data of the obtained polymers are sum-

marized in Table 1.

Preparation of poly(oxymethylene) (POM) and POM-copolymer

nanoparticles

For the preparation of the nanoparticles, 50 mg of the

respective POM (co)-polymers were dissolved in 2 g of HFIP at

30 °C in an ultrasonication bath. Separately, 10 mg of the sur-

factant poly[(ethylene-co-butylene)-b-(ethylene oxide)] was dis-

solved in 10 g cyclohexane at 40 °C in an ultrasonication bath.

Table 1 Characterization data for nonlinear copolymers

No. Composition (NMR) POM/mol% PG/mol% Mn
a/g mol−1 Mn

b/g mol−1 Mw/Mn
b Tm

c/°C Tg
c/°C

1 POM120
d 100 0 3800 10 700 2.09 164.4 —

2 hbPG2-b-POM120-b-hbPG2 97 3 4000 11 700 1.96 159.3 −65.3
3 hbPG3-b-POM120-b-hbPG3 95 5 4200 14 600 1.82 159.3 —

4 hbPG5-b-POM120-b-hbPG5 92 8 4400 14 400 1.88 157.6 −62.1
5 hbPG7-b-POM120-b-hbPG7 89 11 4800 10 000 2.53 159.0 −55.0

a Calculated from 1H NMR spectra. bDetermined by SEC in HFIP (RI-detector signal, PMMA standards). cDSC data from second heating run,
heating rate: 10 K min−1. dCopolymer of trioxane and dioxolane (10%).
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Both phases were mixed, pre-emulsified mechanically and

sonified for 2 min under ice cooling using a 1/2 inch tip soni-

fier (5 s pulse, 10 s pause, 70% amplitude). The resulting mini-

emulsion was stirred for 30 min at 600 rpm in an open vial to

evaporate the HFIP. Purification of excess surfactant was

achieved by centrifugation of the nanoparticles and redisper-

sion in pure cyclohexane. For redispersion in water, 0.5 g of

the nanoparticle dispersion in cyclohexane was added to 10 g

of an aqueous solution containing 10 mg of SDS and the two

phase system stirred in an open vial for 4 h at 1400 rpm to

evaporate the cyclohexane.

Film formation

For film formation, the nanoparticle dispersion in cyclohexane

(solid content of 1 wt%) was drop-casted onto a silicon wafer.

Heating of the wafer for 10 s to 180 °C resulted in film for-

mation of the POM-particles. To analyze the film consistency

and thickness, the wafer was broken in half and investigated

via SEM under various angles.

Results and discussion
Polymer synthesis and characterization

In this work, the established linear POM homopolymer as well

as innovative hyperbranched-linear-hyperbranched ABA tri-

block copolymers based on hbPG and POM were applied for

the preparation of aqueous nanoparticle dispersions. As sum-

marized in Table 1, the polymers mainly consist of POM (89 to

97 mol%) and only a small amount of hbPG (3 to 11 mol%)

was attached. By this, the mechanical properties of POM are

rarely affected, however, the hypergrafting enabled an adjusta-

ble hydrophilicity of the polymers, nanoparticles, and the

obtained polymer films.

The ABA triblock copolymers were synthesized via a combi-

nation of cationic ring-opening copolymerization (ROP), fol-

lowed by the multibranching anionic ROP of glycidol.28 ABA-

type nonlinear block copolymers have received increased atten-

tion in recent years, due to their high end group functionality

based on the combination of a linear with a hyperbranched

segment.29 In the first step, linear bishydroxy-functional poly-

(oxymethylene) (POM) copolymers were prepared by cationic

ring-opening copolymerization of trioxane and 1,3-dioxolane

with formic acid as a transfer agent. The resulting formiate

end groups were hydrolyzed to obtain the bishydroxy end-func-

tional POM. This serves as a difunctional macroinitiator for

the ensuing hypergrafting reaction of glycidol, resulting in

nonlinear ABA triblock copolymers with an adjustable number

of hydroxyl groups (Fig. 1).30,31 To enable a clear differen-

tiation between the linear POM and the hyperbranched block

copolymers, the linear POM (consisting of trioxane and dioxo-

lane) will be called POM homopolymer in the following.

Table 1 shows the characterization data of the polymers

used for nanoparticle formation obtained by NMR spec-

troscopy and SEC as well as their thermal properties deter-

mined by DSC.

The number-averaged molecular weight of the difunctional

macroinitiator (Fig. 1) was determined via 1H NMR endgroup

analysis (compare Fig. S1†). Integration of the resonances of

the methylene signals stemming from ring-opened trioxane (at

5.10 ppm) and dioxolane (at 5.00 and 3.95 ppm) results in a

Mn of 3800 g mol−1. SEC in HFIP vs. PMMA standards overesti-

mates the molecular weights at ca. 10 kg mol−1, however, the

molecular weight dispersity of ca. 2 is comparable to previous

reports. After hypergrafting of glycidol new signals between

3.50 and 4.20 ppm corresponding to hbPG indicate the suc-

cessful triblock copolymer formation.28

The molecular weights (determined by NMR) of the result-

ing nonlinear triblock copolymers vary from 4000 to 4800 g

mol−1. SEC measurements (Fig. S2†) determine apparent mole-

cular weights in the range of 10 000 to 14 600 g mol−1 and

moderate polydispersities (Mw/Mn: 1.82–2.53).

Thermal properties were investigated via differential scan-

ning calorimetry (DSC, compare the ESI†). The characteristic

melting range of POM is detected between 175 °C and 185 °C

(only trioxane as a monomer) and around 165 °C for copoly-

mers based on trioxane and dioxolane, strongly dependent on

the dioxolane content, while reported glass transition tempera-

tures (Tg) are detected at −82 °C.32 From the data in Table 1 a

melting temperature (Tm) of 164.4 °C was detected for the

macroinitiator (1), which is in the expected range. For the tri-

block copolymers the Tms decrease to values of 157.6 to

159.3 °C. Additionally, a Tg is observable that increases from

−65.3 to −55.0 °C with increasing hbPG content. For all block

copolymers the Tg of the hbPG segments (with a typical Tg of

ca. −20 °C) is not detectable, probably due to the rather low

DPn of the hbPG segments and was reported earlier for other

linear-hyperbranched block copolymers.33

Nanoparticle preparation

Controlled solvent evaporation combined with miniemulsion

is a facile process to prepare polymer nanoparticles from pre-

viously synthesized materials by dissolving them in a good

solvent for the polymer and dispersing this solution in a non-

solvent. After solvent evaporation, a polymer-nanoparticle dis-

persion is obtained. For the POM (co)polymers it was necess-

ary to optimize this protocol due to the low solubility of POM

in most organic solvents. Fluorinated solvents, such as HFIP

Fig. 1 Structure of hyperbranched-linear-hyperbranched ABA triblock

copolymers.28
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can be used to dissolve POM and its copolymers (Fig. 2). The

POM (co)polymers were dissolved in HFIP and mechanical stir-

ring was used to produce a pre-emulsion of HFIP/polymer dro-

plets in a continuous cyclohexane phase. For stabilization of

this emulsion a block copolymer consisting of a poly(ethylene

oxide) block with Mw ∼ 3600 g mol−1 and a poly(ethylene-co-

butylene) block with Mw ∼ 3700 g mol−1 was identified as an

ideal nonionic surfactant. It is known to be suitable for water-

in-cyclohexane (mini)emulsions and we identified it to be suit-

able also for HFIP-in-cyclohexane emulsions as well. The

hydrophilic PEO will be located in the polar HFIP droplet

phase, while the P(E/B) block will be mainly present in the

apolar phase to sterically stabilize the emulsion and prevent

the droplets from coalescence. Sonication of the two-phase

system leads to the formation of miniemulsion droplets of

HFIP containing the POM homo- and block copolymers. By

stirring the miniemulsion in an open vial at room tempera-

ture, the good solvent HFIP was evaporated quickly due to the

low boiling point of HFIP of ca. 58 °C. After evaporation of

HFIP, a nanoparticles dispersion of POM (co)polymers in

cyclohexane was obtained, which was stable over a period of

several months.

The diameter of the POM and hbPG-b-POM-b-hbPG nano-

particles was found to be in the range of 190–250 nm with a

standard deviation of ∼30% by dynamic light scattering (DLS)

(Table 2). In all cases the nanoparticle diameters were similar

and no effect of the copolymer composition, i.e. differences

between POM and the nonlinear POM block copolymers were

observed. Thus, the size of the nanoparticles is independent of

the number of hbPG-units at the ends, at least to an extent of

in average seven PG-units at each chain end.

Additionally, redispersion of the organic nanoparticle dis-

persion (from cyclohexane) in water was possible using an

aqueous sodium dodecylsulfate (SDS) solution (with sub-

sequent dialysis), leading to an aqueous dispersion of POM

nanoparticles with variable hydrophilicity. A slight increase of

the nanoparticle sizes was found (300–320 nm, standard devi-

ation ∼42%, from DLS, cf. ESI Table S1†), probably due to swel-

ling of the polymers in water.

To compare the sizes of the nanoparticles in solution and

in the dried state and to get an insight into the morphology of

deposited films from the POM homo- and block copolymers,

SEM imaging of all samples was performed (Fig. 3 and S3†).

The diameters determined from the SEM images are similar to

the values determined by DLS, however, the average diameter is

slightly smaller. As expected, spherical nanoparticles are

obtained, however, a perfect spherical shape is not always found,

and a slight anisotropy can be observed. A certain anisotropy of

the nanoparticles is typical for nanoparticles consisting of poly-

mers with a high degree of crystallinity, such as POM.34

Additionally, the polyacetal structure of the POM-block

makes these nanoparticles also interesting as degradable

materials for various applications. The acid catalyzed degra-

dation of the nanoparticles was studied with an aqueous dis-

Fig. 2 Preparation of POM or POM copolymer nanoparticles. By mech-

anical stirring and ultrasonication, miniemulsion droplets are formed. By

solvent evaporation, the droplets are transformed to solid POM nano-

particles. A dispersion of POM nanoparticles in cyclohexane is obtained.

Table 2 Hydrodynamic diameters of different POM nanoparticles

determined via DLS

No. Composition (NMR)
Hydrodynamic
diameter/nm

Standard
deviation

1 POM120 220 28%
2 hbPG2-b-POM120-b-hbPG2 250 27%
3 hbPG3-b-POM120-b-hbPG3 190 38%
4 hbPG5-b-POM120-b-hbPG5 210 26%
5 hbPG7-b-POM120-b-hbPG7 200 21%

Fig. 3 SEM images of POM nanoparticles composed of POM and POM

block copolymers with different end-group functionalization: (a)

POM120, (b) hbPG5-b-POM120-b-hbPG5.
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persion. To this dispersion hydrochloric or acetic acid was

added as a proof of principle and the mixture heated to 80 °C

for one hour. In both cases a clear solution was obtained

revealing the full degradation of the nanoparticles under

acidic conditions. Therefore, different materials like pigments

or drugs can be encapsulated and can be released reducing

the pH. This opens plenty of new applications in, e.g., industry

or medicine.

Film formation

For film formation, the POM nanoparticle dispersion was

drop-casted on a silicon wafer and sintered at elevated tem-

peratures (see Experimental section). In order to obtain impact

resistant, homogeneous films, the particles have to be heated

above their melting temperature (Tm), which is in the range of

158–165 °C (see Table 1) for POM and the POM copolymers.

The surface of the films formed after annealing to 180 °C for

10 s was investigated via SEM. Fig. 4 shows the particles after

deposition on the silicon wafer before sintering (top view a,

side view b) and after sintering (top view c, side view d). After

sintering at 180 °C for 10 seconds a homogenous film is

obtained, evidencing the suitability of these nanoparticles for

the formation of smooth POM surfaces. The optical micro-

graphs show the silicon wafer coated with hbPG3-b-POM120-b-

hbPG3 nanoparticles before (e) and after (f ) the sintering pro-

cedure. The deposited nanoparticles can be seen with the

naked eye as an opaque layer before sintering. After the sinter-

ing process a transparent and colorless polymer film had been

generated that may find application in high resistant coatings

for special applications.

SEM images of the obtained polymer films after the short

sintering procedure are shown in Fig. 5 in top and side view.

The thickness of the films is in the μm range.

The thin films were investigated via static contact angle

measurements at the liquid/vapor interface against water to

Fig. 4 SEM images of hbPG3-b-POM120-b-hbPG3 particles before sin-

tering (top view a, side view b) and after sintering (top view c, side view

d). Optical micrograph of a silicon wafer coated with hbPG3-b-POM120-

b-hbPG3 particles before (e) and after (f ) sintering.

Fig. 5 SEM images of a drop-casted dispersion of POM, hbPG3-b-

POM120-b-hbPG3 and hbPG7-b-POM120-b-hbPG7 after sintering. Side

view (left side) and top view (right side) of the film.

Fig. 6 Static contact angles of sintered polymer films vs. the number of

hydroxyl groups of the polymers POM, hbPG3-b-POM120-b-hbPG3,

hbPG5-b-POM120-b-hbPG5 and hbPG7-b-POM120-b-hbPG7.
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analyze the influence of the hbPG-blocks on the film properties.

The contact angles decrease from 67 to 29° for increasing

hydroxyl groups from 2 to 16. Fig. 6 summarizes the contact

angle vs. the number of hydroxyl groups of the polymers. A

clear trend to lower contact angles with increasing number of

hydroxyl groups is observable enabling the adjustment of the

polarity and wettability of the surfaces. This adjustability of the

hydrophilicity by varying the hbPG-block size and accompany-

ing the number of hydroxyl groups opens manifold possibilities

for the use of POM. In combination with the easy handling of

the aqueous nanoparticles dispersions, this approach exhibits

promising possibilities for POM as a very important engineering

plastic, e.g., in shock-proof coatings.

Conclusions

This work presents a novel approach for facile processing and

film formation of the highly insoluble material POM. An

organic or aqueous miniemulsion can be used in order to

handle POM in the form of nanoparticles. In addition to POM,

also amphiphilic nonlinear copolymers with branched oligo-

or polyglycerol have been investigated in order to tune the

hydrophilicity of the resulting films. Hyperbranched-linear-

hyperbranched ABA triblock copolymers from hyperbranched

polyglycerol (hbPG) and linear poly(oxymethylene) (POM) were

synthesized.

The combination of the solvent evaporation process with

the miniemulsion technique was used to form nanoparticle

dispersions in cyclohexane or water. Dispersions of these

nanoparticles were coated on a silicon surface and sintering

lead to film formation with film thicknesses in the μm range.

Contact angle measurements of these films show a strong

dependency of the hydrophilicity of the surface on the number

of hydroxyl groups in the polymer backbone.

These nanoparticles could be used for specialty coatings,

where the excellent impact and tensile strength, low friction

coefficients, low abrasion and high resistance of POM and the

hydrophilicity of hbPG on the other hand may be combined.

The hydrophilicity of the films can be tuned and further

functionalization is an additional option.
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