## Algebra 2/Trig – Finding the Exact Value with Trig Radicals CLASSWORK

| DATE:   | <br> |
|---------|------|
| PERIOD: |      |



• THE UNIT CIRCLE IN THE FIRST QUADRANT:



## TRIGONOMETRY RADICALS IN THE FIRST QUADRANT (NEEDS TO BE MEMORIZED!!!!)

**DIRECTIONS:** Express the following solutions as exact values (no decimals).

|              | <b>30</b> ° | <b>45</b> ° | 60° |
|--------------|-------------|-------------|-----|
| $\sin	heta$  |             |             |     |
| $\cos 	heta$ |             |             |     |
| tan $	heta$  |             |             |     |

\*\*LOOK FOR PATTERNS TO HELP YOU MEMORIZE THIS TABLE\*\*

## TRIGONOMETRY WITH QUADRANTAL ANGLES (DO NOT NEED TO MEMORIZE)

|               | <b>0</b> ° | 90° | <b>180</b> ° | <b>270</b> ° | <b>360</b> ° |
|---------------|------------|-----|--------------|--------------|--------------|
| $\sin 	heta$  |            |     |              |              |              |
|               |            |     |              |              |              |
| $\cos \theta$ |            |     |              |              |              |
|               |            |     |              |              |              |
| tan $\theta$  |            |     |              |              |              |
|               |            |     |              |              |              |

\*\*YOU CAN JUST PLUG THESE INTO YOUR CALCULATOR (in degree mode)\*\*



**MODEL PROBLEM 1:** Find the exact value:  $\sin 60^\circ + \cos 0^\circ$ 

**MODEL PROBLEM 2:** If  $f(\theta) = \tan(2\theta) - \tan\theta$ , what is the exact value of  $f(30^\circ)$ 

**MODEL PROBLEM 3:** What is the exact value of the product  $(\tan 30^\circ)(\sin 30^\circ)(\cos 30^\circ)$ .



## UNIT CIRCLE CHALLENGE

In the accompanying diagram of circle O, point O is the origin, YO = 1, JO = 1, and  $\overline{TOY}$  is a diameter.

If the coordinates of point J are  $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ , what is the value of  $\theta$ ? **\*\*Hint: Think about how to rewrite (x, y)**\*\*

