NAME: \qquad
Algebra 2/Trig - Finding the Exact Value with Trig Radicals CLASSWORK

DATE:
PERIOD:
\qquad

UNIT CIRCLE

WHAT IS THE UNIT CIRCLE?

- A unit circle is a circle with a radius of one (a unit radius). In trigonometry, the unit circle is centered at the origin.
- In the unit circle, the coordinates (x, y) can be rewritten as $(\cos \theta, \sin \theta)$

PRACTICE WITH THE UNIT CIRCLE

1. The accompanying diagram shows unit circle O, with radius $\mathrm{OB}=1$.

Which line segment has a length equivalent to $\sin \theta$?
(1) $\overline{O B}$
(3) $\overline{O D}$
(2) $\overline{C D}$
(4) $\overline{B A}$

Which line segment has a length equivalent to $\tan \theta$?
(1) $\overline{O B}$
(3) $\overline{O C}$
(2) $\overline{C D}$
(4) $\overline{O A}$

- THE UNIT CIRCLE IN THE FIRST QUADRANT:

TRIGONOMETRY RADICALS IN THE FIRST QUADRANT (NEEDS TO BE MEMORIZED!!!!)
DIRECTIONS: Express the following solutions as exact values (no decimals).

	$\mathbf{3 0 ^ { \circ }}$	$\mathbf{4 5}$	$\mathbf{6 0}^{\circ}$
$\sin \theta$			
$\cos \theta$			
$\tan \theta$			

LOOK FOR PATTERNS TO HELP YOU MEMORIZE THIS TABLE

TRIGONOMETRY WITH QUADRANTAL ANGLES (DO NOT NEED TO MEMORIZE)

	$\mathbf{0}^{\circ}$	$\mathbf{9 0}$	$\mathbf{1 8 0 ^ { \circ }}$	$\mathbf{2 7 0}$	
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					

YOU CAN JUST PLUG THESE INTO YOUR CALCULATOR (in degree mode)

MODEL PROBLEM 1: Find the exact value: $\sin 60^{\circ}+\cos 0^{\circ}$

MODEL PROBLEM 2: If $f(\theta)=\tan (2 \theta)-\tan \theta$, what is the exact value of $f\left(30^{\circ}\right)$

MODEL PROBLEM 3: What is the exact value of the product $\left(\tan 30^{\circ}\right)\left(\sin 30^{\circ}\right)\left(\cos 30^{\circ}\right)$.

MODEL PROBLEM 4: If $f(x)=\left(\sin \frac{11 x}{6}\right)\left(\cos \frac{x}{6}\right)$, what is the exact value of $f\left(180^{\circ}\right)$?

MODEL PROBLEM 5: Find the exact value in simplest form: $\frac{\cos 60^{\circ}}{\tan 60^{\circ}}$

UNIT CIRCLE CHALLENGE

In the accompanying diagram of circle O, point O is the origin, $Y O=1, J O=1$, and $\overline{T O Y}$ is a diameter.
If the coordinates of point J are $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, what is the value of θ ? ${ }^{* *}$ Hint: Think about how to rewrite $(x, y)^{* *}$

