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Abstract While many single station queues possess explicit forms for their
equilibrium probabilities, queueing networks are more problematic. Outside of
the class of product form networks (e.g., Jackson, Kelly and BCMP networks),
one must resort to bounds, simulation, asymptotic studies or approximations.
By focusing on a class of two-station closed reentrant queueing networks under
the last buffer first served (LBFS) policy, we show that non-product form equi-
librium probabilities can be obtained. When the number of customer classes
in the network is five or less, explicit solutions can be obtained. Otherwise, we
require the roots of a characteristic polynomial and a matrix inversion that
depend only on the network topology. The approach relies on two key points.
First, under LBFS, the state space can be reduced to four dimensions inde-
pendent of the number of buffers in the system. Second, there is a sense of
spatial causality in the global balance equations that can then be exploited.

To our knowledge, these two-station closed reentrant queueing networks
under LBFS represent the first class of queueing networks for which explicit
non-product form equilibrium probabilities can be constructed (for five cus-
tomer classes or less), the generic form of the equilibrium probabilities can
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be deduced and matrix analytic approaches can be applied. As discussed via
example, there may be other networks for which related observations can be
exploited.

Keywords Closed queueing networks · Product form queueing networks ·
Closed form solution · Buffer priority policy

1 Introduction

Under reasonable conditions, the well-known product form networks of Jackson
[1], Kelly [2] and BCMP [3] have equilibrium probabilities of the form

π(x1, x2, . . . , xS) = K ·
S
∏

i=1

fi(xi),

where S is the number of stations in the network, π(x1, x2, . . . , xS) is the
steady state probability that there are x1 customers at server 1, x2 customers
at server 2, . . ., and xS customers at server S, K is a normalizing constant and
each function fi depends only on xi, for all i. This is the typical interpretation
of “product form” for a queueing network ([4]). There has been much work
on identifying queueing networks with product form, c.f., [5]-[11]. As stated
in Bayer and Boucherie ([12]), “[v]irtually, all non-product form... networks
do not yield explicit and exact analytical results... This is the motivation for
clinging to product form models...”

A key class of networks outside of the product form structures are the mul-
ticlass queueing networks. Such networks arise in the modeling of semiconduc-
tor wafer fabricators ([13]) and other large scale modern systems. However, in
general there are no known solutions for their equilibirum probabilities – they
are not product form. To address this intractability, performance bounds (e.g.,
[13]-[19]), approximations (e.g., [20],[21]) and simulations (e.g., [22],[23]) have
been proposed to obtain measures of system behavior. Much effort has also
been devoted to developing stability conditions ([24],[25],[26]) and asymptoti-
cally optimal policies ([27],[28]). While these methods are useful, they do not
provide the equilibrium probabilities.

We consider a subset of such multiclass queueing networks referred to as
closed. A closed queueing network is one in which there are no external arrivals
or departures (hence the “closed” qualifier) and N trapped customers circulate
endlessly. As discussed in [29], such networks have been studied since 1954
([30]). They may be used to model a network in which a new customer is
released into the system every time a customer departs, so that the total
number of jobs in the network is maintained at a constant level. Examples
include mine haulage systems ([31]), automated material handling systems
(AMHS) ([32]), pull production systems ([33]) and internet communication
protocols ([34]).
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We assume exponential service times and buffer priority policies. Because a
closed network will then possess a finite state space, one can “always” numeri-
cally obtain solutions to the global balance equations. As such, these networks
may be considered simpler than their open counterparts. However, as the num-
ber of trapped customers N increases, the state space increases dramatically, so
that it is practically impossible to exactly obtain the equilibrium probabilities.

With the goal of completely characterizing the steady state behavior, we
will focus on a class of closed reentrant two-station multiclass queueing net-
works operating under a last buffer first served (LBFS) policy. Outside of
the abbreviated conference precursors to this work ([35, 36, 37]), there are no
known multiclass queueing networks for which equilibrium probabilities can
be obtained beyond the product form classes.

To address the intractability of closed two station queueing networks, Har-
rison and Wein [38] employed Brownian motion models for the balanced case.
There, they obtained control policies conjectured as asymptotically optimal
for the throughput as the number of trapped customers N approached infinity.
Later, these Harrison-Wein policies (HW policies) were shown to be asymptot-
ically optimal in an appropriate sense in [39] for the balanced case. Following
work on open two station networks [40], conditions guaranteeing that a closed
two station network can asymptotically achieve its bottleneck throughput un-
der any non-idling control policy were given in [41]. In work that is perhaps
closest in spirit to our study, a five-class two-station open queueing network
was studied in [42].

The contributions of this work are as follows. We

– identify a limited class of closed two station reentrant queueing networks
operating under an LBFS policy for which
– independent of the number of classes, the state space can be reduced

to four dimensions;
– there is a sense of spatial causality in the global balance equations;

– demonstrate that the equilibrium probabilities are a linear combination of
powers of roots of a characteristic polynomial;

– show that with five classes or less, closed form solutions for the equilibrium
probabilities can be found;

– for our networks with six classes or more, obtain a general form for the
equilibrium probabilities;

– study the the computational efficiency of our approach; and
– show another network that possesses some of the structural properties that

may be similarly (but not as completely) exploited.

Overall, our approach is straightforward, though it is somewhat involved. It
shares similarities with methods used for single queues. To our knowledge,
the networks identified represent the only multiclass queueing networks for
which non-product form solutions to the equilibrium probabilities have been
obtained.

The remainder of the paper is organized as follows. In Section 2, the system
description and performance measures are discussed. In Section 3, we derive
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general structural properties of our system. In Section 4, we study the case of
five customer classes or less. In Section 5, we study the case of six customer
classes or more to develop a general non-product form expression. In Section 6,
other algorithmic approaches and computational complexity are mentioned. In
Section 7, we apply the methods to the closed Lu-Kumar network. Concluding
remarks are presented in Section 8. Please refer to the conference precursors
of this work ([35, 36, 37]) for details omitted here.

2 Class of systems of interest

We first describe our systems and performance metrics.

2.1 System overview

We consider a class of two-station closed reentrant queueing networks. Such a
network consists of two single server stations labeled σ1 and σ2 which provide
service. There are m+n processes or customer classes, labeled P1, P2, P3, . . .,
Pm+n. To each is associated an infinite capacity buffer at which customers
await service. Label these b1, ... , bm+n according to their associated process.
Customers receive processes P1, P2, P3, . . ., Pm at station σ1. Customers
receive processes Pm+1, Pm+2, . . ., Pm+n at station σ2. For convenience, we
require m ≥ 2 and n ≥ 2 (cases with m or n equal to one are discussed
later). Figure 1 depicts such a system. The service time for a customer in
process Pi is exponentially distributed with rate µi, 0 < µi < ∞ (it will
not thus matter whether service is preempt-resume or preempt-repeat). All
service times are mutually independent. There are no exogenous arrivals and
no departures; N trapped customers circulate within the network. Customers
require service in sequential order from each process. That is, after receiving
service from process Pi, the customer will immediately advance to buffer bi+1

to await service for process Pi+1. When i=m+n, the customer next proceeds
to buffer b1 for process P1. Customers are processed in first-come first-served
order within a particular buffer.

Since each station possesses a single server, and we assume the server must
devote its entire effort to serving a single customer when one is present, there
will be contention between buffers if two or more are non-empty at a station.
To resolve this contention, we employ the last buffer first served (LBFS) policy.
Under the LBFS policy, process Pj has higher priority than Pi if i < j. We
assume that the policy is non-idling and preemptive. The LBFS policy is the
same as the HW policy ([38]) for our network.

Let u(t) = (υ1(t), υ2(t), ..., υm+n(t)), where υi(t) denotes the number of
customers in buffer bi at time t (including any receiving service for process
Pi). Let S = {u : u ∈ Zm+n

+ , eTu = N}, where e = (1, 1, ..., 1)T , denote the
non-negative integer orthant restricted to the simplex. Assume all processes are
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Fig. 1 A class of two station closed reentrant networks

right-continuous with left-limits. Our system is thus a finite-state, continuous-
time, time-homogeneous, controlled Markov chain with state space S; u(t)
denotes the state at time t. The LBFS policy depends only on the state.

We resort to uniformization ([44]). That is, we rescale time so that
∑m+n

i=1 µi

= 1 and sample the system at all times τw at which either a real or a virtual
service completion occurs. The sampled process {u(τw)}∞w=1 is a finite-state,
discrete-time, time-homogeneous Markov chain. Abusing notation slightly we
denote it as {uw}∞w=1 = {(υ1(w), ..., υm+n(w))}∞w=1. The Markov Chain has a
single communicating class because state {N,0,...,0} is reachable from every
state in S. It is aperiodic because we can remain in any state for an arbitrary
number of time steps (due to the virtual service completions). Its equilibrium
probabilities are the same as those of the original process.

2.2 Performance metrics

Perhaps the most celebrated performance measure in a closed queueing net-
work is throughput. Given a fixed customer population N, an initial condition
detailing their locations and a scheduling policy ∆ (typically assumed non-
idling and non-anticipative), the random variable

α∆(N) = lim inf
T→∞

Dm+n(T )

T
,

where Dm+n(T ) is the number of departures from process Pm+n in the time
interval [0,T], is called throughput. Generally, the throughput takes a single
value with probability one, increases as the number of fixed customers in the
system increases, and converges to the maximum achievable throughput as N
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increases. We can calculate the bottleneck throughput as

α∗ := min
σ

1
∑

{i:bi∈σ}
1
µi

, (1)

where bi ∈ σ indicates that buffer bi is served by station σ. It is clear that
α∆(N) ≤ α∗ a.s. This value α∗ can be approached as N → ∞ if the system
and policy are efficient; see [41]. Under a policy such as LBFS, the throughput
is well defined [47]. We may calculate it as µi · Prob{Process Pi is in service
in steady state}, for any i.

3 General structural properties

Here, we derive general structural properties for our class of networks.

3.1 State space reduction

The first property follows directly from the LBFS policy.

Proposition 1. In equilibrium,

–
∑m

i=2 vi(w) ≤ 1 and
∑m+n

i=m+2 vi(w) ≤ 1, and
– The state space has an equivalent representation as the set S′ = {(w, x, y, z) ∈

Z+ × {0, 2, . . . ,m} × Z+ × {0, 2, . . . , n}|w + y + Ix 6=0 + Iz 6=0 = N}, where
Ix 6=0 is the indicator of whether the value x is non-zero; similarly for Iz 6=0.

We interpret a state s = (w, x, y, z) ∈ S′ as follows. At a given time instant,
w and y denote the number of customers in buffers b1 and bm+1, respectively.
If there is a customer in one of the buffers b2, . . . , bm, the value x denotes the
index of that buffer; otherwise, x = 0. If there is a customer in one of the
buffers bm+2, . . . , bm+n, the z is such that bm+z is the label for that buffer;
otherwise, z = 0. Since the system is closed, we have the simplex condition.
For example, consider the state {1,2,3,4}. The first entry indicates that there
is one customer in b1. The second entry indicates that there is one customer
in b2. Similarly, there are three customers in bm+1, and there is one customer
in bm+4. In this case we have N = 6.

Proof. The first follows from the LBFS policy. The second follows since it
is equivalent to simply track in which buffer the customer currently in the
buffers b2, . . . , bm resides (if there is one). Similarly for buffers bm+2, . . . , bm+2.
Residual service times are not needed with exponential service times. ✷

Note that, under LBFS, our reentrant network becomes a closed tandem
network of two Erlang servers.
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3.2 Recursive structure of the global balance equations

Employing the notation of the previous section, we endeavor to construct a
convenient matrix representation for the global balance equations (GBEs). We
demonstrate that they possess a recursive structure that will be amenable to
standard matrix z-transform techniques in the sequel.

Since our Markov Chain model has a finite state space and single communi-
cating class, there is a unique probability vector solution to the global balance
equations ([48]); it is the vector of equilibrium probabilities. Use Πw,x,y,z to
denote the equilibrium probability of state s = (w, x, y, z). The transition
probability from state s to s′ 6= s is denoted as λ[s, s′]. Recalling that we have
assumed m,n ≥ 2, they are

λ[(w, 0, y, z), (w − 1, 2, y, z)] = µ1 · I{w≥1},
λ[(w, x, y, 0), (w, x, y − 1, 2)] = µm+1 · I{y≥1},
λ[(w, x, y, z), (w, x+ 1, y, z)] = µx · I{2≤x≤m−1},
λ[(w,m, y, z), (w, 0, y + 1, z)] = µm,
λ[(w, x, y, z), (w, x, y, z + 1)] = µz · I{2≤z≤n−1},
λ[(w, x, y, n), (w + 1, x, y, 0)] = µm+n,

and all others are zero for s 6= s′. Due to the virtual service completions,
λ[s, s] = 1− ∑

s′ 6=s

λ[s, s′]. We define Xi,j(k) as

X0,0(k) = ΠN−k−1,0,k+1,0 for k = −1, ..., N − 1,
Xi,0(k) = ΠN−k−2,i,k+1,0 for i = 2, ...,m and k = −1, ..., N − 2,
Xi,j(k) = ΠN−k−2,i,k,j for i = 2, ...,m, j = 2, ..., n and k = 0, ..., N − 2,
X0,j(k) = ΠN−k−1,0,k,j for j = 2, ..., n and k = 0, ..., N − 1.

For example, X0,0(−1) = ΠN,0,0,0.

The transition probability diagram is given in Figure 2. There, the state
space is depicted as a collection of rectangles stacked on top of each other. Each
rectangle in the stack represents the collection of states for which the number of
customers at station σ1 is held constant (and thereby the number of customers
at station σ2 is held constant). Within each such rectangle, the difference
between the states is simply the location of the customers currently in service.
Those probabilities Xi,j(k), with k fixed are the equilibrium probabilities for
states on the kth floor of the stack of rectangles; such states have exactly N-k-1
customers at station σ1 and k+1 customers at station σ2. We will call those
probabilities Xi,j(k), with k fixed, as the kth floor probabilities.

In the interior of the stack, the transition probabilities between states in
rectangle k are the same as those between corresponding states in rectangle k+
1. We call the probabilities Xi,j(−1) as initial conditions. If we know the values
Xi,j(−1), we can calculate the probabilities for the far left column of states
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Fig. 2 Transition probability diagram

on the 0th floor as
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Similarly, knowing the probabilities for a column on the 0th floor enables us to
obtain the probabilities for the column immediately to its right. It is helpful
to employ the following notation.

Yi∗[k]
∆
= [Xi0(k),Xi2(k),Xi3(k),...,Xin(k)]

T
,

Y∗j[k]
∆
= [X0j(k),X2j(k),X3j(k),...,Xmj(k)]

T
,

Y[k]
∆
= [Y T

∗0[k], Y
T
∗2[k], ..., Y

T
∗n[k]]

T ,

where Yi∗[k], Y∗j [k] and Y[k] are column vectors with dimension n× 1, m× 1
and mn × 1, respectively. (They represent rows on the kth floor, columns on
the kth floor and the entire kth floor, respectively.) We obtain the matrix form
of the GBEs for the 0th floor (including the left most column) as

Y[0] =


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
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0
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for i=1,2,...,n-1,
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and Y[−1] =


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...
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
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.

All Ri matrices are m×m. Thus, U is an mn×mn matrix. Y[0] and Y[−1]
are mn× 1 and m× 1 matrices. The notation Θ indicates an m×m matrix of
zeros. Letting R = (I −U)−1Un, we obtain a simple matrix form. The matrix
I−U is invertible since it is upper triangular and each row has a pivot position
([49]). We have

Y[0] = RY[−1]. (2)

Similarly, writing the GBEs for other floors in matrix form, we obtain

Y[1] = SY[−1], (3)
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(I −A)Y[k] = BY[k− 1] + CY[k− 2], for k = 2, . . . , N − 2. (4)

The definition of these matrices and the process to develop equations (2), (3)
and (4) are given in Appendix A. The matrix I −A is also invertible since the
matrix is upper triangular and each row has a pivot position. We thus obtain
the following result.

Proposition 2. The GBEs for our class of networks can be written in the
recursive form (2), (3) and (4) for k = 2, . . ., N − 2.
Proof. The above discussion and the details of Appendix A suffice to conclude
the recursive form. ✷

The recursive nature of the GBEs enables us to employ standard matrix
z-transform techniques.

4 Networks with explicit closed form equilibrium probabilities

In this section, special cases of our networks that possess explicit solutions for
their equilibrium probabilities are introduced. Note that the m = 1 and n = 1
case gives a closed Jackson network.

Theorem 1. For our networks with five customer classes or less (m+n ≤ 5),
there are explicit closed form solutions for the equilibrium probabilities.
Proof. The result is immediate for the case m = 1 and n = 1.

For the cases with m = 1 and 2 ≤ n ≤ 4 (or equivalently, 2 ≤ m ≤
4 and n = 1), we denote the state space as follows. Let S′′ be the set of
s′′ = (x, y, z) that satisfies an appropriate simplex condition, where x, y and
z are the number of customers in buffers b1, b2, and index of any customer in
buffers b3, . . . , bn+1, respectively. If there is no customer in buffers b3, . . . , bn+1

set z = 0. For the cases with m ≥ 2 and n ≥ 2 (with m + n ≤ 5), the state
space detailed in the prequel can be employed.

Omitting the details (there is a great deal of algebra), one employs z-
transform techniques on the resulting recursive form of the GBEs. In all cases,
the z-transform for the equilibrium probabilities is a rational function depend-
ing on the initial condition probabilities as above. The denominator polynomial
is of degree five or less. One of the roots is always z = 1. It is well known that
the roots of any polynomial of fourth degree or less can be obtained in closed
form. Thus, we obtain the remaining four roots of the denominator polynomial.
The inverse z-transform can then be computed by partial fraction expansion
([50]). The initial condition probabilities are obtained from the GBEs on the
final floor of the stack together with the probability normalization condition.

Refer to the conference paper precursors ([35, 36, 37]) of this work for the
details and resulting explicit solutions. ✷

As we shall see shortly, there is a general form for the equilibrium proba-
bilities that all of our systems possess. In the cases m + n ≤ 5, it is possible
to completely obtain them in closed form. As an example of the results that
one may thus obtain, we present the following result on throughput.
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Corollary 1. The throughput, α(N), for the case m = 1 and n = 2 is as
follows. Without loss of generality, we rescale time so that µ1 = 1.

– For the unbalanced case, that is, when µ1 6= (1/µ2 + 1/µ3)
−1,

α(N) = 1− arN−1
1

[

1
µ3

+ 1
µ2

+ µ2

µ3
− 1

µ3r1

]

ΠN,0,0

− brN−1
2

[

1
µ3

+ 1
µ2

+ µ2

µ3
− 1

µ3r1

]

ΠN,0,0.

where,

r1 =
(1+µ2+µ3)+

√
(1+µ2+µ3)2−4µ2µ3

2µ2µ3
,

r2 =
(1+µ2+µ3)−

√
(1+µ2+µ3)2−4µ2µ3

2µ2µ3
,

a =
(1+µ3−µ2)+

√
(1+µ2+µ3)2−4µ2µ3

2
√

(1+µ2+µ3)2−4µ2µ3

,

b =
(1+µ3−µ2)−

√
(1+µ2+µ3)2−4µ2µ3

−2
√

(1+µ2+µ3)2−4µ2µ3

,

and

Π−1
N,0,0 =

(

1

µ3

)

+

(

a

1− r1

)[

1 +

(

r1
µ3

)

+

(

r1µ2

µ3

)

−
(

1

µ3

)]

+

(

b

1− r2

)[

1 +

(

r2
µ3

)

+

(

r2µ2

µ3

)

−
(

1

µ3

)]

+

(

arN1
1− r1

)[

1

r1µ2
− 1− 1

µ2
− 1

µ3
− µ2

µ3
+

1

r1µ3

]

+

(

brN2
1− r2

)[

1

r2µ2
− 1− 1

µ2
− 1

µ3
− µ2

µ3
+

1

r2µ3

]

.

– For the balanced case, that is, when µ1 = (1/µ2 + 1/µ3)
−1,

[1− α(N)]
−1

=

(

Nµ2
3

µ2
3 − µ3 + 1

)

+

(

µ3
3 − 2µ2

3 + 1

µ3(µ2
3 − µ3 + 1)

)

+
µ2
3

(µ2
3 − µ3 + 1)2

[

1− (µ3 − 1)2

µ3
3

+
(µ3 − 1)N+1

µ2N
3

]

.

With some effort, the asymptotic losses may be calculated explicitly, c.f.
[35]. The asymptotic loss is exactly as predicted in [38] for the balanced case.
It is zero for the unbalanced case; contrary to the conjecture.

5 Networks with m + n ≥ 6

Whenm+n ≥ 6, we cannot obtain a closed form expression for the equilibrium
probabilities. However, we can exploit the system structure to gain insight into
their general form. We rely on the recursive structure of the GBEs to derive the
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z-transform of the steady state probabilities. We later invert the z-transform to
obtain the equilibrium probabilities. The z-transform of equation (4), assuming
it holds for all k ≥ 2, is

[(I−A)z
2−Bz− C]Y(z) = [(I−A)z

2
Y[0] + z(I−A)Y[1]− zBY[0]]. (5)

We can express Y[0] and Y[1] in terms of the “initial conditions” Y[−1] using
(2) and (3). We have

[(I−A)z
2−Bz− C]Y(z) = [(I−A)z

2
R+ z(I −A)S − zBR]Y[−1]. (6)

Since (4) is a causal recursion that holds only for k = 2, ..., N − 2, the inverse
of Y (z) gives Y[k], k = 2, ..., N−2 (but not beyond). The point here is that we
obtain a convenient Y (z) by pretending the recursion of (4) holds for all k ≥ 2,
but restrict ourself to using the inverse Y[k] only for k = 2, ..., N − 2. This is
of course necessary since the GBE recursion (4) only holds for k = 2, ..., N−2.

If [(I −A)z2 −Bz − C] is invertible, we can obtain Y(z).

Lemma 1. The matrix D=[(I −A)z2 −Bz − C] is invertible for z 6= 0.
Proof. We can express the matrix D as

D =













z2I (−z2A1 − zB1) ... Θ Θ
Θ z2I ... Θ Θ
... ... ... ... ...
Θ Θ ... z2I (−z2An−1 − zBn−1)

zBn − C1 Θ ... Θ z2I













.

Except for the zBn−C1 in the lower left corner, the matrix is upper triangular;
every element on the diagonal is z2. By the invertible matrix theorem in [49],
if D is row equivalent to the identity matrix, then D is invertible. First, using
the sub-matrix z2I in the first m rows, we transform the sub-matrix zBn−C1

in the last m rows into Θ. This process creates non-zero entries in the sub-
matrix in the last row, just to the right of the original zBn −C1. In a similar
way, we can transform this last row second sub-matrix into the 0 matrix.
Recursively, we can transform matrix D into an upper triangular matrix with
a pivot position in each row. Thus, the matrix has mn pivot positions and is
invertible. ✷

Multiplying both sides of equation (6) by D−1, we obtain Y (z).

Lemma 2. Recall that Y[k] is just the vector of all Xi,j(k). The z-transform
Xi,j(z) of the signal Xi,j(k) obeying (2), (3) and (4) for k = 2, . . . (k un-
bounded) may be expressed as

Xi,j(z) = Ci,j,1(z)X0,0(−1) +
m
∑

k=2

Ci,j,k(z)Xk,0(−1),
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for i = 2, . . ., m, j = 2, . . ., n, where X00(−1) and Xk0(−1) are the initial

conditions and Ci,j,k(z) =
2mn
∑

l=0

bi,j,k,lz
l/

2mn
∑

p=0
apz

p are proper rational functions

for appropriate constants bi,j,k,l and ap.
Proof. From (6) and Cramer’s rule ([49]), we can express Y(z) as

Y (z) =
adjD

detD
[(I−A)z

2
R+ z(I−A)S− zBR]Y[−1], (7)

where detD is the determinant of the matrix D and adjD is its adjoint. Since
the matrix D is of dimension mn×mn, and z2 terms occur in every element
on the diagonal, detD is a polynomial in which the degree of z is at most 2mn.
Thus, det D can be written as:

detD =
2mn
∑

i=0

aiz
i, (8)

where ai, i = 0, . . ., 2mn, are appropriate constants. Each element in adj D
contains a polynomial of degree 2mn-2 or less because each is obtained by
deleting one row and column of the matrix D. Thus, the maximum degree of
adj D is 2mn-2. Because the maximum degree of z of each element of [(I −
A)z2R+ z(I −A)S − zBR] is 2, each element of the numerator matrix of (7)
also contains a polynomial with maximum degree 2mn. So Y(z) can be written
as

Y (z) = CzY[−1], (9)

where

Cz =

























C0,0,1(z) C0,0,2(z) ... C0,0,m−1(z) C0,0,m(z)
C2,0,1(z) C2,0,2(z) ... C2,0,m−1(z) C2,0,m(z)

... ... ... ... ...
Cm,0,1(z) Cm,0,2(z) ... Cm,0,m−1(z) Cm,0,m(z)
C0,2,1(z) C0,2,2(z) ... C0,2,m−1(z) C0,2,m(z)
C2,2,1(z) C2,2,1(z) ... C2,2,m−1(z) C2,2,m(z)

... ... ... ... ...
Cm,n,1(z) Cm,n,2(z) ... Cm,n,m−1(z) Cm,n,m(z)

























and each Ci,j,k(z) is the proper rational function Ci,j,k(z) =
2mn
∑

l=0

bi,j,k,lz
l/

2mn
∑

p=0
apz

p,

for appropriate constants bi,j,k,l and ap. The result follows. ✷

Inverting the z-transform, and recalling that the inverse will hold for k ≤
N − 2 (since the GBE recursion of (4) holds for k ≤ N − 2), we obtain an
expression for the equilibrium probabilities in terms of the m initial condition
probabilities.

Lemma 3. The solution of recursion (4) is

Xi,j(k) = Ci,j,1(k)X0,0(−1) +

m
∑

l=2

Ci,j,l(k)Xl,0(−1), (10)
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for k = 0, . . ., N − 2,

where

Ci,j,l(k) =
q
∑

u=1





(

βi,j,l,u,1 · pi,j,l,uk
)

+
nu
∑

x=2

x−1∏

a=1

(k+a)

(x−1)! βi,j,l,u,x · pi,j,l,uk




+βi,j,l,0δ(l). (11)

The βi,j,l,0, βi,j,l,u, ... are constants, pi,j,k,u are the roots of the determinant
of D, and nu is the multiplicity of the root pi,j,k,u.
Proof. Since each Ci,j,k(z) is a rational function in z, the inverse Ci,j,k(k) is
simply as given for appropriate constants ([50]). Thus, by standard inversion
of the z-transform, we have the result. ✷

It is a unique solution since the unilateral z-transform and its inverse have
a one-to-one correspondence ([50]).

To obtain the remaining m probabilities Xi,0(−1), i = 1, . . ., m, we employ
the unused balance equations on floor N − 1. Combining these with Xi,j(k) of
Lemma 3, we have a collection of m equations in m unknowns. We thus arrive
at Lemma 4.

Lemma 4. The remaining balance equations on the N − 1th floor and the
Xi,j(k) from Lemma 3 give
























(µ1 + µm+1)C0,0(N − 2)− µmCm,0(N − 3)− µm

∑

i

Cm,i(N − 2)

(µ2 + µm+1)C2,0(N − 2)− µ1C0,0(N − 2)
(µ3 + µm+1)C3,0(N − 2)− µ2C2,0(N − 2)
(µ4 + µm+1)C4,0(N − 2)− µ3C3,0(N − 2)
...
(µm−1 + µm+1)Cm−1,0(N − 2)− µm−2Cm−2,0(N − 2)
(µm + µm+1)Cm,0(N − 2)− µm−1Cm,0(N − 2)

























Y[−1]

= Θ, (12)

where Ci,j(k) =
[

Ci,j,1(k) Ci,j,2(k) ... Ci,j,m−1(k) Ci,j,m(k)
]

.
We are now poised to provide our key result for m+ n ≥ 6.

Theorem 2. Assuming there is a unique solution to (12) and the sum of
probabilities condition





∑

i

∑

j

∑

k

Ci,j(k)



Y [−1] = 1, (13)

then there is a unique solution to the GBEs for a network in our class, they
are the equilibrium probabilities, and have the form

Xi,j(k) = Ci,j,1(k)X0,0(−1) +

m
∑

l=2

Ci,j,l(k)Xl,0(−1), (14)
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for k = 0, . . . , N − 2.
Proof. If there is a unique solution to (12) and (13), then Lemmas 1, 2, 3
and 4 give us a unique solution to the GBEs. Since we have an irreducible,
aperiodic, discrete-time, discrete-state and time-homogeneous Markov Chain,
by [48], we obtain the result. ✷

Thus, under the conditions of Theorem 2, there is a unique equilibrium
probability distribution with the non-product form above.

6 Computational complexity

We study the computation required to calculate the equilibrium probabilities.

Proposition 9. Our transition matrix has the structure of a Quasi birth-
death (QBD) process.
Proof. Using our state space definition from Section 3, the transition matrix
T has the form

T =























P00 P01 0 · · · 0 0 0
H2 H1 H0 · · · 0 0 0
0 H2 H1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · H1 H0 0
0 0 0 · · · H2 H1 H0

0 0 0 · · · 0 PN,N−1 PN,N























.

The details of the sub-matrices in T are given in Appendix B. This is the finite
QBD process structure; c.f. [43]. ✷

There are many algorithms to obtain equilibrium probabilities for QBD
processes; c.f., [43]. Linear level reduction and folding methods are popular.
The computational complexity of various approaches is given next.

Proposition 10. The arithmetic complexity of our algorithm is O(m4n4) +
O(Nm2n2)+O(2mn(log 2mn)2[| log ε|+2mn]), where ε is the round-off error
for irrational roots.
Proof. We require 5(mn)2 operations to obtain the matrix D. Gaussian elim-
ination matrix inversion requires (mn)3 operations. Next, we obtain the z-
transform in 5m(mn) operations. To invert the z-transform, we want the
roots of the determinant of the matrix D. There is no technique to factor-
ize a polynomial in the real field with polynomial complexity. Therefore, we
use the algorithm in [45]. The arithmetic complexity of their algorithm is
O(2mn(log 2mn)2| log ε|+ (2mn)2(log 2mn)2). After finding the roots, partial
fraction expansion requires 8(mn)4−7(mn)2+2mn operations; see [46]. Eval-
uating the resulting expressions of (14) takes 2N(mn)2+(2mn− 1)mn opera-
tions. To obtain the initial conditions (including the normalization), we invert
an m×m matrix in m3 operations. Summing these up proves the proposition.
✷
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Fig. 3 The Lu-kumar network gives priority to buffers b2 and b4

The authors in [45] suggest that round off error ε ≤ 2−2mn will provide ad-
equate results. The arithmetic complexity of linear level reduction and folding
methods are 2/3N (mn)

3
+O(N(mn)2) ([43]) and O(m3n3 log2 N)+O(Nm2n2)

([51]), respectively. Our approach scales similarly to the folding methods as N
grows large.

7 Extension to other network structures

It may be possible to identify and exploit similar properties in other networks.
Here we consider the closed version of the Lu-Kumar network. It is in our
class of networks with m = n = 2, but uses a different policy. Refer to Fig-
ure 3. For consistency with the standard labeling of this network, buffers b1
and b4 are served at station σ1; buffers b2 and b3 are served at station σ2.
Customers require service from buffers b1, b2, b3 and b4 in order. They then
return to buffer b1. Service times are exponential with rates µ1, . . . , µ4 for
buffers b1, . . . , b4, respectively. Normalize time so that µ1 + µ2 + µ3 + µ4 = 1.
The servers give preemptive priority to buffers b4 and b2 at their stations. Use
s = (w1(t), w2(t), w3(t), w4(t)), where wi(t) denotes the number of customers
in buffer bi, as the system state. Naturally, it must obey the simplex condition
w1(t)+w2(t)+w3(t)+w4(t) = N . We will drop the dependence on time unless
it is required.

It follows from a result in [40, 41] that many states are transient.

Corollary 2. At any time t in steady state, w2(t) · w4(t) = 0.

The transition probability diagram is shown in Figure 4. Let Πw1,w2,w3,w4

denote the equilibrium probability of the state (w1, w2, w3, w4). For conve-
nience, define Xk(n) := Πk,0,N−k−n,n and Yk(n) := ΠN−k−n,n,k,0. Note that
we do not have the QBD structure here.

Similar to the preceding, assume that we know the “initial condition” prob-
abilities X0(0), X1(0), . . ., XN (0). (These are also called YN (0), YN−1(0),
. . ., Y0(0).) Then, the probabilities on the upper left diagonal of Figure 4,
X0(1), X0(2), . . . , X0(N), can be obtained recursively asX0(k) = µk

3X0(0)/(µ3+
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Fig. 4 The transition probability diagram

µ4)
k, for k = 0, 1, . . . , N . Knowing this, we can similarly obtain the probabili-

ties on the diagonal below it, X1(k), k = 1, . . . , N − 1. Repeating this process,
one obtains all Xk(n), k = 0, 1, . . . , N − 1, n = 1, . . . , N − k as an explicit
function of the initial condition probabilities. Similarly, for Yk(n).

Proposition 11. As a function of the “initial condition” probabilities X0(0),
X1(0), . . ., XN (0), we have

Xk(n) = αn ·Xk(0) + n · αn

k
∑

i=1

(n+ 2i− 1)!

i!(n+ i)!
· (αβ)i ·Xk−i(0), (15)

Yk(n) = γn ·XN−k(0) + n · γn

k
∑

i=1

(n+ 2i− 1)!

i!(n+ i)!
· (γς)i ·XN−k+i(0), (16)

where 0 ≤ k ≤ N−1, 1 ≤ n ≤ N−k−1, α := µ3/(µ3+µ4), β := µ4/(µ3+µ4),
γ := µ1/(µ1 + µ2) and ς := µ2/(µ1 + µ2).

It remains only to determine the initial condition probabilities. Here, there
is no remaining recursive structure in the GBEs that can be exploited. We
must solve the N + 1 GBEs written at the initial condition states (plus the
normalization condition that probabilities sum to one) to obtain a solution.
The resulting matrix has the Toeplitz structure; inversion is efficient.

Thus, rather than solving for all (N + 1)2 probabilities directly from the
GBEs, we can focus on N+1 GBEs. Computation is thus significantly reduced.
Explicit solutions, however, do not seem possible.
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8 Concluding remarks

In this paper, we sought closed-form expressions for the steady state probabili-
ties in a class of two-station closed reentrant queueing networks. Under LBFS,
the state space for this class can be reduced to four dimensions. The ma-
trix representation of the global balance equations possesses a recursive form.
Standard z-transform techniques allowed us to obtain an explicit non-product
form solution for the equilibrium probabilities with five customer classes or
less. For six or more customer classes, the same procedure can be used to ob-
tain a general form for the equilibrium probabilities. The transition probability
matrix has a quasi birth-death (QBD) structure, so computation is efficient.
The approach was extended to the closed Lu-Kumar network with some, but
not complete, success. To our knowledge, these represent the first multiclass
queueing networks found that admit an explicit non-product form solution for
their equilibrium probabilities.

Appendix A. Global balance equations
Here, we obtain the matrix form of the global balance equations and in-

troduce matrix notation omitted in the paper. Similarly to floor 0, we obtain
the GBE matrix form for floor 1 as

Y[1] =















Y∗0[1]
Y∗2[1]

...
Y∗n−1[1]
Y∗n[1]















=

















Θ A1 Θ · · · Θ

Θ Θ A2
. . . Θ

...
. . .

. . .
. . .

...
Θ Θ · · · Θ An−1

Θ Θ · · · Θ Θ

















Y[1]+

















Θ B1 Θ · · · Θ

Θ Θ B2
. . . Θ

...
. . .

. . .
. . .

...
Θ Θ · · · Θ Bn−1

Bn Θ · · · Θ Θ

















Y[0]

+















Θ
Θ
...
Θ
C1















Y[−1],

where

Ai =
µm+i+1

µm+i

I + 1
µm+i



















µ1 0 · · · 0 0

−µ1 µ2
. . . 0

0
. . .

...
...

. . . −µm−2 µm−1 0
0 0 · · · −µm−1 µm



















,

for i = 1, . . ., n− 1,

Bi =
1

µm+i













0 0 ... 0 µm

0 0 ... 0 0
... .. ... .. ...
0 0 ... 0 0
0 0 ... 0 0













, for i = 1, 2, . . ., n− 1,
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Bn = µm+1

µm+n

I + 1
µm+n



















µ1 0 · · · 0 0

−µ1 µ2
. . . 0

0
. . .

...
...

. . . −µm−2 µm−1 0
0 0 · · · −µm−1 µm



















and

C1 = 1
µm+n













0 0 ... 0 −µm

0 0 ... 0 0
... .. ... .. ...
0 0 ... 0 0
0 0 ... 0 0













.

All Ai, Bi and C1’s are m × m matrices. Note that assuming we know the
initial conditions Y[−1], Y[1] can be written as Y[1] = SY[−1] for an appro-
priate matrix S. Similarly, the general equations for the GBEs can obtained
as

Y[k] =













Y∗0[k]
Y∗2[k]
...

Y∗n−1[k]
Y∗n[k]













=













Θ A1 Θ ... Θ
Θ Θ A2 Θ Θ
... ... ... ... ...
Θ Θ ... Θ An−1

Θ Θ ... Θ Θ













Y[k]

+













Θ B1 ... Θ Θ
Θ Θ B2 Θ Θ
... ... ... ... ...
Θ Θ ... Θ Bn−1

Bn Θ ... Θ Θ













Y[k − 1] +













Θ Θ ... Θ Θ
Θ Θ Θ Θ Θ
... ... ... ... ...
Θ Θ ... Θ Θ
C1 Θ ... Θ Θ













Y[k − 2],

2 ≤ k ≤ N − 2, where Ai, Bi and C1 are as before.
Letting

A =













Θ A1 Θ ... Θ
Θ Θ A2 Θ Θ
... ... ... ... ...
Θ Θ ... Θ An−1

Θ Θ ... Θ Θ













, B =













Θ B1 ... Θ Θ
Θ Θ B2 Θ Θ
... ... ... ... ...
Θ Θ ... Θ Bn−1

Bn Θ ... Θ Θ













,

C =













Θ Θ ... Θ Θ
Θ Θ ... Θ Θ
... ... ... ... ...
Θ Θ ... Θ Θ
C1 Θ ... Θ Θ













.

We obtain
(I −A)Y[k] = BY[k − 1] + CY[k − 2], for k = 2, . . ., N − 1.

Appendix B. Matrix definitions for the transition probability matrix
Here, we give notation for the sub-matrices within the transition probability
matrix. For convenience, we append virtual states to floors −1 and N − 1,
so that they too have mn states. Transitions to and from these states occur
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with probability 0. We can express the transition probability matrix T as

T =























P00 P01 0 · · · 0 0 0
H2 H1 H0 · · · 0 0 0
0 H2 H1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · H1 H0 0
0 0 0 · · · H2 H1 H0

0 0 0 · · · 0 PN−1,N−2 PN−1,N−1























, where

P00 =















P ′
00 Θ · · · Θ Θ
Θ Θ Θ Θ
...

. . .
...

Θ Θ Θ Θ
Θ Θ · · · Θ Θ















where P ′
00 =















1− µ1 µ1 . . . 0 0
0 1− µ2 0 0
...

. . .
...

0 0 0 µm−1

0 0 · · · 0 1− µm















.

The matrix P ′
00 and Θs are m×m matrices.

P01 =















P ′
01 Θ · · · Θ Θ
Θ Θ Θ Θ
...

. . .
...

Θ Θ Θ Θ
Θ Θ · · · Θ Θ















where P ′
01 =















0 0 . . . 0 0
0 0 0 0
...

. . .
...

0 0 0 0
µm 0 · · · 0 0















.

H ′
i =















1− µ1 − µm+i µ1 . . . 0 0
0 1− µ2 − µm+i 0 0
...

. . .
...

0 0 0 0
0 0 · · · 0 1− µm − µm+i















,

H1 =















H ′
1 µm+1I . . . Θ Θ

Θ H ′
2 Θ Θ

...
. . .

...
Θ Θ H ′

n−1 µm+n−1I
Θ Θ · · · Θ H ′

n















, H0 =















P ′
01 Θ . . . Θ Θ
Θ P ′

01 Θ Θ
...

. . .
...

Θ Θ P ′
01 Θ

Θ Θ · · · Θ P ′
01















,

H2 =















Θ Θ . . . Θ Θ
Θ Θ Θ Θ
...

. . .
...

Θ Θ Θ Θ
µm+nI Θ · · · Θ Θ















, PN−1,N−1 =















Θ P 1
N−1,N−1 . . . Θ Θ

Θ Θ Θ Θ
...

. . .
...

Θ Θ Θ Pn−1
N−1,N−1

Θ Θ · · · Θ Θ















,
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P j
N−1,N−1 =















µm+j 0 . . . 0 0
0 0 0 0
...

. . .
...

0 0 0 0
0 0 · · · 0 0















, PN−1,N−2 =















Θ Θ . . . Θ Θ
Θ Θ Θ Θ
...

. . .
...

Θ Θ Θ Θ
P ′
N−1,N−2 Θ · · · Θ Θ















,

and P ′
N−1,N−2 =















µm+n 0 . . . 0 0
0 0 0 0
...

. . .
...

0 0 0 0
0 0 · · · 0 0















.
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